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Abstract

We study the symplectic leaves of the subvariety of fixed points of an automorphism of a Calogero–Moser
space induced by an element of finite order of the normalizer of the associated complex reflection group.
We give a parametrization à la Harish-Chandra of its symplectic leaves (generalizing earlier works
of Bellamy and Losev). This result is inspired by the mysterious relations between the geometry of
Calogero–Moser spaces and unipotent representations of finite reductive groups, which is the theme of
another paper, C. Bonnafé [‘Calogero–Moser spaces vs unipotent representations’, Pure Appl. Math. Q.,
to appear, Preprint, 2021, arXiv:2112.13684].
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1. Introduction

Let V be a finite-dimensional vector space and let W be a finite subgroup of GLC(V)
generated by reflections. To a class function k on W supported on the set of reflections,
Etingof and Ginzburg [EtGi] associated a normal irreducible affine complex variety
Zk(V , W) called a (generalized) Calogero–Moser space. If τ is an element of finite
order of the normalizer of W in GLC(V) stabilizing the class function k, it induces
an automorphism of Zk(V , W). The main theme of this paper is the study of the
symplectic leaves of the variety Zk(V , W)τ of its fixed points in Zk(V , W) (endowed
with its reduced closed subscheme structure).

Note that W acts trivially on Zk(V , W) so, by replacing τ by wτ for some w ∈ W
if necessary, we may assume that the natural morphism Vτ −→ (V/W)τ is onto (this
argument is due to Springer [Spr] and will be recalled in Section 4): this will be
assumed throughout this paper and will simplify some statements.
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[2] Automorphisms and symplectic leaves 27

The Poisson bracket on Zk(V , W) induces a Poisson bracket on Zk(V , W)τ and we
are interested in parametrizing the symplectic leaves of this fixed-point subvariety.
For this, we define a τ-cuspidal symplectic leaf (or a τ-cuspidal point) to be a
zero-dimensional symplectic leaf of Zk(V , W)τ, and we define a τ-split parabolic
subgroup of W to be the stabilizer of some point in Vτ. We also denote by Wτ the
quotient of the setwise stabilizer of Vτ in W by the pointwise stabilizer. For its action
on Vτ, the group Wτ is a reflection group [LeSp]. Our result is as follows.

THEOREM A. Assume that the natural morphism Vτ −→ (V/W)τ is onto. Then there
is a natural bijection between the set of symplectic leaves of Zk(V , W)τ and the set of
Wτ-orbits of pairs (P, p), where P is a τ-split parabolic subgroup and p is a τ-cuspidal
point of ZkP (VP, P)τ.

Moreover, the dimension of the symplectic leaf associated with (P, p) through this
bijection is equal to 2 dim(VP)τ.

Here, kP is the restriction of k to P. In Section 9 we give an explicit description
of the bijection. If τ = IdV , this result was proved by Bellamy [Bel1] and Losev [Los]
and might be viewed as a Harish-Chandra theory of symplectic leaves. So Theorem A
can be thought as a τ-Harish-Chandra theory, inspired by the Broué–Malle–Michel
d-Harish-Chandra theory of unipotent representations of finite reductive groups
[BMM] (see [Bon2] for a further discussion of this analogy and applications of
Theorem A). The main point is to combine Springer/Lehrer–Springer theory (which
describes the action of the setwise stabilizer of Vτ on Vτ) with work of Bellamy/Losev.
We propose the following conjecture about the geometry of symplectic leaves of
Zk(V , W)τ.

CONJECTURE B. Let (P, p) be as in Theorem A and let S denote the correspond-
ing symplectic leaf of Zk(V , W)τ. Then there exist a parameter l for the pair
((VP)τ, NWτ(Pτ)/Pτ) and a C×-equivariant isomorphism of Poisson varieties

S
nor � Zl((VP)τ, NWτ(Pτ)/Pτ).

Here, S
nor

denotes the normalization of the closure of S.

Note that this conjecture is not known even in the case where τ = IdV (in which
case Wτ = W and Pτ = P). It has been proved by Maksimau and the author [BoMa]
whenever Zk(V , W) is smooth and τ ∈ W · C×.

The paper is organized as follows. We recall the set-up (reflection groups, Cherednik
algebras, Calogero–Moser spaces, . . .) in Section 2, and Section 3 recalls useful results
on Poisson structures and symplectic leaves. In Section 4 we recall the main results of
Lehrer and Springer on the group Wτ and some of its consequences. In Section 5 we
restate Theorem A and Conjecture B in more precise terms. The proof of Theorem A
is given in Sections 6–9 (see the end of Section 5 for the description of the different
steps). In Section 10 we give an overview of the known cases for Conjecture B. A
short appendix summarizes easy results about completions of rings that are needed in
Section 9 to conclude the proof of Theorem A.
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28 C. Bonnafé [3]

2. Set-up

2.1. Complex numbers. Throughout this paper, we abbreviate ⊗C as ⊗ and all vari-
eties will be algebraic, complex, quasi-projective and reduced. If X is an irreducible
variety, we denote by Xnor its normalization. If X is an affine variety, we denote by
C[X] its coordinate ring: if, moreover, X is irreducible, then Xnor is also affine and
C[Xnor] is the integral closure of C[X] in its fraction field (which is denoted by C(X)).

We fix in this paper a complex vector space V of finite dimension n. If X is a subset
of V (or V∗), and if G is a subgroup of GLC(V), we denote by Gset

X (respectively,
Gpt

X ) the setwise (respectively, pointwise) stabilizer of X and we set G[X] = Gset
X /G

pt
X .

Then G[X] acts faithfully on X (and on the vector space spanned by X). If X = {v} is a
singleton, then Gset

X = Gpt
X (and we denote both simply by GX or Gv) and G[X] = 1. If

H is a subgroup of G, we set NG(H) = NG(H)/H.
If, moreover, G is finite, we identify (VG)∗ and (V∗)G, and we denote by VG the

unique G-stable subspace of V such that V = VG ⊕ VG.

2.2. Reflections. Let W be a finite subgroup of GLC(V). We set

Ref(W) = {s ∈ W | dimC Vs = n − 1}

and note that, for the moment, we do not assume that W is generated by Ref(W). We set
ε : W → C×, w �→ det(w). We identify C[V] (respectively, C[V∗]) with the symmetric
algebra S(V∗) (respectively, S(V)).

We denote by A the set of reflecting hyperplanes of W, namely

A= {Vs | s ∈ Ref(W)}.

If H ∈ A, we denote by αH an element of V∗ such that H = Ker(αH) and by α∨H an
element of V such that V = H ⊕ Cα∨H and the lineCα∨H is Wpt

H -stable. We set eH = |Wpt
H |.

Note that Wpt
H is cyclic of order eH and that Irr(Wpt

H ) = {ResW
Wpt

H
εj | 0 � j � e − 1}. We

denote by εH,j the (central) primitive idempotent of CWpt
H associated with the character

ResW
Wpt

H
ε−j, namely

εH,j =
1

eH

∑
w∈Wpt

H

ε(w) jw ∈ CWpt
H .

If Ω is a W-orbit of reflecting hyperplanes, we write eΩ for the common value of
all the eH , where H ∈ Ω. We denote by ∇ the set of pairs (Ω, j) where Ω ∈ A/W
and 0 � j � eΩ − 1. The vector space of families of complex numbers indexed by ∇
is denoted by C∇: elements of C∇ are called parameters. If k = (kΩ,j)(Ω,j)∈∇ ∈ C∇, we
define kH,j, for all H ∈ Ω and j ∈ Z, by kH,j = kΩ,j0 where Ω is the W-orbit of H and j0
is the unique element of {0, 1, . . . , eH − 1} such that j ≡ j0 mod eH .

2.3. Parabolic subgroups. We denote by Parab(W) the set of parabolic subgroups
of W (that is, the set of subgroups of W that are stabilizers of some point of V)
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[4] Automorphisms and symplectic leaves 29

and by Parab(W)/W the set of conjugacy classes of parabolic subgroups of W. If
P ∈ Parab(W), we denote by V(P) the set of elements v ∈ V such that Wv = P: it is
a nonempty open subset of VP. By definition, Wpt

VP = P and Wset
VP = NW(P), so that

W[VP] = NW(P). The family (V(P))P∈Parab(W) is a stratification of V (the order between
strata corresponds to the reverse order of the inclusion of parabolic subgroups).

This stratification is stable under the action of the group W. If P ∈ Parab(W)/W,
we denote by U(P) the image of V(P) in V/W, where P is any element of P. Then
(U(P))P∈Parab(W)/W is a stratification of V/W (the order between strata corresponds
to the reverse order of the inclusion, up to conjugacy, of parabolic subgroups).
Replacing V by V∗, we similarly define V∗(P) and U∗(P) for P ∈ Parab(W) and
P ∈ Parab(W)/W. By definition, NW(P) acts freely on V(P) or V∗(P). Moreover, for
P ∈ P, the natural map V(P)→ U(P) induces an isomorphism of varieties

V(P)/NW(P)
∼−→ U(P).

In particular, U(P) is smooth.

2.4. Rational Cherednik algebra at t = 0. Let k ∈ C∇. We define the rational
Cherednik algebra Hk (at t = 0) to be the quotient of the algebra T(V ⊕ V∗) �W (the
semi-direct product of the tensor algebra T(V ⊕ V∗) with the group W) by the relations⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[x, x′] = [ y, y′] = 0,

[ y, x] =
∑
H∈A

eH−1∑
j=0

eH(kH,j − kH,j+1)
〈y,αH〉 · 〈α∨H , x〉
〈α∨H ,αH〉

εH,j,
(2-1)

for all x, x′ ∈ V∗, y, y′ ∈ V . Here 〈 , 〉 : V × V∗ → C is the standard pairing. The first
commutation relations imply that we have morphisms of algebras C[V]→ Hk and
C[V∗]→ Hk. Recall [EtGi, Theorem 1.3] that we have an isomorphism of C-vector
spaces

C[V] ⊗ CW ⊗ C[V∗]
∼−→ Hk (2-2)

induced by multiplication. (This the so-called Poincaré–Birkhoff–Witt decomposition,
or PBW decomposition.)

REMARK 2.1. Let (lΩ)Ω∈A/W be a family of complex numbers and let k′ ∈ C∇ be
defined by k′

Ω,j = kΩ,j + lΩ. Then Hk = Hk′ . This means that there is no restriction to
generality if we consider for instance only parameters k such that kΩ,0 = 0 for all Ω, or
only parameters k such that kΩ,0 + kΩ,1 + · · · + kΩ,eΩ−1 = 0 for all Ω (as in [BoRo]).

