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SUMMARY

The theory of path analysis is extended by considering a multivariate
system of correlations from a dual perspective. Intrinsic factors exert a
unidirectional influence on both the variance and covariance of depen-
dent factors. In contrast, extrinsic factors have a bidirectional influence
on the covariance structure of both antecedent and dependent factors
and do not influence intrinsic variability. The mathematical model as-
sumes a formally complete linear system of unitary factors. A coefficient
is defined to quantify the influence of adventitious associations and
is called a copath. Copaths are compared to path coefficients and to
correlations due to common antecedents. The chain properties of these
coefficients are derived along with a general formula and computational
algorithm. The method is illustrated for multifactorial inheritance in
extended pedigrees in the presence of different types of assortative
mating.

1. INTRODUCTION

Path analysis is applicable to a broad class of problems, but some unexpected
limitations of the classical method (Wright, 1918 et seq.) have been encountered
in recent work on assortative mating (Rice, Cloninger & Reichs, 1978; Cloninger,
Rice & Reich, 1979a, b; Rao, Morton & Cloninger 1979). Extension of classical
path analytic work (Wright, 1921, 1978; Reeve, 1953) to consider phenotypic
homogamy in three or more generations required the use of a variety of new
conventions that appear arbitrary or cumbersome. These included the use of
reverse paths (Wright, 1978; Cloninger et al. 1979a, b), duplication of variables
and brackets (Wright, 1978), and parallel paths (Rao et al. 1979). Further study
has revealed that it is possible to extend the theory of path analysis to provide a
simpler and more flexible approach to the fundamental problem that emerged in
studying assortative mating. This theoretical extension is described here along with
simple but general computational algorithm. The extended method is illustrated
by application to several types of assortative mating.
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134 C. R. CLONINGER

2. THE DISTINCTION BETWEEN INTRINSIC AND EXTRINSIC
STRUCTURAL RELATIONS

Path analysis was developed for the interpretation of multivariate systems of
correlations (Wright, 1918, et seq.). In the classical method a particular model of
the functional relationships among the variables is specified by a qualitative
diagram in which every variable (whether measured or hypothetical) is represented
either as additively and completely determined by certain antecedent factors or
as an ultimate factor. The functional relationship between a dependent and an
antecedent variable is quantified by a path coefficient which is a standardized
partial regression coefficient and is represented in the path diagram by a unidirec-
tional arrow (-=•) pointing toward the dependent factor. A correlation between
variables due to determination by a common antecedent factor is represented
either by adjacent paths pointing away from the specified antecedent X (<-X->),
or by a bar with arrowheads at both ends («-») when a common antecedent is
implied but not specified.

In the original mathematical model correlations among dependent factors could
only be represented as due to common antecedent factors which necessarily
contribute to the variance of the dependent factors. Also correlations between
factors were assumed to influence the relations of subsequent dependent factors
but not antecedent factors. In this paper the mathematical model is extended to
allow for correlations due to adventitious associations, which influence the
covariance structure of both antecedent and subsequent factors but do not
contribute to their variances. These extrinsic or adventitious correlations are
represented by a headless bar (—) in path diagrams and distinguished from
intrinsic correlations, which are represented by a double-headed arrow (<->)
indicating common antecedents. Such distinctions permit the consideration of
structural relations from the dual perspective of a system of intrinsic relationships,
which are assumed to be essential in all populations, and extrinsic relationships,
which may be absent or vary between populations.

The choice of intrinsic variables may be arbitrary in purely mathematical
applications, but the most important application is in etiological evaluations
involving both natural causation and adventitious associations. Natural causation
is the prototype of intrinsic structural relations with particular properties in-
cluding a specific direction in time and space. Specific examples of natural causes
include transfers of momentum along a succession of impacts, transfers of energy
by electromagnetic waves at velocities never exceeding that of light, chains of
physiological reactions, transfers of genes along pedigree lines, chains of ecological
events, ontogenetic successions, etc. In contrast, adventitious associations involve
only non-random pairing of factors due to artificial control or chance drift in
finite populations. Examples include phenotypic assortative mating, the correla-
tion between linked loci of uniting gametes in a foundation stock (as produced by
crossing homoallelic strains of AlA1B1B1 with A^AJB^B^, gametic disequilibrium,
and most commonly, controlled experiments in which factors are selectively
matched.
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Path analysis of intrinsic and extrinsic relations 135

