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Abstract

In this paper, we consider the simultaneous representation of pairs of positive integers. We show that
every pair of large positive even integers can be represented in the form of a pair of linear equations
in four prime variables and k powers of two. Here, k = 63 in general and k = 31 under the generalised
Riemann hypothesis.
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1. Introduction

In 1742, Goldbach proposed the celebrated conjecture that every even integer greater
than 2 can be expressed as the sum of two primes. With the original conjecture still
unsolved, many variations of the problem have arisen. One of them is the so-called
Goldbach-Linnik problem, initiated by Linnik, who showed [4] the existence of an
absolute constant k such that every sufficiently large even integer can be written as a
sum of two primes and at most k powers of two. (See Gallagher [1] for a simplified
proof.) Explicit values for k were not found until 1998, when Liu et al. [5] showed
that k£ = 54000 is acceptable. The bound for & was dramatically improved by Heath-
Brown and Puchta [3] who proved that every sufficiently large even integer is a sum of
two primes and at most 7 or 13 powers of two, according to whether the generalised
Riemann hypothesis is assumed or not.

In this paper, we study the Goldbach—Linnik problem in an extended way. Instead
of considering representations of a single even integer, we attempt to simultaneously
represent pairs of positive even integers as sums of primes and powers of two. Our
investigation is motivated by the work of several mathematicians on another important
kind of problem, concerning linear equations in primes. For details of progress along
these lines, we refer readers to the work of Liu and Tsang [8] and Green and Tao [2].
In particular, the results in [8] turn out to be closely related to numerical estimates on
the cardinality of exceptional sets in the Goldbach problem.
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Throughout this paper, with or without subscripts, v always denotes a positive
integer, and p always denotes a prime. We shall consider the simultaneous
representation of pairs of positive even integers B}, B,, with B > B,, in the form

Bi=pi+py+2" +27 +.. . + 2%,
{1 pP1+ P2 (1.1)

By=p3+ps+2" +27 4 ... £2%
where k is a positive integer. Our result is stated as follows.

THueorEM 1.1. For k = 63, the simultaneous equations (1.1) are solvable for every pair
of sufficiently large positive even integers By, By; furthermore, k = 31 is admissible,
assuming the generalised Riemann hypothesis.

Before giving the proof of the main theorem in the following sections, let us fix
some terminology. Let w be a small positive constant. Set

S, N)= > e(pa) (1.2)
wN<p<N
and
T(a) = Z e(2"), (1.3)
1<v<L

where e(x) := exp(2nix) and L = logé3 '. For any real a;, a;, put
Bg=Bia; + Bba, and fB5=a; + as. (1.4)
Let R(B;, B;) be the number of solutions of (1.1) in (p1, p2, p3, P4, V1, V2, - - ., V) With
wBy <pi,p2<Bi, wBy<p3,ps<B,, 1<v;<Lforj=12,... k
In view of (1.2), (1.3) and (1.4),

1l
R(By, By) = f f S*(ar, B1)S (a2, B)T*(Bs)e(—pp) dey day
o Jo
1 pl
= > D] f f S%(@1, B)S(an, Bye((2" +2"
1<vi<L l<v<L YO Y0
+ -4+ 2% - Bpa + (M + 27 + -+ 2% — By)ap) da; dap
1 1
= > f S, By)e(—n ) da f S, By)e(—ma) da
1<vi <L 1<v<L YO 0
where
n=B;=2"-2"2—...-2% fori=1,2.
In order to apply the Hardy-Littlewood method, we choose P; =Bf5/ 3 with
i =1, 2. For any integers h, g satisfying
1<h<g<P; and (h,gq) =1, (1.5)
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h| P;
mi(ha Q) = {a/e [0’ 1] : 'CX - _‘ < _}’
gl qBi
Wi = Jmih, @) and m;=[0, 11\ M,
where the union is over all 4, g satisfying (1.5). In addition, we set

Ar={ael0,1]:|T(a)| = AL}.

Now, fori=1, 2,
1
f S?(a, B)e(-n;a) da
0

= f S%(a, B)e(-n;) da + f S?(a, B)e(-n) da
M; mNA

i

+ f S%(a, B))e(-n;a) da
m\Ay
=81(Bi, n;) + S2(B;, n;) + S3(By, ny),

say. Hence
3
RB1,B)= D > oo > S,(Bi,n)S By ma), (1.6)
s;t=1 1<y <L 1<w<L
where
n=B;=2"-2"2—...-2"% fori=1,2.