2.5. Calogero–Moser space. We denote by Zk the centre of the algebra Hk: it
is well known [EtGi, Theorem 3.3 and Lemma 3.5] that Zk is an integral domain,
which is integrally closed. Moreover, it contains C[V]W and C[V∗]W as subalgebras
[Gor, Proposition 3.6] (so it contains P = C[V]W ⊗ C[V∗]W). If W = 〈Ref(W)〉, then
Zk is a free P-module of rank |W | (see [EtGi, Proposition 4.15]). We denote by
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30 C. Bonnafé [5]

Zk the affine algebraic variety whose ring of regular functions C[Zk] is Zk: this is
the Calogero–Moser space associated with the datum (V , W, k). It is irreducible and
normal.

We set P = V/W × V∗/W, so that C[P] = P and the inclusion P ↪→ Zk induces a
morphism of varieties

Υk : Zk −→ P

which is finite (and flat if W = 〈Ref(W)〉).

2.6. Other structures on the Calogero–Moser space. The Calogero–Moser space
Zk is endowed with other structures (a C×-action, a Poisson bracket, a filtration, an
action of NGLC(V)(W) . . .) which are described below.

2.6.1. Grading, C×-action. The algebra T(V ⊕ V∗) �W can be Z-graded in such a
way that the generators have the following degrees:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

deg(y) = −1 if y ∈ V ,
deg(x) = 1 if x ∈ V∗,
deg(w) = 0 if w ∈ W.

This descends to a Z-grading on Hk, because the defining relations (2-1) are homoge-
neous. Since the centre of a graded algebra is always graded, the subalgebra Zk is also
Z-graded. So the Calogero–Moser space Zk inherits a regular C×-action. Note also
that by definition P = C[V]W ⊗ C[V∗]W is clearly a graded subalgebra of Zk.

2.6.2. Poisson structure. Let t ∈ C. One can define a deformation Ht,k of Hk as
follows: Ht,k is the quotient of the algebra T(V ⊕ V∗) �W by the relations⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[x, x′] = [ y, y′] = 0,

[ y, x] = t〈y, x〉 +
∑
H∈A

eH−1∑
=0

eH(kH,i − kH,i+1)
〈y,αH〉 · 〈α∨H , x〉
〈α∨H ,αH〉

εH,i,

for all x, x′ ∈ V∗, y, y′ ∈ V . It is well known [EtGi] that the PBW decomposition still
holds so that the family (Ht,k)t∈C is a flat deformation of Hk = H0,k. This allows us to
define a Poisson bracket { , } on Zk as follows: if z1, z2 ∈ Zk, we denote by zt

1, zt
2 the

corresponding element of Ht,k through the PBW decomposition and we define

{z1, z2} = lim
t→0

[zt
1, zt

2]

t
.

Finally, note the following observation.

The Poisson bracket is C×-equivariant.

2.6.3. Filtration. The tensor algebra T(V ⊕ V∗) is naturally filtered by the subspaces
(
⊕d

j=0(V ⊕ V∗)⊗j). This induces a filtration of T(V ⊕ V∗) �W by putting W in degree 0
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and so induces a filtration (FjHk)j�0 of the rational Cherednik algebra. By convention,
we set F−1Hk = 0. If M is any subspace of Hk, we set FjM = M ∩FjHk, so that M also
inherits a filtration, and we denote by ReesFM the Rees module of M (associated with
the filtration (FjX)j�0), namely the C[�]-submodule of C[�] ⊗M equal to

ReesFM =
⊕
j � 0

�
jFjM.

Recall that, if λ ∈ C, then

C[�]/〈� − λ〉 ⊗C[�] ReesFM �
⎧⎪⎪⎨⎪⎪⎩M if λ � 0,

grF(M) if λ = 0,
(2-3)

where grF(M) =
⊕

j � 0 FjM/Fj−1M is the graded vector space associated with M and
its filtration.

If A is a subalgebra of Hk and J is an ideal of A, then ReesF(A) is a subalgebra of
C[�] ⊗ A (called the Rees algebra of A) and ReesF(J) is an ideal of ReesF(A). Recall
[EtGi, Theorem 1.3] that

grFHk � H0 = C[V × V∗] �W and grFZk � Z0 = C[V × V∗]W . (2-4)

2.6.4. Action of the normalizer. The group NGLC(V)(W) acts on the set ∇ and so on
the space of parameters C∇. If τ ∈ NGLC(V)(W), then τ induces an isomorphism of
algebras Hk −→ Hτ(k). So, if τ(k) = k, then τ acts on the algebra Hk, and so on its
centre Zk and on the Calogero–Moser space Zk, which preserves the C×-action and
the Poisson bracket. We set

δ(τ) = max
w∈W

dim Vwτ.

Of course, δ(τ) depends only on the coset Wτ and not on τ. We say that τ is W-full
if δ(τ) = dim Vτ. Since W acts trivially on Zk, the study of the action of τ on Zk is
equivalent to the study of the action of wτ. So, by replacing τ by wτ if necessary, we
may assume that τ is W-full.

EXAMPLE 2.2. An element τ ∈ NGLC(V)(W) is called W-regular (or simply regular if
W is clear from the context) if Vτ ∩ Vreg � ∅. A W-regular element of NGLC(V)(W) is
W-full [Spr].

HYPOTHESIS AND NOTATION. From now on, and until the end of this paper, we
assume that

W = 〈Ref(W)〉,

we fix a parameter k ∈ C∇ and an element τ of finite order of NGLC(V)(W) such that
τ(k) = k. We also assume that τ is W-full.

If � is one of the objects defined in the previous sections (Hk, Zk, ∇, A, . . .), we
sometimes denote it by�(W) or�(V , W) if we need to emphasize the context.
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3. Poisson structures and symplectic leaves

NOTATION. We fix in this section, and only in this section, a commutative noetherian
Poisson C-algebra R, whose Poisson bracket is denoted by { , }.

3.1. Poisson ideals. An ideal I of R is called a Poisson ideal of R if {r, I} ⊂ I for all
r ∈ R. The following facts may be found in [Dix, Lemma 3.3.3].

PROPOSITION 3.1. Let I be a Poisson ideal of R. Then the following assertions hold.

(a) Every minimal prime ideal containing I is Poisson.
(b) The radical of I is Poisson.

3.2. Normalization. The next result is due to Kaledin [Kal].

THEOREM 3.2 (Kaledin). Assume that R is a domain. Then there is a unique Poisson
bracket on the normalization of R extending { , }.

3.3. Action of a finite group. We assume in this subsection that we are given a
finite group G acting on the C-algebra R in such a way that the Poisson bracket is
G-equivariant (that is, {g(r), g(r′)} = g({r, r′}) for all g ∈ G and r, r′ ∈ R). Let I denote
the ideal of R generated by the family (g(r) − r)g∈G,r∈R. Then R/I is the biggest quotient
algebra of R on which G acts trivially.

Since G is finite and C has characteristic 0, the natural map

RG −→ (R/I)G = R/I

is surjective and its kernel is IG. Moreover, RG is a Poisson subalgebra of R (because
the Poisson bracket is G-equivariant). Note that I is not in general a Poisson ideal of
R, but it is easily checked that

IG is a Poisson ideal of RG.

Therefore, R/I = RG/IG can be naturally endowed with a Poisson bracket. And, by
Proposition 3.1(b), R/

√
I = RG/

√
IG also inherits a Poisson bracket.

REMARK 3.3. If R = C[X] is the coordinate ring of an affine variety X, then R/I is
the coordinate ring of the G-fixed points scheme of X (which is denoted by X(G)),
while R/

√
I is the coordinate ring of its reduced subscheme (which is denoted by XG).

The above construction shows that the closed subvariety XG of X inherits a Poisson
structure from that on X, even though it is not in general a Poisson subvariety of X
(that is, the natural map XG ↪−→ X is not Poisson). However, X/G is also a Poisson
variety and the natural map XG ↪−→ X/G is Poisson; that is, XG is a closed Poisson
subvariety of X/G.

If, moreover, X is smooth, then X(G) = XG is also smooth, and if the Poisson
structure on X makes it into a symplectic variety, then XG is also symplectic for the
induced Poisson structure.
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EXAMPLE 3.4. Let E be a C-vector space endowed with a symplectic form ω and
assume here that R = C[E] and that G ⊂ Sp(E,ω). Then the restriction of ω to EG

is nondegenerate, so this endows EG with the structure of a Poisson (even more,
symplectic) variety. On the other hand, via the above Remark 3.3, the variety EG

also inherits from E a structure of Poisson variety. It is easily checked that both
structures coincide.

3.4. Symplectic leaves. Assume in this subsection that R = C[X] is the coordinate
ring of an affine variety X. Brown and Gordon [BrGo] defined a stratification of Xby
symplectic leaves, which are in general not algebraic subvarieties of X. We denote by
Symp(X) the set of symplectic leaves of X.

When X has finitely many symplectic leaves, then the symplectic leaves are
algebraic [BrGo, Proposition 3.7] and the stratification of X into symplectic leaves
is given as follows. Let (Sj)j � 0 be the sequence of closed subvarieties of Xdefined by⎧⎪⎪⎨⎪⎪⎩S0 = X,

if j � 0, then Sj+1 is the reduced singular locus of Sj.

Then the symplectic leaves of X are the irreducible components of the locally closed
subvarieties (Sj \ Sj+1)j � 0. Let PSpec(C[X]) denote the set of prime ideals that are
Poisson. If S is a symplectic leaf of X, we denote by pS the defining ideal of S in
C[X]: it belongs to PSpec(C[X]). If X has finitely many symplectic leaves, then the
map

Symp(X) −→ PSpec(C[X])
S �−→ pS

(3-1)

is bijective [BrGo, Lemma 3.4]. The inverse is given as follows: if p ∈ PSpec(C[X])
corresponds to S through this bijection, then S is the smooth locus of the closed
irreducible subvariety of Xdefined by p.

LEMMA 3.5. Assume that Xhas finitely many symplectic leaves and that Y is a locally
closed Poisson subvariety of X. Then Yhas finitely many symplectic leaves.

PROOF. Taking the closure of Y, which is also Poisson, allows us to assume that
Y is closed. Let (Sl)l∈L be the family of symplectic leaves of X (for some finite
indexing set L). Let I be an irreducible component of Y. Then I is also Poisson by
Proposition 3.1(a), so it is the closure of a symplectic leaf thanks to the bijection (3-1).
In particular, there exists a subset I of L such that I is the union of the Si, for i ∈ I. This
proves that Y is a union of symplectic leaves of X, each of which is also a symplectic
leaf of Y. �

Now, let G be a finite group acting on X and preserving the Poisson bracket. Then
X/G is an affine Poisson variety (because C[X/G] = C[X]G is a Poisson subalgebra
of C[X]; see Remark 3.3). If H is a subgroup of G, we denote by X(H) the set of
elements x ∈ Xwhose stabilizer is exactly H. Then X(H) is a locally closed subvariety
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of X (it is open in XH). The subgroup H is called parabolic if X(H) � ∅. Let Parab(G)
denote the set of parabolic subgroups of G.