3. THE BASIC MATHEMATICAL MODEL

The properties of path and correlation coefficients are most easily deduced from
consideration of linear functions of unitary factors. Let us consider the two
unitary factors X and Y, shown in figure 1. Variables X and Y are completely
determined by the sets of intrinsic antecedents {B,C,D} and {F,G,H} respectively.
Unspecified common antecedents are shared by B and C and by F and G. The
variables X and Y have no common antecedent but are correlated due to an
extrinsic source of influence. The latter adventitious correlation is represented by
the headless bar labelled a, but the source of the correlation, a hypothetical

Fig. 1. Path diagram of two factors X and Y with only a direct extrinsic correlation.

variable A, is not shown in Fig. 1. In other words rXY is a n adventitious correlation
such that in a subpopulation is which X and/or Y are (is) fixed at a particular
value, neither of the sets {B, C, D] and {F, G, H) has any member that is corre-
lated with a member of the other set. Without loss of generality for convenience
we assume that each variable is standardized to have mean 0 and unit variance.

The mathematical model involves three basic assumptions: (i) additive or
linear structural relations among all factors (whether intrinsic or extrinsic); (ii) in all
structural relations each factor acts as a unitary whole rather than as a composite
variable in which one part is more significant in one relationship than in another;
and (iii) complete determination of the variance of intrinsic factors by antecedent
factors only.

Assumptions (i) and (ii) are identical to those of classical path analysis and as-
sumption (iii) differs only in that the possibility of extrinsic influences is admitted.
Assumption (iii) provides the assumed fundamental distinction between intrinsic
and extrinsic factors from which other differences in properties will now be deduced.

4. INTRINSIC FACTORS BUT NOT EXTRINSIC FACTORS
DETERMINE THE VARIANCES.

From the assumption of additivity, the relations between the dependent
variables X and Y and their antecedents may be specified in terms of the stan-
dardized linear regression equations

X = pXBB+PxcC+pXDD = bB + cC + dD, (1)

Y = p7FF+ProG+prHH =fF + gG + hH. (2)

From the assumption that X and Y are completely determined by their intrinsic
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136 C. E. CLONINGER

antecedents, it follows that their variances are unchanged in the absence of the
adventitious correlation. This property of adventitious relations may be designated
as V X*A = Vx and is read as the variance of X conditional on the absence of the
adventitious association A equals the (unconditional) variance of X. For example,
when the choice of mates' phenotypes is randomized rather than assortative the
phenotypic variances remain the same in mates (Reeve, 1953) even though the
variances may change in subsequent generations. In other words, the relationship
of a variable with itself involves only intrinsic relations whereas an adventitious
correlation involves extrinsic influences by definition. This is equivalent to
specifying that (1) and (2) are conditional on the absence of any adventitious
correlation. Thus, from (1), the correlation between X and Q in the absence of the
association A is

rXQ*A =

where I = {B, C, D}. An important special case of (3) occurs when Q = X:

rxx*A = ^PxPix*A = S*X*A = s2x = !> (4)

where s2 denotes the variance of the subscripted standardized variable. For
example, in Fig. 1, s2

x = s2
XifA = b(b + crBC) + c(c + brBC) + d2 = 1. This shows

that the assumption that intrinsic antecedents completely determine a dependent
factor necessarily implies that adventitious correlations change only the co-
variance structure of a system and not the variances.

5. EXTRINSIC FACTORS EXERT A BIDIRECTIONAL INFLUENCE ON
COVARIANCE STRUCTURE

The influence of adventitious correlations on the covariances is easily deduced
in the simple case shown in Fig. 1 where no pair of variables have both common
antecedents and adventitious correlations. The validity of path analysis requires
the assumption that composite variables act as unitary wholes in all their structural
relations. It necessarily follows from this that extrinsic correlations influence the
covariances of both antecedents and subsequent factors. From (1) and (2), de-
noting expectations by E[ ],

rXY = E[(bB + cC + dD) <JF + gG + hH)] (5)

= t>(frBF + 9^BG + hrBH) + C(frCF + 9rCO + ArCff) + # D F + 9^DO + hrDH).