We will establish Theorem 1.1 by estimating the term
Ry, = Z e Z S 5(B1, n1)S (B2, n2)
1<vi<L 1<w<L

for all 1 <s,7<3. A substantial part of this paper, Section 2, will be devoted to an
estimate for R; 1, where we borrow some ideas from [3] in our proof. Estimates for the
remaining eight terms will be gathered in Section 3.

2. Estimate for Ry
In this section, we provide a lower bound for R, ;, as contained in the following
proposition.
ProrosiTion 2.1. Ry is given by

Ry = Z Z S1(B1,n1)S 1(B2, na)

1<vi<L 1< <L

1.74293(1 — 4w)(1 + o(1))B; B>(log B log B,) L.

\%
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We begin with the following lemma.
Lemma 2.2 (Heath-Brown and Puchta). Fori=1, 2,
S1(Bi, ni) = 2Co(1 = 2w)Billog B> ) k(d)
din;

+ O(e_“’"iBi(log B)~ ﬁ)

; S \-13
Aot 3 i)
= AUDAN LR
=S11(Bi, ny) + S12(Bi, ny) + S13(By, ny),

where
0.6601 < Co= [ ](1 - ——;) <0.66017,
l:! r-D
k(d) is a multiplicative function defined by
0 p=2o0re>?2,

k(p®) = 1
»") p— otherwise,

n; is a suitable value in the range 0 < n; <log log B;, V(n;) is the set of characters y; of
conductor r; < Py, for which the function L(s;, x;) has at least one zero p; in the region
Re p; > 1 —n;/log B, Im p;| < B;, and m; = [r;, r}] if we let r;, v} be the conductors of
Xi» X;» respectively. Moreover,

#B () < .

The above result can be deduced by a careful examination of the arguments in [3,
Sections 3 and 4], which we omit here.
Then, with the definition of §1; (j =1, 2, 3) above,

3
Ry = e S1,5(B1, n1)S 1,(Ba, n2). (2.1)
2

s,t=1 1<y, <L 1<w<L
Obviously, we can deal with one of the terms in (2.1) as follows:

S 11(B1, n1)S 1,1(B2, n2)

1< <L 1<m<L

=4C3(1 - 20 By Bylog By log B Y -+ > > k) Y k()

1<vi<L 1<vi <L dm l|n;

> 4C2(1 - 4w)B, B,(log B, log B,)™ Z Z kdkD#n, ny 2 d | ny, 1| na)
d=1 I=1

> 4C3(1 - 4w)B By(log B log By) L
> 1.74293(1 — 4w)B, By(log B, log By)2LF. (2.2)
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The second inequality holds since k(1) = 1, #{n;, n,} = L and k(d) > 0 for any positive
integer d.
To deal with the other eight terms in (2.1), we give the following lemma.

Lemma 2.3. We have
Sy (Z k(d))2 < (38.2229 + o(1)L* < L*.

1<vi<L I1<w <L din;
fori=1,2.
Proor. Leti =1, 2. From the definition of k(d),
2
(D k@) = ac,
dln,- dln,-

where a(d) is the multiplicative function defined by

0 p=2ore>2,
a(p®) = —-1)?
(") (p )2 —1 otherwise.
(r-2)
Then 5
Sy (Z k(d)) < > ald#in:d|n).
1<vi<L 1<vi <L din; d<B;

For an odd integer d,

#{V:ISVSL,ZVEm(mOdd)}SL'Fl,
e(d)

where €(d) is the order of 2 in the multiplicative group Z;, and then

L k-1
#{n; : < —+ L.
{ni:d|n;} e(d)+
Hence 5 J
Z .. Z (Z k(d)) <Lk ﬁd) + Z a(d)LF".
1<vi<L 1<w <L din; d<B; 6( ) d<B;

Following the method of proof of Lemma 4 in Gallagher [1], and setting
R= ]_[ Q- 1),
X/2<€<x
we have

Z % < 2x7! Z a(d)

x/2<e(d)<x
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i} (p—1)? p
= 1( p(p—Z)Hp—l)

p>2 PIR

R 2
= 2x_1C_2(—) .
" \6(®)
According to inequality (3.9) of Liu et al. [6], for x > 9, we have R/#(R) < e log x,
where y < 0.577216 is Euler’s constant. If we let x run over powers of 2 and sum the
corresponding bound, then it follows that