If H is a conjugacy class of parabolic subgroups of G, we denote by (X/G)(H) the
image of X(H) in X/G for some (or any) H ∈ H. Then the group NG(H)/H acts freely
on X(H) and the natural map X(H)→ (X/G)(H) induces an isomorphism

X(H)/G(H)
∼−→ (X/G)(H). (3-2)

Indeed, if g ∈ G and x, x′ ∈ X(H) are such that g · x = x′, then H = Gx′ =
gGx =

gH
and so g ∈ NG(H). The next result generalizes [BrGo, Proposition 7.4] slightly.

PROPOSITION 3.6. Assume that X is smooth and symplectic. Then the symplectic
leaves of X/G are the irreducible components of the locally closed subvarieties
(X/G)(H) where H runs over Parab(G)/G.

In particular, if all the subvarieties (X/G)(H) are irreducible, then

X/G =
⋃̇

H∈Parab(G)/G

(X/G)(H)

is the stratification of X/G into symplectic leaves.

PROOF. Let H ∈ Parab(G) and let H ∈ H. Since X is smooth and symplectic, the
subvariety XH is also smooth and symplectic. So its open subset X(H) is also
smooth and symplectic as well as (X/G)(H) thanks to the isomorphism (3-2). And
the morphism XH → X/G is Poisson: this proves that any irreducible component of
(X/G)(H) is contained in a unique symplectic leaf. In particular, X/G has finitely
many symplectic leaves.

It remains to show that any irreducible component I of (X/G)(H) is a symplectic
leaf. But I is a closed Poisson subvariety of X/G, so its smooth locus is a symplectic
leaf of X/G by the bijection (3-1). Since I is smooth, it remains to show that I is
the smooth locus of I. Note that I has finitely many symplectic leaves; so, by the
discussion at the beginning of this subsection, it is sufficient to show that I\I is a
(closed) Poisson subvariety.

But (X/G)(H) \ (X/G)(H) is the union of the (X/G)(H′), where H′ runs over the
set of conjugacy classes of parabolic subgroups of G strictly containing at least one
element of H; so it is Poisson. Since I\I= I∩ ((X/G)(H) \ (X/G)(H)), we get that
I\I is Poisson, as desired. �

COROLLARY 3.7. Assume that X has finitely many symplectic leaves. Then X/G and
XG have finitely many symplectic leaves.

PROOF. Let S denote a symplectic leaf of X and let H = Gset
S

. As symplectic leaves
form a partition of X, and since g(S) is a symplectic leaf of X for any g ∈ G, we get
that

g(S) ∩ S= ∅
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for all g � H. So, the image S in X/G is isomorphic to S/H and is a locally closed
Poisson subvariety of X/G. But, by Proposition 3.6, S/H has finitely many symplectic
leaves.

As X has finitely many symplectic leaves, this shows that X/G also has finitely
many symplectic leaves. Now, XG is a closed Poisson subvariety of X/G, so it also
admits finitely many symplectic leaves by Lemma 3.5. �

As a consequence of the above proof, we get the following corollary.

COROLLARY 3.8. Assume that X has finitely many symplectic leaves and that G acts
freely on X. Then the map Symp(X)/G −→ Symp(X/G) sending the G-orbit of a
symplectic leaf of X to its image in X/G is well defined and bijective.

4. Lehrer–Springer theory

4.1. Reflection groups. Recall that τ ∈ NGLC(V)(W) is assumed to be W-full. This
implies that [Spr]

δ(τ) = dim(V/W)τ.

Therefore, since (V/W)τ is irreducible (it is isomorphic to an affine space [Spr]), we
get that

the natural map Vτ → (V/W)τ is onto. (4-1)

To simplify notation, we set Wτ = Wset
Vτ /W

pt
Vτ . Note that Wτ ⊂ Wset

Vτ . Moreover, Wτ acts
faithfully on Vτ, so

τ acts trivially on Wτ. (4-2)

Lehrer–Springer theory [LeSp, Theorem 2.5 and Corollary 2.7] gives the following
result.

THEOREM 4.1 (Springer, Lehrer–Springer). Recall that τ is W-full. Then the following
assertions hold.

(a) The group Wτ is a reflection group for its action on Vτ.
(b) The natural map

iτ : Vτ/Wτ −→ (V/W)τ

is an isomorphism of varieties.
(c) The reflecting hyperplanes of Wτ are exactly the intersections with Vτ of the

reflecting hyperplanes of W that do not contain Vτ.

Similarly, the natural map i∨τ : V∗τ/Wτ → (V∗/W)τ is an isomorphism of varieties.

EXAMPLE 4.2. If τ is W-regular (as defined in Example 2.2), then Wτ = Wτ by [Spr].
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4.2. τ-split parabolic subgroups. A parabolic subgroup P of W is called τ-split
if it is the stabilizer of some point of Vτ (that is if P = Wpt

VP∩Vτ or, in other words, if
V(P) ∩ Vτ � ∅). This is equivalent to saying that P is the stabilizer of some point of
V∗τ. Note the following easy fact.

The intersection of τ-split parabolic subgroups is τ-split.

In this case, P is normalized by τ and τ is P-full, and we define the τ-rank of
P to be the number dim(VP)τ. We denote by Parabτ(W) the set of τ-split parabolic
subgroups of W. If P ∈ Parabτ(W), then Wpt

Vτ ⊂ P and Pτ = (P ∩Wset
Vτ )/W

pt
Vτ is a

parabolic subgroup of Wτ. This shows that the map

Parabτ(W) −→ Parab(Wτ)
P �−→ Pτ

is well defined.

LEMMA 4.3. The map

Parabτ(W) −→ Parab(Wτ)
P �−→ Pτ

is bijective.

PROOF. First, if Q is a parabolic subgroup of Wτ, then there exists v ∈ Vτ such that
Q = (Wτ)v and so, if we set P = Wv, then P is τ-split and Pτ = Q. This shows that the
map is surjective.

Now, if P is a τ-split parabolic subgroup of W, then

(VP)τ = (Vτ)Pτ . (4-3)

PROOF OF (4-3). Since P is τ-split, there exists v ∈ (VP)τ such that P = Wv (and so
Pτ = (Wτ)v). Therefore, by Theorem 4.1(a),

(Vτ)Pτ =
⋂

H∈A(Vτ,Wτ)
v∈H

H,

and so, by Theorem 4.1(c),

(Vτ)Pτ = Vτ ∩
( ⋂

H∈A(V ,W)
v∈H

H
)
= Vτ ∩ VP,

as expected. �

Since P = Wpt
(VP)τ

, the group Pτ determines P. This means that the map of the lemma
is injective. �

If Q ∈ Parab(Wτ)/Wτ and Q ∈ Q, we denote by Vτ(Q) and Uτ(Q) the analogues of
V(P) and U(P) for P ∈ Parab(W)/W and P ∈ P. We similarly also define V∗τ (Q) and
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U∗τ(Q). The same argument as in the above proof (using Theorem 4.1(c)) shows that if
P is τ-split, then

Vτ(Pτ) = V(P)τ. (4-4)

4.3. Normalizers. Fix a τ-split parabolic subgroup P of W. If w ∈ Wτ, then wP does
not depend on the representative of w in Wset

Vτ , because Wpt
Vτ ⊂ P by definition. So

we can define the normalizer NWτ(P) of P in Wτ and, by the bijectivity proved in
Lemma 4.3, it coincides with the normalizer NWτ(Pτ). The kernel of the well-defined
composition

NWτ(Pτ) = NWτ(P) −→ NW(P)/P

is equal to Pτ, so we get a natural injective map

NWτ(Pτ) ↪−→ NW(P). (4-5)

Now, τ acts on NW(P). The next result describes the image of the above injective map.

LEMMA 4.4. The image of the morphism (4-5) is equal to NW(P)τ.

PROOF. Let G denote the image of the morphism (4-5) and let v ∈ V(P)τ (so that
P = Wv).

Let w ∈ NWτ(Pτ) and let ẇ be a representative of w in Wset
Vτ . Then ẇ(v) ∈ V(P)τ

by (4-4). So τ(ẇ(v)) = ẇ(v), that is, ẇ−1τ(ẇ) ∈ P. So the image of w in NW(P) is
τ-invariant. This proves that G ⊂ NW(P)τ.

Conversely, let w ∈ NW(P)τ and let ẇ denote a representative of w in NW(P). Then
τ(ẇ(v)) = ẇ(ẇ−1τ(ẇ))(v). But (ẇ−1τ(ẇ))(v) = v since ẇ−1τ(ẇ) ∈ P by hypothesis. So v
and ẇ(v) belong to Vτ; so, by Lehrer–Springer Theorem 4.1(b), there exists x ∈ Wset

τ

such that ẇ(v) = x(v). In other words, x−1ẇ ∈ P. Moreover, v and ẇ(v) both belong to
V(P), so x normalizes P (and Pτ); so w is the image of x under the morphism (4-5). In
other words, NW(P)τ ⊂ G. �

Thanks to Lemma 4.4, we identify NWτ(Pτ) with NW(P)τ. Note that NWτ(Pτ) =
NW(P)τ is the stabilizer of the set V(P)τ in NW(P).

4.4. Orbits of τ-split parabolic subgroups. We denote by Parab(W)τspl the set
of τ-split parabolic subgroups of W and by (Parab(W)/W)τspl the set of W-orbits of
parabolic subgroups of W containing a τ-split one. The group Wset

Vτ acts on Parab(W)τspl

by conjugacy and, since any τ-split parabolic subgroup of W contains Wpt
Vτ , this

action factorizes through an action of Wτ. If P ∈ (Parab(W)/W)τspl, we set Pτspl =

P ∩ Parab(W)τspl. Now, let EP (respectively, ẼP) denote the set of elements w ∈ NW(P)

(respectively, NW(P)) such that V(P)wτ � ∅. Then NW(P) acts by conjugacy on the set
ẼPτ. If w ∈ EP, we denote by [wτ] the NW(P)-orbit of the image of wτ in NW(P)τ.
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PROPOSITION 4.5. Let P be a τ-split parabolic subgroup and letP denote its W-orbit.
Then the following assertions hold.