Since rXT = a by definition also, the correlations among the antecedents (com-
ponents) of X and those of Y must be proportional to the adventitious correlation
between X and Y and to the intrinsic correlations between the antecedent and
dependent factors. Specifically the correlation between any antecedent of X,
designated as Q where Q = {B, C, D}, and any antecedent of Y, designated as
R where R = {F, G or H}, is rQX^ArXTrRX^A, or, in this special case where there
are no common antecedents, simply rQXrXYrRY- ^n Fig. 1 this may be proven
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from the assumption of the conditional independence of Q and R given fixed
values of X and/or Y. It may be verified in Fig. 1 that

rBF = (b + crBC)a(J+grFG), rBO = (b + crBC) a(g+frFG), rBH = (b + crBC) ah,
rCF = (c + brBC)a(f+grFG), rca = (c + brBC) a(g+frFG), rcu = (c + brBC)ah,

rDF = da(f+grFG), rDG = da(g+frFG), rDH = dah.

Recalling from (4) that rxx = 62 + c2 + 2bcrBC + d2 and rYY = f2 + g2 + 2fgrFG

and that these equations of complete determination equal unity, substitution in
(5) confirms that rXT = a. On inspection of the path diagram in Fig. 1, the
correlation between any two variables is readily seen to be the sum of all com-
pound chains that may be traced without passing through adjacent arrowheads.

6. DEFINITION OF COPATHS IN COMPLEX ADDITIVE SYSTEMS

The system is said to be complex if the same pair of variables have both common
antecedents and adventitious associations (direct and/or indirect). Nevertheless,
the property of additivity of multiple compound chains may be preserved by the
appropriate definition of an adventitious correlation to eliminate any overlap
or redundancy with the contributions of intrinsic antecedents and indirect
associations.

In Fig. 2 the system shown in Fig. 1 is extended to include a variable K, which
is a common antecedent of components of X and Y. Also an extrinsic association
m between components of X and Y is present due to the influence of a hypothetical
extrinsic variable M not shown in the figure. The correlation between X and Y
involves the correlation due to the common antecedent K (namely bkk'f), the
correlation due to the indirect association (namely dmh), and the direct association
a. Specifically, assuming additivity of separate compound chains,

rxr = bkk'f + dmh + a, (6a)
so that

a = rXY —bkk'f—dmh = covxr.K*M/0'x(:rr' (66)

where crxarY is the geometric mean of the total variances of the unstandardized
variables. Similarly

rDB = dah + m so that m = rDH — dah = covDH^A/(rD(TII, (7)

where cov^^^^ = covDH x = covDH T and crD(Tn is the geometric mean of the
total variances of the unstandardized variables. In other words (6) and (7) define
a coefficient to quantify extrinsic influences so that the additivity assumption is
preserved.

In general, assuming additivity, an adventitious association is defined as
the fraction of the correlation coefficient due to direct association only. That is,
an adventitious association between X and Y is the conditional correlation in
which all correlated intrinsic antecedents are fixed and the influence of indirect
associations is absent but the variance of X and of Y are as great as in the total
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138 C. R. CLONINGER

population. An adventitious association differs from an unconditional correlation
in that the numerator is a partial covariance; it differs from a partial correlation in
that the denominator is the product of the unconditional standard deviations. This
definition insures that no correlation exceeds the possible range + 1 to — 1.

Fig. 2. Path diagram of two factors X and Y with both common antecedents and
extrinsic correlations (direct and indirect).

7. CHAIN PROPERTIES OF CORRELATIONS AND COPATHS

The relationship between two factors A and B that are each correlated with a
common factor C depends on the nature of the correlations rAC and rBC. For
example in Fig. 1 we observed that C<-»X—Y implies a correlation rCT = rcxrXY,
where rXT is an adventitious correlation; however, in contrast C<->X<^D implies
no correlation between C and D. In general the relationship of two factors each
correlated with a common factor is uncertain until more is specified about the
nature of the correlations.

This specification may be approached from the perspective of two alternate
conventions depicted in Fig. 3. In Fig. 3 factors A and B are each correlated with
factor C. In case I we assume unconditional independence (rAB = 0) whereas in
case II we assume conditional independence only (rABO = 0). Thus, case I is
convenient when the correlations are due to unspecified antecedents shared by
A and G and shared by B and C, as assumed in classical path analysis. However,
case II is convenient when at least one correlation is adventitious and thereby
conditionally (but not unconditionally) independent of the other correlation. In
case I I we assume rABC — rAB — rACrAB = 0 and so rAB = cACcBC whereas in case
I we assume rAB = 0.