(a) Let x ∈ W. Then xP is τ-split if and only if x−1τ(x) ∈ EP.
(b) The map Pτspl → ẼPτ/NW(P), xP �→ [x−1τx] is well defined and induces a

bijection

Pτspl/Wτ
∼−→ ẼPτ/NW(P).

PROOF. (a) Assume that xP is τ-split. In other words, there exists v ∈ Vτ such that
xP = Wv. Now let w = x−1τ(x). Then x−1(v) ∈ V(P)wτ and so w ∈ EP.

Conversely, assume that w = x−1τ(x) ∈ EP. Then there exists v ∈ V(P) such that v ∈
Vwτ. Therefore, P = Wv and so xP = Wx(v). But τ(x(v)) = xx−1τ(x)τ(v) = xwτ(v) = x(v),
so x(v) ∈ Vτ. This implies that xP is τ-split by definition.

(b) Let us first show that the map (let us denote it by φ) is well defined. For this
purpose, let x and y be two elements of W such that xP = yP is τ-split. Then there
exists u ∈ NW(P) such that y = xu. So y−1τy = u−1x−1τxu and so [ y−1τy] = [x−1τx], as
expected.

Let us now prove that φ is constant on Wτ-orbits. For this purpose, let w ∈ Wτ
and x ∈ W be such that ξ−1τ(x) ∈ EP. Then (xw)−1τ(wx) = x−1w−1τ(w)xx−1τ(x). But
w−1τ(w) ∈ Wpt

Vτ ⊂ P by (4-2), so the images of x−1τ(x) and (wx)−1τ(wx) in ẼP coincide.
Therefore, φ factorizes through a map

φ̃ : Pτspl/Wτ −→ EPτ/NW(P).

Let us prove that φ̃ is injective. So let x and y be two elements of W such that xP
and yP are τ-split and [x−1τx] = [ y−1τy]. Then there exists u ∈ NW(P) and p ∈ P such
that y−1τy = u−1x−1τxup. In particular, V(P)y−1τy = V(P)u−1x−1τxu. Since xP = xuP, we
may (and do) assume that u = 1. As xP is τ-split, the set V(xP)τ is nonempty, so we
may pick an element v ∈ V(xP)τ. Then

τyx−1(v) = yy−1τyx−1(v) = yx−1τxpx−1(v).

But x−1(v) ∈ V(P), so px−1(v) = x−1(v). Consequently, τyx−1(v) = yx−1τ(v) = yx−1(v).
In other words, yx−1(v) ∈ V(yP)τ ⊂ Vτ. By Lehrer–Springer Theorem 4.1(b), there
exists a ∈ Wτ such that yx−1(v) = a(v). Then

yP = yx−1
(xP) = yx−1

Wv = Wyx−1(v) = Wa(v) =
aWv =

a(xP),

which shows that yP and xP are Wτ-conjugate.
Let us now prove that φ̃ is surjective. So let w ∈ EP. Then there exists v ∈ V(P)wτ.

So W · v ∈ (V/W)τ. By Lehrer–Springer Theorem 4.1, there exists x ∈ W such that
x(v) ∈ Vτ. Therefore, xP = Wx(v) is τ-split and v ∈ Vx−1τx. So, if we set p = w−1x−1τ(x),
then p(v) = v; so p ∈ P and φ(xP) = [x−1τ(x)] = [wp] = [w], as desired. �

4.5. Stratification of (V/W)τ. Applying Section 2.3 to the pair (Vτ, Wτ), the
variety Vτ/Wτ admits a stratification (Uτ(Q))Q∈Parab(Wτ)/Wτ while the variety (V/W)τ
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admits a stratification (U(P)τ)P∈Parab(W)/W . Both varieties are isomorphic and so both
stratifications can be compared: through this isomorphism, the first is a refinement of
the second, as shown in Corollary 4.7 below by using Proposition 4.5.

PROPOSITION 4.6. Let P ∈ Parab(W)/W. Then U(P)τ is nonempty if and only if P
contains a τ-split parabolic subgroup.

PROOF. IfP contains a τ-split parabolic subgroup P and if v ∈ Vτ is such that P = Wv,
then the W-orbit of v belongs to U(P)τ which is therefore nonempty. Conversely, if
U(P)τ is nonempty, it then follows from Theorem 4.1(b) that there exists v ∈ Vτ whose
W-orbit belongs to U(P)τ. By construction, Wv ∈ P and is τ-split. �

After we eliminate the empty pieces, Proposition 4.6 shows that (V/W)τ admits a
stratification (U(P)τ)P∈(Parab(W)/W)τspl

. Let us decompose the pieces of this stratification
into irreducible components. For this, fix a τ-split parabolic subgroup P and let P
denote its conjugacy class. Then U(P)τ is smooth since U(P) is smooth and τ has
finite order. Now we have

U(P)τ = (V(P)/NW(P))τ =
( ⋃

w∈ẼP

V(P)wτ
)
/NW(P).

By definition of V(P), V(P)wτ ∩ V(P)w′τ = ∅ if w � w′. If E is a subset of ẼPτ, we
denote by V(P)E the (disjoint) union of the V(P)g for g ∈ E. Then

U(P)τ =
⋃

E∈ẼPτ/NW (P)

V(P)E/NW(P). (4-6)

Then V(P)E/NW(P) is the image of some V(P)g for some g ∈ E and so V(P)E/NW(P)
is closed (in U(P)) and irreducible. So the decomposition (4-6) is the decomposition
of U(P)τ into irreducible (that is, connected because disjoint) components.

So the stratification (U(P)τ)P∈(Parab(W)/W)τspl
of (V/W)τ together with the decom-

position (4-6) provides a finer stratification of (V/W)τ, indexed by the Wτ-orbits of
τ-split parabolic subgroups (by using the bijection of Proposition 4.5(b)). On the other
hand, Vτ/Wτ admits a stratification (Uτ(Q))Q∈Parab(Wτ)/Wτ . Both stratifications coincide
through the isomorphism iτ, as shown by the next result.

COROLLARY 4.7. LetP ∈ (Parab(W)/W)τspl, let P ∈ P and let E ∈ ẼPτ/NW(P). LetPE

denote the Wτ-orbit of τ-split parabolic subgroups of W associated with E through the
bijection of Proposition 4.5(b). Let QE denote the Wτ-orbit of parabolic subgroups of
Wτ of the form Qτ for Q ∈ PE (see Lemma 4.3). Then

iτ(Uτ(QE)) = V(P)E/NW(P).

PROOF. Let g ∈ E and let x ∈ W be such that [x−1τx] = [g] (the existence of such
an x is guaranteed by Proposition 4.5(b)). We set Q = xP. Then Q is τ-split by
Proposition 4.5(a) and PE (respectively, QE) is the Wτ-orbit of Q (respectively, Qτ)
by construction.
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Now iτ(Uτ(QE)) is the image of V(xP)τ in (V/W)P and, through the isomorphism
V(P)/NW(P) � U(P), the result comes from the fact that x−1 induces an isomorphism
between V(xP)τ and V(P)x−1τx. �

5. The problem and the main result

5.1. Symplectic leaves. Let Ik denote the ideal of Zk generated by (τ(z) − z)z∈Zk . It
is τ-stable. Recall from Remark 3.3 that C[Zτk ] = Zk/

√
Ik = Zτk/

√
Iτk , and that Zk/Ik

inherits a Poisson bracket which makes Zτk an affine Poisson variety. Therefore,
Zτk admits a stratification into symplectic leaves [BrGo, Section S.5]. We denote by
Symp(Zτk ) the set of symplectic leaves of Zτk .

REMARK 5.1. Note that Zτk is generally not irreducible, not connected, not equidi-
mensional and that its irreducible components might not coincide with its connected
components.

Since Zk has finitely many symplectic leaves [BrGo, Proposition 7.4], it follows
from Corollary 3.7 that Zτk has finitely many symplectic leaves too. They are obtained
as in Section 3.4.

REMARK 5.2. This description shows that the symplectic leaves of Zτk are C×-stable.

If S is a symplectic leaf of Zτk , we denote by pS the defining ideal of S in Zk/Ik: it
belongs to PSpec(Zk/Ik). Since Zτk has finitely many symplectic leaves, the map

Symp(Zτk ) −→ PSpec(Zk/Ik)
S �−→ pS

(5-1)

is bijective (see (3-1)).

5.2. τ-cuspidality. We define a τ-cuspidal symplectic leaf to be a zero-dimensional
symplectic leaf of Zτk . This definition coincides with the notion of cuspidal leaf of
Zk introduced by Bellamy [Bel1, Section 5] in the case where τ = 1. We therefore
also call it a τ-cuspidal point. Through the bijection (5-1), the set of τ-cuspidal
points is naturally in bijection with the set PMax(Zk/

√
Ik) of maximal ideals of

the algebra C[Zτk ] = Zk/
√

Ik that are also Poisson ideals (note that PMax(Zk/Ik) =
PMax(Zk/

√
Ik) ⊂ PSpec(Zk/

√
Ik)).

REMARK 5.3. It follows from Remark 5.2 that τ-cuspidal points are fixed under the
action of C×.

We denote by Cusτk(V , W) the set of pairs (P, p) where P is a τ-split parabolic
subgroup of W and p is a τ-cuspidal point of ZkP (VP, P)τ, where kP denotes the
restriction of k to the parabolic subgroup P. The group Wτ acts on Cusτk(V , W) and we
denote by Cusτk(V , W)/Wτ the set of its orbits in Cusτk(V , W). If (P, p) ∈ Cusτk(V , W),
we denote by [P, p] its Wτ-orbit.
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5.3. Main result. With the above notation, Theorem A can be restated (and made
more precise) as follows.

THEOREM A. There is a natural bijection (explicitly constructed in Section 9)

Cusτk(V , W)/Wτ −→ Symp(Zτk )
[P, p] �−→ SP,p.

It satisfies that Υk(SP,p) is the image of (VP)τ × (V∗P)τ in V/W × V∗/W. In particular,

dimSP,p = 2 dim(VP)τ.

We prove Theorem A in the next sections. First, in Section 6, we recall the
proof, essentially due to Brown and Gordon [BrGo, Proposition 7.4], of Theorem A
whenever k = 0 and τ = 1. In Section 7 we use Lehrer–Springer Theorem 4.1 to prove
Theorem A whenever k = 0. In Section 8 we use a deformation argument to attach
to each symplectic leaf a Wτ-orbit of τ-split parabolic subgroups: in some sense, this
is half of the construction of the above bijection. The second half is constructed in
Section 9, where the proof of Theorem A is completed.