In the most general case where rABC is not negligible, we have two alternative
conventions. Proceeding from case I, we let rAB =f= 0 and may draw an additional
two-headed arrow (<->) connecting A and B, as does Wright (1918, et seq). Pro-
ceeding from case II , we may let cAB =f= 0 and rAB = cACcBC + cAB. Wright would
prefer that the assumption of unconditional independence be maintained for all
correlations, but this is not possible for chains of intrinsic and extrinsic correla-
tions such as B*-*X— Y<->_F in Fig. 1. Accordingly it is most convenient to reserve
the extension of case I for correlations symbolized by a two-headed arrow (<->)
and the extension of case II for correlations symbolized by a headless bar (—).
Thereby the two-headed arrow symbolizes the most restricted type of correlation.
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When the extension of case II is assumed as a general convention for chains
of adventitious correlations these coefficients will be referred to as copaths and
symbolized as cxr. I t should be noted that Wright has used the symbol c other-
wise to denote concrete regressions, but such regressions are more commonly
denoted by the symbol 6. The term copath is chosen for this convention in view

(I) Unconditional independence (II)'Conditional independence

rABC =cAB =

Fig. 3. Alternative conventions about the relations of two factors, each correlated
with the same third factor.

of the continuity of the underlying mathematical model with classical path
analysis and because the coefficient has properties of both correlations and paths
in a unique combination that is equivalent to its being a symmetrical or reversible
path. Under this convention a compound copath cxrz is assumed to be the
product of the elementary copaths cxrcYZ. This provides a useful basis for
denoting the source of an association as a hypothetical intermediate variable.
Thus in Fig. 2, if M is the hypothetical source of the association between D and H,
m = CDHM = CDMCMH* where cDM = ^ra = cMH.

8. PHENOTYPIC ASSORTATIVE MATING

Compound chains involving copaths such as -> — •«- and «-»— <-> have the novel
features of multiple correlations in the same compound chain (which are separated
by an intermediate copath) and opposing arrowheads (which are not adjacent).
This is illustrated in Fig. 4, which depicts multifactorial inheritance with pheno-
typic assortative mating. For purposes of emphasis the relations between P, G
and B are represented as correlations for the mother (M) and as the natural causal
paths for the father (F), but both are equivalent.

Consider the correlation between the mother's phenotype PM and the child's
phenotype PK. The correlation between the child's genie value GK and the
mother's phenotype may be decomposed into chains of paths and correlations
(GK<r-GM*->PM) and compound chains of paths, correlations, and copaths
( G G P P

(9)

as obtained from Fig. 4 following the rule of summing all chains without passing
through adjacent arrowheads. Similarly the correlation between the child's
cultural value BK and the mother's phenotype is

. (10)
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From (9) and (10) the mother-child phenotypic correlation is simply

T = JlT -4- f)T (1 1 ^

The correlation between the grandchild's phenotype Po and the grandmother's
phenotype PM also may be decomposed into compound chains of paths and
correlations (•«- <-») and compound chains of intrinsic and adventitious correlations

Fig. 4. Multifactorial inheritance with phenotypic assortative mating: phenotypes
(P), genotypes (Q) and heritable cultural factors (B) shown for the mother (M),
father (F), child (K), child's mate (L), and grandchild (0). y = h + wb, <j> = b + wh.

(«-»— <-•). The correlation between the grandchild's genie value Go and the
grandmother's phenotype is the sum of the chain Go <-OK*-*PM and the chain

rOoPM ~

The correlation between JB0 and PM is

rBoPM = ^ r

and between Po and PM, using (12) and (13),

(12)

(13)

(14)

General expressions for vertical and collateral relatives of any degree of relation-
ship are derived elsewhere for various family structures and types of assortative
mating (Cloninger et al. 1979a, b; Rao et al. 1979).

Using copaths it is clear that phenotypic assortative mating induces a correla-
tion between cognate relatives (R) of one spouse (X) and cognate relatives (S)
of the other spouse (Y). Quantifying the extent of phenotypic assortment as the
copath cXT, the remote affinate correlation r^ is rRxcXYrFS. Prior formulations
do not permit derivation of this correlation.
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For pure phenotypic assortment the copath p between mates' phenotypes is also
the correlation between mates. However, if the copath p were represented as a
two-headed arrow instead of a headless bar, the contribution of the mates would
be spuriously neglected unless tracing through adjacent arrowheads was permitted.
Other spurious results occur if the association between mates is represented by
simultaneous reciprocal causation with a path m from man to woman and / from
woman to man: then the full covariance between mates is not taken into account
in extended pedigrees and, if m 4= / , the grandparent/grandchild correlations
depend on the sex of the intermediate offspring even for a purely polygenic trait.