Let us also restate Conjecture B.

CONJECTURE B. Let (P, p) ∈ Cusτk(V , W). Then there exist l ∈ ∇((VP)τ, NWτ(Pτ)) and
a C×-equivariant isomorphism of Poisson varieties

S
nor
P,p � Zl((VP)τ, NWτ(Pτ)).

6. Symplectic leaves of Z0 = (V × V∗)/W

The Poisson bracket on Z0 = C[V × V∗]W is the one obtained by restriction from
the usual Poisson bracket on C[V × V∗]. The symplectic leaves of Z0 are described in
[BrGo, Proposition 7.4]: we recall their description in this section, and give some more
precise details about the structure of their closure.

If P ∈ Parab(W), let VV∗(P) denote the set of elements (v, v∗) ∈ V × V∗ such that
Wv ∩Wv∗ = P. Again, the family (VV∗(P))P∈Parab(W) is a stratification of V × V∗ (the
order between strata corresponds to the reverse order of the inclusion of parabolic
subgroups). If P ∈ Parab(W)/W, we let UU∗(P) denote the image of VV∗(P) in
(V × V∗)/W, where P is any element of P. Then (UU∗(P))P∈Parab(W)/W is a stratifi-
cation of (V × V∗)/W (the order between strata corresponds to the reverse order of the
inclusion, up to conjugacy, of parabolic subgroups).

Now fix P ∈ Parab(W)/W and P ∈ P. Then

V(P) × V∗(P) ⊂ VV∗(P) ⊂ VP × V∗P.

Note that NW(P) acts on VP × V∗P and that VV∗(P) is the open subset of VP × V∗P on
which NW(P) acts freely. The image of VV∗(P) = VP × V∗P is equal to UU∗(P).

Recall from Section 3.3 that VP × V∗P is not a Poisson subvariety of V × V∗ but
inherits from V × V∗ a Poisson structure. This Poisson structure is the natural one
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endowed by the product of a vector space with its dual: it is NW(P)-equivariant, so
(VP × V∗P)/NW(P) is also a Poisson variety. By definition, NW(P) acts freely on the
open subset VV∗(P), so the variety VV∗(P)/NW(P) is smooth and its Poisson bracket
makes it a symplectic variety. The next proposition is a particular case of the discussion
preceding Proposition 3.6.

LEMMA 6.1. Let P ∈ Parab(W)/W and let P ∈ P. Then the following assertions hold.

(a) The closed subvariety UU∗(P) is a Poisson subvariety of (V × V∗)/W.
(b) The map VV∗(P)→ UU∗(P) induces an isomorphism

VV∗(P)/NW(P)
∼−→ UU∗(P)

of Poisson varieties.

COROLLARY 6.2. Let P ∈ Parab(W)/W and let P ∈ P. Then the above isomorphism
VV∗(P)/NW(P)

∼−→ UU∗(P) extends to an isomorphism of Poisson varieties

(VP × V∗P)/NW(P)
∼−→ UU∗(P)

nor
.

PROOF. The surjective map ϕ : (VP × V∗P)/NW(P)→ UU∗(P) induces an injection
C[UU∗(P)] ⊂ C[VP × V∗P]NW (P) between algebras of regular functions, and both
algebras have the same fraction fields by Lemma 6.1(b). But ϕ is finite and
C[VP × V∗P]NW (P) is integrally closed, so C[VP × V∗P]NW (P) is the integral closure
of C[UU∗(P)] in its fraction field. This completes the proof of the corollary. �

The next result follows immediately from Lemma 6.1 and is a particular case of
Proposition 3.6 (see also [BrGo, Proposition 7.4]).

PROPOSITION 6.3. The family (UU∗(P))P∈Parab(W)/W of locally closed subvarieties is
the stratification of Z0 = (V × V∗)/W by symplectic leaves.

Let us interpret the results of this section in terms of Theorem A and Conjecture B
for k = 0 and τ = IdV . First, it follows from Corollary 6.2 that, if P ∈ Parab(W)/W
and if P ∈ P, then dim UU∗(P) = 2 dim VP. Therefore, UU∗(P) is IdV -cuspidal (we
say cuspidal for the sake of simplicity) if and only if VP = 0. Therefore, there is at
most one cuspidal leaf of Z0 and there is actually one if and only if VW = 0 (in this
case, this cuspidal leaf will be simply denoted by 0, as it is the W-orbit of 0 ∈ V × V∗).
This shows that

CusIdV
0 (V , W) = {(P, 0) | P ∈ Parab(W)} ∼←→ Parab(W).

Consequently, the bijection CusIdV
0 (V , W)/W

∼−→ Symp(Z0) predicted by Theorem A
in the case where k = 0 and τ = IdV is simply given by the formula

SP,0 = UU∗(P)

for allP ∈ Parab(W)/W and all P ∈ P: this is the content of Proposition 6.3. Moreover,
Corollary 6.2 proves Conjecture B in this case.
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PROPOSITION 6.4. Theorem A and Conjecture B hold if k = 0 and τ = IdV.

7. Symplectic leaves of Zτ
0

We have Zτ0 = ((V × V∗)/W)τ. To study its symplectic leaves, the next consequence
of Lehrer–Springer Theorem 4.1 is crucial.

PROPOSITION 7.1. The natural map

iiτ : (Vτ × V∗τ)/Wτ −→ ((V × V∗)/W)τ = Zτ0

is a finite bijective morphism of Poisson varieties: it is the normalization of the
variety Zτ0 .

PROOF. Only the statement on the bijectivity needs to be proved, the others being
obvious or immediate consequences.

Let us first prove that iiτ is injective. Let (v1, v∗1) and (v2, v∗2) ∈ Vτ × V∗τ be such that
(v2, v∗2) belong to the W-orbit of (v1, v∗1). Then there exists a ∈ W such that (v2, v∗2) =
a(v1, v∗1). By Theorem 4.1(b), there exists b ∈ Wset

Vτ such that v2 = b(v1). Therefore,
b−1a(v1) = v1 and b−1(v∗2) = b−1a(v∗1). In other words, b−1a belongs to the stabilizer
Wv1 of v1 in W (it is a parabolic subgroup). Since τ(v1) = v1, τ normalizes Wv1 . Hence,
since τ is Wv1 -full by (4-1), we may apply Theorem 4.1(b) to the pair (Wv1 , τ) so that,
by dualizing, there exists c ∈ (Wset

Vτ )v1 such that b−1(v∗2) = c(v∗1). Therefore, bc ∈ Wset
Vτ

and bc(v1, v∗1) = (v2, v∗2), as desired.
Let us now prove that iiτ is surjective. Let (v, v∗) ∈ V × V∗ be such that its W-orbit

is τ-stable. By Theorem 4.1(b), there exists x ∈ W such that τ(x(v)) = x(v). So, by
replacing (v, v∗) by x(v, v∗) if necessary, we may, and do, assume that τ(v) = v.
Therefore, there exists a ∈ W such that (τ(v), τ(v∗)) = (a(v), a(v∗)). In other words,
a(v) = v and τ(v∗) = a(v∗). So a belongs to the parabolic subgroup Wv, which is
τ-stable. Again applying Theorem 4.1(b) to (Wv, τ) (since τ is Wv-full by (4-1)),
and dualizing, one gets that there exists b ∈ Wv such that τ(b(v∗)) = b(v∗). Therefore,
ab(v, v∗) ∈ Vτ × V∗τ, as desired. �

REMARK 7.2. We do not know if there are examples of pairs (W, τ) such that the
variety Zτ0 is not normal. By the above proposition, saying that Zτ0 is normal is
equivalent to saying that any Wτ-invariant polynomial function on Vτ × V∗τ extends
to a W-invariant polynomial function on V × V∗.

A bijective morphism of Poisson varieties does not necessarily induce a bijection
between symplectic leaves, but it turns out that this holds for our map iiτ, as shown
by Corollary 7.5 below. Before proving it, let us introduce some notation. If Q is a
parabolic subgroup of Wτ, we denote by VV∗τ (Q) the set of pairs (v, v∗) ∈ Vτ × V∗τ

such that Q = Wv ∩Wv∗ . If Q denotes the Wτ-orbit of Q, we denote by UU∗τ(Q) the
image of VV∗τ (Q) in (Vτ × V∗τ)/Wτ. By Proposition 6.3 applied to the pair (Vτ, Wτ),
the locally closed subvariety UU∗τ(Q) is a symplectic leaf of (Vτ × V∗τ)/Wτ and all the
symplectic leaves are obtained in this way. Note first the following easy fact.
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LEMMA 7.3. Let P ∈ Parab(W)/W, let P ∈ P and let w ∈ NW(P). Then the following
assertions hold.

(a) VV∗(P)wτ � ∅ if and only if V(P)wτ � ∅.
(b) UU∗(P)τ � ∅ if and only if U(P)τ � ∅.

PROOF. Note that (a) implies (b) by Lemma 6.1(b). On the other hand, if V(P)wτ � ∅,
then V∗(P)wτ � ∅. So, if we pick v ∈ V(P)wτ and v∗ ∈ V∗(P)wτ, then (v, v∗) ∈
VV∗(P)wτ. This proves the ‘if’ part of (a).

Conversely, if VV∗(P)wτ � ∅, pick (v, v∗) ∈ VV∗(P)wτ. Then V∗(Wv∗)wτ � ∅ so
V(Wv∗)wτ. Pick v′ ∈ V(Wv∗)wτ and let S denote the subspace of V generated by v and
v′. Then P = Wpt

S , so there exists v′′ ∈ S such that Wv′′ = P. But v′′ ∈ Vwτ ∩ V(P),
which proves the ‘only if’ part of (a). �

The above lemma allows us to apply the same arguments as in Section 4.5
to the bijective morphism of varieties iiτ : (Vτ × V∗τ)/Wτ −→ Zτ0 . For instance,
if P ∈ Parab(W)/W, then it follows from Lemma 7.3 and Proposition 4.6 that
UU∗(P)τ � ∅ if and only if P contains a τ-split parabolic subgroup.

Moreover, if P ∈ (Parab(W)/W)τspl and if P ∈ P is τ-split, then the τ-equivariant

isomorphism UU∗(P) � VV∗(P)/NW(P) induces a decomposition into irreducible
components

UU∗(P)τ =
⋃

E∈ẼPτ/NW (P)

VV∗(P)E/NW(P), (7-1)

where VV∗(P)E is defined in the same way as V(P)E. Similarly, the analogue of
Corollary 4.7 is given as follows.

PROPOSITION 7.4. Let P ∈ (Parab(W)/W)τspl, let P ∈ P and let E ∈ ẼPτ/NW(P). Let
PE denote the Wτ-orbit of τ-split parabolic subgroups of W associated with E through
the bijection of Proposition 4.5(b). Let QE denote the Wτ-orbit of parabolic subgroups
of Wτ of the form Qτ for Q ∈ PE (see Lemma 4.3). Then

iiτ(UU∗τ(QE)) = VV∗(P)E/NW(P).

COROLLARY 7.5. The bijective morphism of varieties iiτ : (Vτ × V∗τ)/Wτ −→ Zτ0
induces a bijection between symplectic leaves.

PROOF. Both varieties admit finitely many symplectic leaves so, by taking the closure,
these leaves are, in both cases, in bijection with the set of irreducible closed Poisson
subvarieties.

Now let S be an irreducible closed Poisson subvariety of (Vτ × V∗τ)/Wτ. Since iiτ
respects the Poisson bracket, iiτ(S) is also an irreducible closed Poisson subvariety
of Zτ0 : this shows that iiτ induces an injective map between the symplectic leaves of
(Vτ × V∗τ)/Wτ and those of Zτ0 .

Let us now show that this map is surjective. For this purpose, let Sbe a symplectic
leaf of Zτ0 . Then there exists P ∈ Parab(W)/W such that S∩ UU∗(P)τ is open and
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dense in S. So P contains a τ-split parabolic subgroup P and the decomposition
of UU∗(P)τ � ∅ into irreducible components is given by (7-1). But UU∗(P) is
smooth and symplectic, so UU∗(P)τ is also smooth and symplectic; so S∩ UU∗(P)τ

is equal to one of these irreducible components. The result then follows from
Proposition 7.4. �

PROPOSITION 7.6. If k = 0, then Theorem A and Conjecture B hold.

PROOF. By Corollary 7.5, Zτ0 admits a τ-cuspidal point if and only if (Vτ)Wτ = 0
and, in this case, there is only one τ-cuspidal point, namely the orbit of 0. So, still
by Corollary 7.5 (and (4-3)), Cusτ0(V , W) is in bijection with conjugacy classes of
parabolic subgroups of Wτ and Symp(Zτ0) is also in bijection with conjugacy classes
of parabolic subgroups of Wτ. This provides a natural bijection between Cusτ0(V , W)
and Symp(Zτ0) that satisfies the required properties of Theorem A.

Let us now prove Conjecture B in this case. So let Sbe a symplectic leaf of Zτ0 . Let
L= ii−1

τ (S): it is a symplectic leaf of (Vτ × V∗τ)Wτ and

M= ii−1
τ (S).

Since iiτ is bijective, we have L
nor
= S

nor
; so Conjecture B now follows from Lemma

6.1 applied to the pair (Vτ, Wτ) instead of (V , W). �

REMARK 7.7. If k = 0, then the parameter l involved in Conjecture B is equal to 0.

8. Parabolic subgroups attached to symplectic leaves

8.1. Definition. Let S be a symplectic leaf of Zτk . We denote by pS the prime
ideal of Zk defining S; then pτ

S
∈ PSpec(Zτk). Now, the isomorphism grFZk � Z0 is

τ-equivariant and (grFZk)τ = grF(Zτk). So grF(pτ
S
) is an ideal of Zτ0. The next important

result follows mainly from [Mar1, Theorem 2.8].

LEMMA 8.1. The ideal
√

grF(pτ
S
) of Zτ0 is prime, Poisson and contains Iτ0 .

PROOF. First, the Poisson bracket { , } on Zk is a proto-Poisson bracket of degree
−2 in the sense of [Mar1, Definition 2.4] and its associated graded Poisson bracket
on Z0 is also the natural Poisson bracket on Z0 (for a proof of both facts, see [EtGi,
Lemma 2.26]).

The same facts also hold by taking fixed points under the τ-action, and so the fact
that

√
grF(pτ

S
) is a prime ideal of Zτ0 that is Poisson is an application of [Mar1, Theorem

2.8] (because Zτk has finitely many symplectic leaves by Corollary 3.7).
Finally, τ acts trivially on Zk/pS, so it acts trivially on grF(Zk/pS) =

grF(Zk)/grF(pS) = Z0/grF(pS). This shows that grF(pS) contains I0 and so grF(pτ
S
)

contains Iτ0. �

Lemma 8.1 shows that
√

grF(pτ
S
) defines a symplectic leaf S0 of Zτ0 ; so, by

Corollary 7.5, there exists a unique Wτ-orbitQS of parabolic subgroups of Wτ such that√
grF(pτ

S
) is the defining ideal of iiτ(UU∗τ(QS)). Through the bijection of Lemma 4.3,
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there exists a unique Wτ-orbit PS of τ-split parabolic subgroups of W such that
QS = {Pτ | P ∈ PS}.

DEFINITION 8.2. Let S be a symplectic leaf of Zτk . The Wτ-orbit of τ-split parabolic
subgroupsPS is called the Wτ-orbit associated with S. Any element ofPS is called an
associated τ-split parabolic subgroup (with S).

If P is a τ-split parabolic subgroup of W associated with S, then

dimS= 2 dim(VP)τ. (8-1)

Indeed, dimS= dimS0.

8.2. Geometric construction. Let

π : V/W × V∗/W → V/W and π∨ : V/W × V∗/W −→ V∗/W

denote the first and second projection, respectively. The next proposition gives another
characterization of the Wτ-orbit of τ-split parabolic subgroups associated with a
symplectic leaf:

PROPOSITION 8.3. Let Sbe a symplectic leaf of Zτ0 . Then:

(a) Υk(S) = ιτ(Uτ(QS)) × ι∨τ(U∗τ(QS));
(b) π(Υk(S)) = ιτ(Uτ(QS));
(c) π∨(Υk(S)) = ι∨τ(U∗τ(QS)).

PROOF. Let H#
k denote the C[�]-algebra that is obtained as the quotient of the algebra

C[�] ⊗ (T(V ⊕ V∗) �W) by the relations⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
[x, x′] = [ y, y′] = 0,

[ y, x] = �2
∑
H∈A

eH−1∑
j=0

eH(kH,i − kH,i+1)
〈y,αH〉 · 〈α∨H , x〉
〈α∨H ,αH〉

εH,i,
(8-2)

for all y, y′ ∈ V and x, x′ ∈ V∗. It follows from the comparison of the relations (2-1)
and (8-2) that there is a well-defined morphism of C[�]-algebras θ : H#

k −→ ReesFHk

such that

θ(y) = �y, θ(x) = �x and θ(w) = w

for all y ∈ V , x ∈ V∗ and w ∈ W. In fact,

θ is an isomorphism of algebras. (8-3)

Indeed, surjectivity is immediate while injectivity follows from the PBW decomposi-
tion (2-2), which also holds for H#

k , namely, the map

C[�] ⊗ C[V] ⊗ CW ⊗ C[V∗] −→ H#
k

induced by the multiplication is an isomorphism of C[�]-modules.
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Let Z#
k denote the centre of H#

k . Then it follows from (8-3) that θ induces an
isomorphism of algebras

Z#
k −→ ReesFZk.

Again, Z#
k is a flat family of deformations of Z0 = C[V × V∗]W . We denote by Z#

k
the affine variety such that C[Z#

k ] = Z#
k . The inclusion P ↪→ Z#

k induces a morphism
Υ#

k : Z#
k −→ P = V/W × V∗/W.

The action of τ and C× extends easily to H#
k , by letting them act trivially on the

indeterminate �. However, H#
k (and so Z#

k) inherits a further action of C×. Namely,
there is an action of C× × C× given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ξ, ξ′) · x = ξξ′x if x ∈ V∗,
(ξ, ξ′) · y = ξ−1ξ′y if y ∈ V ,
(ξ, ξ′) · w = w if w ∈ W,
(ξ, ξ′) · � = ξ′�.

The action of the first copy of C× extends the one already defined in Section 2.6.1.
Through the isomorphism θ, this action on ReesFHk is just the restriction of the action
on C[�] ⊗Hk given by

(ξ, ξ′) · (P(�) ⊗ h) = P(ξ′�) ⊗ (ξ · h).

Then (2-4) can be retrieved thanks to (2-3) and the isomorphism θ, by specializing �
to 0.

Specializing � to λ ∈ C gives the algebras Hλ2k and Zλ2k. Geometrically, the
inclusion C[�] ↪→ Z#

k induces a flat morphism Z#
k → C whose fibre at λ is the

Calogero–Moser space Zλ2k.
Now view S as a subvariety of Z#

k and let S0 = (1 × C×) · S∩Z0, endowed with
its reduced structure. Then, using the isomorphism θ, it follows from the definition
of the action of the second copy of C× on ReesF(Hk) that the defining ideal of S0 is√

grF(pS).
Since S is (C× × 1)-stable, we have

(1 × C×) · S= (C× × C×) · S= Δ(C×) · S,

where Δ(C×) is the diagonal in C× × C×. Note also that if ξ ∈ C× and z ∈ Z#
k , then π ◦

Υ#
k((ξ, ξ) · z) = π ◦ Υ#

k(z). Moreover, if z ∈ S, then z0 = limξ→0(ξ, ξ) · z exists (because
the action Δ(C×) has nonnegative weights) and z0 ∈ S0. So (π ◦ Υk)(z) = (π ◦ Υ0)(z0)
belongs to ιτ(Uτ(QS)), as expected. This shows that

π(Υk(S)) ⊂ ιτ(Uτ(QS)).

By exchanging the role of V and V∗, we have

π∨(Υk(S)) ⊂ ι∨τ(U∗τ(QS)).
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Therefore,

Υk(S) ⊂ ιτ(Uτ(QS)) × ι∨τ(U∗τ(QS)).

Since Υk(S) is closed irreducible of dimension 2 dim(VP)τ (by (8-1) and the finiteness
of the morphism Υk), we get that

Υk(S) = ιτ(Uτ(QS)) × ι∨τ(U∗τ(QS)).

In other words, this proves (a). Now, (b) and (c) follow from (a). �

Keep the notation introduced in the above proof (H#
k , Z#

k , Z#
k , . . .) and let us explain

how this proof provides a justification for Conjecture B as well as a possible strategy
for proving it. Indeed, if S is a symplectic leaf of Zk, let S

#
= (1 × C×) · S. Then S

#

comes equipped with a morphism � : S
# −→ C and we denote by ν : (S

#
)nor −→ C

the composition of the normalization morphism (S
#
)nor −→ S

#
with �. Then ν is flat

[Har, Ch. III, Proposition 9.7]. Since �−1(C×) � C× × S, we have

ν−1(C×) � C× × Snor
.