9. SERIAL PHENOTYPIC MONOGAMY

Serial monogamy (repeated divorce and remarriage to another) illustrates the
interpretation of a series of multiple associations based on phenotypes at different
times. In Fig. 5, Mx is married to F1 and F2 is married to M2 at time tt. After
divorce and subsequent change in phenotypes over time time (denoted by paths

CFF

Fig. 5. Serial phenotypic monogamy: mates include Mt with Ft and F2 with M2 at
time tlt then Ml with Ft at time t2 after change in phenotype (paths m and/). Re-
dundant copath p3 in dashed line.

m and / ) , M1 and F2 marry. Since the phenotypes of prior mates may influence
subsequent mate selection, the copath between different mates of the same
individual may be non-zero. The extent of phenotypic assortment for first (un-
stable) marriages may differ from that for subsequent marriages (Cattell &
Nesselrode, 1967) so px =f= p2 in general. Phenotypes may vary over time, and the
correlation between future mates pz is mfp2, which is less than p2 as expected.
The correlation between two mates of the same man is rFF = p^p2m + cFF whereas
that between different mates of the same woman is rMM = PxP2f+cMM- Hence
rFF and rMM are likely to be unequal unless m = / and cFF = cMM.

10. MULTIPLE CORRELATED TRAITS

Assortative mating may be determined both by associations directly based on
the marital phenotype (phenotypic or primary homogamy) and by correlations
among the causes of the phenotype (secondary homogamy). Secondary homogamy

https://doi.org/10.1017/S0016672300019765 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300019765


142 C. E. CLONINGER

may be due to either associations among additional traits which are correlated to
the primary phenotype under consideration or natural causal effects such as
inbreeding and social stratification (Wright, 1978; Rao et al, 1979) sometimes
collectively called social homogamy. Wright proposed a model of social homogamy
which assumed a unitary common cause of both the genie and cultural correlations
between mates (Wright, 1978). The simultaneous combination of phenotypic
homogamy and social homogamy is called mixed homogamy and has been extended
to the treatment of multigeneration pedigrees by Rao, Morton, and Cloninger
(1979). Although not initially obvious, it will be shown here that prior models of
social homogamy are mathematically equivalent to phenotypic assortment for
multiple correlated traits, as depicted in figure 6. The association directly between
the phenotypes PM and PF is shown by a compound copath p involving the
hypothetical source called primary homogamy (Hj). The causes of the primary
phenotype are also correlated due to an association for another correlated trait S,
such as social class or various personality factors. The trait S is correlated with P
due to paths from 6, B and E denoted as g/ac, v/a, and f/a so that the compound
copath CSMH2SP = a2 is incidental unless S is an observed trait. The residual factors
of S may include either genetic or environmental factors uncorrelated with P.
Hence the correlation between mates is /i = p+ji*, where /i* is the contribution of
secondary homogamy, denned as (/i*!!^ = (ji\p = 0). From the basic algorithm
that the correlation between any two variables is the sum of all compound chains
that may be traced without passing through adjacent arrowheads, it may be seen
that

where
m

u = TBMBF*HI = (V + W9)2 a n d * = j

If multiple unobserved secondary phenotypes St with i = 1, 2,..., n are associated,
m and u are actually the sum of several chains !L(gi + iovi)

2 respectively. Whether
S is a unitary or composite variable, these expressions for m and u may be solved
for g and v, showing the mathematical equivalence with other superficially
different models (19):

v = (yju — wjm)/(l — w2) and g = (J(m) — w^u)/(l — w2).

The use of copaths obviates the need for special conventions or derivation of
hypothetical marital path coefficients (Rao et al. 1979) because compound chains
involving copaths are functionally equivalent to the relevant unidirectional path
coefficients; specifically, X -»• *-* Y is equivalent to X -> Y. This may be
seen in Fig. 5, where

m* = VGFOM = POLGK = 9(9' + ««>) = g*Jm,

= PBLBK = v{v + wg) = vju,

= PBLQK = 9(f + wg) = gju,
l* = POFBif = POLBK = »(? + «>») = Wra>

agreeing with derivations by a different method (Rao et al. 1979).
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From Fig. 6 the correlation between vertical relatives separated by n generations
may be shown to be

where for parent/child relations Kx = h and Ax = b, and for n > 1,

Kn = ft 1 + m* + yph) Kn_, + fiL(s* + <f>ph) An_x,

as previously shown by a more cumbersome method (19). Further extensions to
consider cultural inheritance (e.g. paths from PM or SM to BK) and multiple
correlated traits are straightforward using copaths.