Let S
�
0 denote the scheme-theoretic fibre of ν at 0. Assume that we are able to show

the following two facts.

(1) The reduced subscheme of S
�
0 is the normalization of S0.

(2) The scheme S
�
0 is generically reduced.

Then a theorem of Hironaka [Har, Ch. III, Theorem 9.11] would show that ν is a flat
family of schemes, all of whose scheme-theoretic fibres are reduced, irreducible and

normal varieties. As S
�
0 = S

nor
0 is the normalization of S0 by (1), this would imply

that S
nor

is a Poisson deformation of S
nor
0 . So Conjecture B would then follow from

Propositions 7.4, 7.6 and a result of Bellamy [Bel2, Theorem 1.4] (which follows works
by Ginzburg and Kaledin [GiKa] and Namikawa [Nam1, Nam2]).

9. τ-Harish-Chandra theory of symplectic leaves

Let P be a parabolic subgroup of W and let P denote its conjugacy class. Let kP

denote the restriction of k to the hyperplane arrangement of P and let k◦P denote its
‘extension by zero’ to the hyperplane arrangement of NW(P): in other words, if H ∈
A(V , NW(P)) and 0 � i � eH − 1, we set

(k◦P)H,i =

⎧⎪⎪⎨⎪⎪⎩kH,i if H ∈ A(V , P),
0 otherwise.

If X is a locally closed subvariety of V/W, we denote by Zk(V , W)
∧

X the scheme equal
to the completion of Zk(V , W) at its locally closed subvariety (π ◦ Υk)−1(X). Note
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that it inherits a Poisson structure from that of Zk(V , W) (see, for instance, [Bel1,
Lemma 3.5]).

Our construction of the τ-Harish-Chandra theory of symplectic leaves will follow
from a forthcoming result of Bellamy and Chalykh [BeCh] which says that there is a
natural isomorphism of Poisson schemes

Zk(V , W)
∧

U(P) � Zk◦P (V , NW(P))
∧

U(P)
.

As [BeCh] is still not published, we just mention here that it is based on
Bezrukavnikov–Etingof-like constructions of isomorphisms when completing at a
single point of V/W. Note that U(P) � V(P)/NW(P) may be viewed as a locally
closed subvariety of both V/W and V/NW(P). The construction of this isomorphism
implies that it is τ-equivariant.

The sheafified version of Proposition A.4 given in Remark A.6 implies that we
can take fixed points under the action of τ in the above isomorphism and get an
isomorphism

Zk(V , W)τ
∧

U(P)τ � Zk◦P (V , NW(P))τ
∧

U(P)τ
, (9-1)

with obvious notation. Moreover, this isomorphism is also Poisson: indeed, the Poisson
structure on the left-hand side comes from the Poisson structure on the quotient scheme
(Zk(V , W)
∧

U(P))/〈τ〉 and one can use Corollary A.3 (and similarly for the right-hand
side).

Now, the irreducible (that is connected in this case) components of U(P)τ have
been described in Equation (4-6): this leads to a decomposition of the two schemes
involved in isomorphism (9-1). We focus on the irreducible component ιτ(Uτ(Pτspl)) of
U(P)τ and get an isomorphism of Poisson schemes

Zk(V , W)τ
∧

ιτ(Uτ(Pτspl))
� Zk◦P (V , NW(P))τ
∧

ιτ(Uτ(Pτspl))
. (9-2)

A sheafified version of [Bel1, Lemmas 3.3–3.5] provides a natural bijection between
Poisson reduced irreducible subschemes of Zk(V , W)τ of dimension 2 dim(VP)τ

meeting (π ◦ Υk)−1(ιτ(Uτ(Pτspl))) and Poisson reduced irreducible subschemes of

Zk(V , W)τ
∧

ιτ(Uτ(Pτspl))
of dimension 2 dim(VP)τ. A similar bijection is obtained with the

right-hand side of (9-2). Using the isomorphism (9-2), one gets a bijection between
the following two sets:

• the set SPτspl
of symplectic leaves of Zk(V , W)τ of dimension 2 dim(VP)τ meeting

(π ◦ Υk)−1(ιτ(Uτ(Pτspl)));
• the set S′

Pτspl
of symplectic leaves of Zk◦P (V , NW(P))τ of dimension 2 dim(VP)τ

meeting (π′ ◦ Υ′k)−1(ιτ(Uτ(Pτspl)).

Here, the maps π′ and Υ′k are the analogues of π and Υk for the Calogero–Moser space
Zk◦P (V , NW(P)).
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But it follows from Proposition 8.3 that SPτspl
is exactly the set of symplectic leaves

Sof Zk(V , W)τ such that PS = P
τ
spl. So Theorem A follows from the next lemma.

LEMMA 9.1. The set S′
Pτspl

is in natural bijection with the set of NWτ(Pτ)-orbits of
cuspidal points of ZkP (VP, P)τ.

PROOF. Since k◦P is the extension by zero of kP, we have

Zk◦P (V , NW(P)) = ZkP (V , P)/NW(P) = (VP × V∗P ×ZkP (VP, P))/NW(P).

Consequently,

U(P) ×V/NW (P) Zk◦P (V , NW(P)) = (V(P) × V∗P × (0 ×VP/P ZkP (VP, P)))/NW(P).

As in (4-6) and (7-1), the τ-fixed points of (V(P) × V∗P × (0 ×VP/P ZkP (VP, P)))/NW(P)
decompose into pieces indexed by ẼPτ/NW(P) as follows:

((V(P) × V∗P × (0 ×VP/P ZkP (VP, P)))/NW(P))τ

=
⋃

w∈[ẼPτ/NW (P)]

(V(P)wτ × (V∗P)wτ ×ZkP (VP, P)wτ)/NW(P)wτ.

Here, [ẼPτ/NW(P)] is a set of representatives of ẼPτ/NW(P). We may, and do,
assume that 1 ∈ [ẼPτ/NW(P)]. Then, by construction, only the piece indexed by 1
meets (π′ ◦ Υ′k)−1(ιτ(Uτ(Pτspl)). Therefore, S′

Pτspl
is in natural bijection with the set of

symplectic leaves of

X= (V(P)τ × (V∗P)τ ×ZkP (VP, P)τ)/NW(P)τ

of dimension 2 dim(VP)τ. But NW(P)τ = NWτ(Pτ) by Lemma 4.4, and it acts freely
on V(P)τ × (V∗P)τ ×ZkP (VP, P)τ. So it follows from Corollary 3.8 that the set of
symplectic leaves of X is in natural bijection with the set of NWτ(Pτ)-orbits of
symplectic leaves of

Y= V(P)τ × (V∗P)τ ×ZkP (VP, P)τ.

But any symplectic leaf of Y is of the form V(P)τ × (V∗P)τ × S, where S is a
symplectic leaf of ZkP (VP, P)τ. For dimension reasons, S′

Pτspl
is in natural bijection with

the set of NWτ(Pτ)-orbits of symplectic leaves of ZkP (VP, P)τ of dimension 0, which is
exactly the desired statement. �

10. Examples

10.1. Smooth case. Assume in this subsection, and only in this subsection, that Zk

is smooth and that τ is of the form ζw for some root of unity ζ and w ∈ W. We denote
by d the order of ζ. Then

Zτk = Z
μd
k .
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Since Zk is smooth, it is symplectic by (5-1), and so Zτk is also smooth and symplectic:
its symplectic leaves are exactly its irreducible (that is, connected) components.

In [BoMa], Maksimau and the author have described the irreducible components
of Z

μd
k as particular Calogero–Moser spaces, and the reader can check that this

description is compatible with Conjecture B; however, it is not proved that the
isomorphism preserves the Poisson structure. In other words, we have the following
result [BoMa, Theorems 2.13 and 5.1].

THEOREM 10.1. If Zk is smooth and τ ∈ C×W, then Conjecture B holds, possibly up
to the Poisson structure.

10.2. Type G4. Thiel and the author [BoTh] have developed algorithms for comput-
ing presentations of Zk that have been implemented in Magma [Mag] (more precisely,
in the Champ package for Magma written by Thiel [Thi]). This allows computations
for (very) small groups.

We assume in this subsection, and only in this subsection, that W is the group G4,
in the Shephard–Todd classification [ShTo]. Then a presentation of Zk can be obtained
with Magma (see, for instance, [BoMa, Section 5] or [BoTh, Theorem 5.2]), and it has
been checked in [BoTh, Theorem 4.7] that Conjecture B holds in this case.

THEOREM 10.2. If W = G4, then Conjecture B holds.

10.3. Type B. Assume in this subsection, and only in this subsection, that W = Wn is
a Coxeter group of type Bn for some n � 2 (that is, we may assume that W = G(2, 1, n)
in the Shephard–Todd classification) and that τ = IdV . Let t = diag(−1, 1, . . . , 1) ∈ Wn

and, for 1 � j � n − 1, let sj denote the permutation matrix corresponding to the
transposition ( j, j + 1).

There are two conjugacy classes of reflections: the class of t (which generates an
elementary abelian normal subgroup of order 2n) and that of s1 (which generates a
normal subgroup W′n = G(2, 2, n) of index 2 isomorphic to a Coxeter group of type
Dn). We set b = ck(t) and a = ck(s1) and we denote by In the set of m ∈ Z such that
|m| � n − 1. The Dynkin diagram, together with the values of the parameter function
ck, is given as follows:

� � � · · · �
t s1 s2 sn−1

b a a a

The case where a = 0 is somewhat uninteresting, as then Zk � (Cb)n/Sn, where Cb

is the Calogero–Moser space associated with the cyclic group of order 2 whose
equation is given by Cb = {(x, y, z) ∈ C3 | z2 = xy + 4b2}. So we assume throughout
this subsection that a � 0. This implies that

Zk is smooth if and only if b/a � In.
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As τ = IdV , the smooth case is uninteresting so we assume that b/a = m ∈ In. As
the cases b/a = m and b/a = −m are equivalent, we also may assume that m � 0.
The Calogero–Moser space Zk is then denoted by Za,ma(n). Symplectic leaves were
parametrized by Martino in his PhD Thesis [Mar2, Section 5.4]. Bellamy and Thiel
then reinterpreted his result in terms of Bellamy parametrization à la Harish-Chandra
[BeTh, Lemma 6.5]. This can be summarized as follows.

• Za,ma(n) admits a cuspidal point if and only if there exists r ∈ Z� 0 such that n =
r(r + m); if so, there is only one cuspidal point, which we denote by pn.

• Therefore, CusIdV (Za,ma(n)) = {(Wr(r+m), pr(r+m)) | r(r + m) � n}, with the conven-
tion that W0 = 1 and W1 = 〈t〉.