Fig. 6. Multifactorial inheritance with assortative mating for both the primary phe-
notype (P) and a correlated trait (S) such as social class.

11. GENERAL FORMULA AND ALOGRITHM

Let us consider two unitary factors X and Y in which X has a set of component
factors / = {1, 2, ... i, i+1, ...,n) and Y has a set J = {1,2,...j, j + 1, ...,m).
Variable X is fully determined by i antecedents and has (n — i) dependent factors.
Variable Y is fully determined by j antecedents and has (m— j) dependent factors.
As in (12), any correlation rXT may be decomposed into compound chains of
paths and correlations (<- <-») and compound chains of intrinsic and extrinsic
correlations (<-> — *-*); that is,

rXY = rXI*ACIJJrYJ*A' (15)
/ - 1 / = X.I J •= Y, 1

XY

where c1AJ denotes the matrix of associations between nm pairs of antecedent
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and dependent factors of X and Y, n components of X itself, m components of Y
with X itself, and directly between X and Y (when X = I and Y = J). The
conditions on the correlations (denoting absence of association by an asterisk)
serve to eliminate any redundant chains involving adventitious associations. We
define cxx = 0 = cIZ since associations by definition involve extrinsic influences
and the relationship of X or I with itself involves only intrinsic relations; thus
letting X = Y (and so / = J), (15) reduces to

rxx = ^Px
which is also Wright's equation of complete determination in the absence of
association since extrinsic factors do not contribute to variances (VX*A = Vx).

The residual correlations may themselves be decomposed by applying the
general formula in a stepwise fashion. Such repeated applications lead to a simple
algorithm for deriving correlations from inspection of a path diagram for any
fully recursive system: The correlation between any two variables may be obtained
as the sum of all compound chains of paths, copaths, and correlations leading from
one to the other without passing through adjacent arrowheads and withovi passing
through the same variable twice in the same compound chain. Simultaneous recip-
rocal interaction (Wright, 1960) may be analysed by repeated application of the
general formula in a stepwise fashion just as a path diagram is inspected.

The simplicity of this algorithm strongly justifies the choice of a headless bar
to represent extrinsic correlations. The rule against tracing 'first forward and then
backward' for unidirectional determination is appropriate but superfluous (since
this would require passing through adjacent arrowheads) and, in the presence
of bidirectional association, would lead to spuriously neglecting some induced
correlations.

12. DISCUSSION
The distinction between intrinsic and extrinsic factors allows for the interpreta-

tion of a multivariate system for two perspectives simultaneously. Intrinsic factors
have a specific unidirectional influence and contribute to the variance of their de-
pendent factors. In contrast extrinsic factors have a bidirectional influence on the
covariance structure of both antecedent and subsequent factors but do not contri-
bute to the intrinsic variability of any factor. These concepts underly the defini-
tions and symbols described here for paths (<-), intrinsic correlations (<->), and
copaths or extrinsic correlations (—). In etiological applications these distinctions
have an obvious relevance to the differentiation of natural causation and adventi-
tious associations, as illustrated here for multifactorial inheritance and assortative
mating.

These distinctions greatly simplify the formulation of models involving correla-
tions among dependent variables by eliminating the need for reverse paths, brac-
kets, and duplication of variables to represent adventitious association. In view
of confusion about the differences between causation and association by many
statisticians and geneticists, it is hoped that the operational distinctions given here
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will aid understanding. Since adventitious associations are likely to occur in the
small local populations which are the subject of most observation and experimenta-
tion, the failure to allow for both intrinsic and extrinsic influences would needlessly
limit the appropriate application of path analysis. Classical path analysis has
already proven to be a powerful and flexible technique in genetics and other natural
and social sciences (Li, 1975). The extensions described here should further increase
its applicability by clarifying the distinction between intrinsic and extrinsic deter-
mination and by simplifying their simultaneous quantitative analysis.
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