• If r(r + m) � n, we denote by Sm
r (n) the symplectic leaf of Za,ma(n) associated

with (Wr(r+m), pr(r+m)) through the bijection of Theorem A (since we are in the case
where τ = IdV , this bijection was established by Bellamy [Bel1] and Losev [Los]).
We have

dimSm
r (n) = 2(n − r(r + m)).

If r(r + m) � n, then

NWn (Wr(r+m)) � Wn−r(r+m).

Using the description of Za,ma(n) in terms of quiver varieties, Bellamy, Maksimau and
Schedler proved the following result [BeSc].

THEOREM 10.3 (Bellamy–Maksimau–Schedler). If r(r + m) � n, then there is a
C
×-equivariant isomorphism of Poisson varieties

Sm
r (n)

nor � Za,(m+2r)a(n − r(r + m)).

COROLLARY 10.4. Conjecture B holds if W is a Coxeter group of type Bn and τ = IdV.

10.4. Type D. Assume in this subsection, and only in this subsection, that W = W′n is
a Coxeter group of type Dn for some n � 4 (that is, we may assume that W = G(2, 2, n)
in the Shephard–Todd classification). We set a = ck(s1), as in the previous subsection,
and the Calogero–Moser space Zk is denoted by Z′a(n). The case where a = 0 being
treated in Section 7, we assume throughout this subsection that a � 0. The following
facts are proved in [BeTh, Theorem 7.2]. Note that there is a little mistake in [BeTh,
Theorem 7.2], which can be easily corrected to give the statement written here. More
precisely, and keeping the notation of [BeTh, Sections 6 and 7], the statement of
[BeTh, Lemma 7.1] is false for k = 1 (but true for k = 0) because [BeTh, Theorem
6.24] cannot be applied to the case (k, m) = (1, 0) for going from type B1 to D1 = B1
(!). So the correct statement of [BeTh, Theorem 7.2] is to replace the set {k � 1 | k2 � n}
by the set {0} ∪ {k � 2 | k2 � n}: then, for instance, L0 is the smooth symplectic leaf.

• Z′a(n) admits a cuspidal point if and only if there exists r ∈ Z� 0 \ {1} such that
n = r2; if so, there is only one cuspidal point, which we denote by p′n.
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• Therefore, CusIdV (Z′a(n)) = {(W ′r2 , p′r2 ) | 0 � r2 � n and r � 1}, with the convention
that W ′

0 = 1.
• If 0 � r2 � n and r � 1, we denote by S′r(n) the symplectic leaf of Z′a(n) associated

with (W ′r2 , p′r2 ). We have

dimS′r(n) = 2(n − r2).

Let us give another description, coming from the link between Z′a(n) and the
Calogero–Moser space Za,ma(n) of type Bn defined in the previous subsection for
the special value m = 0. Indeed, Z′a(n) admits an action of the element t ∈ Wn ⊂
NGLC(V)(W ′

n) defined in the previous subsection and [BeTh, Proposition 4.17]

Z′a(n)/〈t〉 � Za,0(n),

as Poisson varieties endowed with a C×-action. Denote by γn : Z′a(n)→ Za,0(n) the
quotient morphism.

PROPOSITION 10.5. We have

S′0(n) = γ−1
n (S0

0 (n) ∪ S0
1 (n)) and S′r(n) = γ−1

n (S0
r (n))

for all r � 2 such that r2 � n.

PROOF. The symplectic leaves of Z′a(n) are characterized by their dimension, so every
symplectic leaf is t-stable (so is the inverse image, under γn, of its image in Za,0(n)).
But if 0 � r2 � n and r � 1, then γn(S′r(n)) is a closed irreducible Poisson subvariety
of Za,0(n), so it is the closure of a symplectic leaf. For dimension reasons, it must be
equal to S0

r (n). The result follows. �

COROLLARY 10.6. We have

Z′a(n)t = γ−1
n (S0

1 (n)).

In particular, if 4 � r2 � n, then t acts trivially on S′r(n).

PROOF. First, t does not act trivially on Z′a(n), so it does not act trivially on the open
leaf S′0(n). Since S′0(n) is smooth and symplectic, the description of the symplectic
leaves of S′0(n)/〈t〉 is given by Proposition 3.6. But S′0(n)/〈t〉 = S0

0 (n) ∪ S0
1 (n) by

Proposition 10.5. Comparing both descriptions shows that t acts freely on S0
0 (n) and

trivially on S0
1 (n).

Therefore, t acts trivially on the closure of γ−1
n (S0

1 (n)) and freely on S0
0 (n). But the

closure of S0
1 (n) is the union of the S0

r (n) for r � 1 (see [BeTh, Lemma 6.5]). So the
corollary now follows directly from Proposition 10.5. �

Assume now that 4 � r2 � n. Then Corollary 10.6 shows that S′r(n) � S0
r (n).

Moreover, NW′n (W ′
r2 ) � Wn−r2 . So Theorem 10.3 shows the following result.

COROLLARY 10.7. Conjecture B holds if W is a Coxeter group of type Dn and
τ ∈ {IdV , t}.
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PROOF. For the case τ = IdV , the work has already been done. For the case where
τ = t, one must observe that τ is W′n-regular and thus W′n-full (see Example 2.2), that
(W ′

n)τ = (W ′n)τ � Wn−1 (see Example 4.2), and that

N(W′n)τ((W
′
r2 )τ) = NWn−1 (Wr2−1) � Wn−r2 .

Then the result follows from Theorem 10.3 and Corollary 10.6. �

10.5. Dihedral groups at equal parameters. Let d be a natural number and let ξ
denote a primitive 2d th root of unity. For j ∈ Z/2dZ, we set

sj =

(
0 ξ j

ξ−j 0

)
.

We assume in this subsection, and only in this subsection, that W = 〈s0, s2〉 is dihedral
of order 2d and that τ = s1; note that τ2 = IdV , that τs0τ

−1 = s2, that τs2τ
−1 = s0 and

that τ is W-full. We set a = ck(s0) and, since k is τ-stable by hypothesis, we have
ck(s2) = a. In other words, we are in the equal parameter case studied by the author
in [Bon1]. Moreover, in [Bon1, Section 4], the author determined the structure of Zτk .
This gives the following proposition.

PROPOSITION 10.8. If W is dihedral of order 2d and if τ is as above, then Conjecture B
holds.
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Appendix A. Completion and finite group actions

HYPOTHESIS AND NOTATION. In this appendix we fix a commutative noetherian
C-algebra R, an ideal I of R and a finite group G acting on the C-algebra R, and we
assume that I is G-stable. We set J = 〈IG〉R.

Let rG be the ideal of R generated by the family (r − g(r))r∈R,g∈G and set R(G) =
R/
√
rG. We denote by I(G) the image of I in R(G). Note that R(G) is the biggest quotient

algebra of R that is reduced and on which G acts trivially.
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Finally, we denote by R̂I the I-adic completion of R, that is,

R̂I = lim←−−
j

R/Ij,

and by ι : R→ R̂I the canonical map.

The results of this appendix do not pretend to any originality, and might certainly
be written in greater generality. We nevertheless cannot find appropriate references
containing all of them, and decided to state them in terms that are suitable for our
purposes.

LEMMA A.1. There exists an integer m such that Im ⊂ J.

PROOF. Let p be a prime ideal of R containing IG. We first wish to prove that p
contains I. For this purpose, let r ∈ I. Then

∏
g∈G g(r) ∈ IG, and so there exists gr ∈ G

such that gr(r) ∈ p because p is prime. This shows that I ⊂ ⋃
g∈G g(p). By the prime

avoidance lemma, we get that there exists g ∈ G such that I ⊂ g(p). Since, moreover,
I is G-stable, we get that I ⊂ p. In other words, I is contained in any prime ideal
containing J. So I ⊂

√
J. As R is noetherian, the result follows from Levitsky’s theorem

[Lam, Theorem 10.30]. �

LEMMA A.2. Let j � 0. Then (Jj)G = (IG) j.

PROOF. The inclusion (IG) j ⊂ (Jj)G is obvious. Conversely, let r ∈ (Jj)G. Then there
exist a finite set E, a family (re)e∈E of elements of R and a family (i(1)

e , . . . , i( j)
e ) of

j-tuples of elements of IG such that

r =
∑
e∈E

rei(1)
e · · · i

( j)
e .

Since r is G-invariant, we have r = (1/|G|) ∑g∈G g(r), so

r =
∑
e∈E

( 1
|G|

∑
g∈G

g(re)
)
i(1)
e · · · i

( j)
e .

Hence, r ∈ (IG) j. �

Since I and J are G-stable, the completions R̂I and R̂J inherit a G-action.

COROLLARY A.3. The C-algebras (R̂I)G and (̂RG)IG are canonically isomorphic.

PROOF. As Im ⊂ J ⊂ I for some m by Lemma A.1, the completions R̂I and R̂J

are canonically isomorphic, and the isomorphism is G-equivariant. This gives an
isomorphism (R̂I)G � (R̂J)G. So the result follows directly from Lemma A.2, because
(R/Jj)G = RG/(Jj)G since we work in characteristic 0. �

PROPOSITION A.4. Assume that R is Nagata. Then

R̂(G)I = R̂I(G).
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PROOF. Let r̂G denote the completion of rG at I. Since R is noetherian, r̂G is the ideal
of R̂I generated by rG and

̂(R/rG)I = R̂I/r̂G

(see, for instance, [GrSa, Section 4]). This shows that G acts trivially on R̂I/r̂G and so
r̂G is the ideal of R̂I generated by (g(r) − r)r∈R̂I ,g∈G.

Moreover, as R is Nagata, we have that
√
r̂G =

√̂
rG by [GrSa, Corollary 14.8]. The

proposition follows. �

EXAMPLE A.5. Assume that R is a localization or a completion of a finitely generated
algebra. Then R is Nagata.

REMARK A.6. Let X be a quasi-projective variety acted on by the finite group G and
let U be a G-stable locally closed subvariety. Then we have an isomorphism of formal
schemes

(X̂U)G � (̂XG)UG . (A-1)

Indeed, by replacing X by the G-stable open subset X\ (U \ U), we may assume
that U is closed in X and we denote by I its sheaf of ideals in OX. The underlying
topological space of both sides of (A-1) is equal to UG and there is a natural morphism
of sheaves of algebras

O(̂XG)UG
−→ O(X̂U)G .

We need to prove that it is an isomorphism and this can be checked locally. Since X

is quasi-projective, it can be covered by G-stable open affine subsets, and for each of
these open affine subsets the expected isomorphism follows from Proposition A.4.
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