: ad r
Zd:%ﬁz% Z a(d)+2C62e27; (logr2)2

m=1 e(d)=m
|
< —
<> ~ > ald) +31.4897
m=1"" d<2m-1
= 38.2229
In addition,
(p— 1)2 ) P2 2
a(d) < 5 <C 5 < (log log B))”.
L;, pILL (r-2 [l;[ (p—-D
Therefore 5
DY (Z k(d)) < (382229 + o(1)L¥ < I*.
1<vi<L 1<w <L d|n;
This completes the proof. m|

CoROLLARY 2.4. Fori=1,2,

\2
.. ( n; ) < Ik
1<vi<L 1<w<L ¢(ni)
Proor. Note that ) i
() < [1(25) =X
< = ) a(d),

é(n;) e P =2 o

fori=1,2. ]

Now a straightforward combination of Lemma 2.3, Corollary 2.4 and Cauchy’s
inequality yields the following corollary.

COROLLARY 2.5. We have

S12(By1,11)S 1 2(Ba, ) = O(e™“™*™) B, By(log B log By)*LY),

1<vi<L 1<w <L
2.3)
D D S1iB1, m)S 1 2(Ba, m) = O(e™“ By By(log By log By)2LY), (2.4)
1<vi<L 1<w<L
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and

e Z S12(B1,n1)S 1,1(B2, n2) = O(e™“™ By By(log By log By)*L¥).  (2.5)

1<vi<L 1<wi<L

To handle the remaining five terms which are related to S 3(B;, n;), we need the
following lemma whose proof is similar to that of inequality (31) in [3].

Lemma 2.6. For a particular pair of characters y;, x; € (1),

(¢?ri,») )2((m’:?l;li) )_2/3 < Lk(log log Bi)*l/S‘

Z(qﬁ?r;) )2'

1<vi<L 1<w <L gln[

I<vi<L I<w<L

Proor. We first consider

Note, as in the proof of Corollary 2.4, that
2
n;
— | < a(d).
(¢(ni) ) dzm]

It follows as in Lemma 2.3 that

Z Z Z(ﬁ)z < Z a(dy¥{n; : (g, d] | n;}

1<vi<L 1<w<L gln; d<B;
Lk
< a(d)(Lk-1 + )
;{i e(lg, d])

where [g, d] denotes the least common multiple of g and d. Observing that, according
to the proof of Lemma 2.3,

Z a(d) < (log log B)? < L2,
d<B;

a(d) 1 a(d) 1
2 ) S G 2 7@ S

d<B; d<B;

and

we can write
o \2
Z Z Z( n; ) < Lk(L_1/2+E(g)_1/2) < Lk(L—1/2+(logg)_1/2)
lsm<L  1<vi<L g é(n;)

since g < 2€®) — 1.
Write m; = 2" f;. Put g; = (f;, n;) so that
m; > Ji _ ﬁ
(mi,ni) — (fism) &
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Then

S () e X S (s ()

1<vi<L 1<w<L 1<vi<L 1<w<L

Let x; be a parameter to be fixed in due course. Then the terms in which g; < fi/x;
contribute at most

P Z Z (%)2 <xPLk

1<vi<L 1<w<L

by Corollary 2.4. The remaining terms contribute at most

(ORI W Y )

1<vi<L 1<w<L giln;

ﬁ )—1/2
gilfi.gixfilxi 8i

< L Z (L% + (log f)™'%)
gilfi-gizfilxi

< x5 LML + (og £,

gilfi.gixfilxi

< IF (L% + (log g)™'?)

Choosing x; = (L™Y? + (log f;)~1/?)73/3,

. \2 . \2/3
2 (o) () =7 g 7
I<vi<L I<w<L ¢(nl) (mi7 ni)

Then the bound log f; > log log B; (see [3, p. 552]) yields

(qbz;) )2((,,:’1;0 )_2/3 < L*(log log B)™'/°.

1<vi<L 1<w<L

This completes the proof. |

Using Lemmas 2.3, 2.6, Corollary 2.4, Cauchy’s inequality and
#B() <
(see [3, Lemma 5]), we deduce the following corollary.

COROLLARY 2.7. We have

s D S 1B, S 13(Ba, o)

1<v <L 1<w<L

= O(B, By (log B log B,) 2L*e'*™(log log B,)™'/%), (2.6)
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Z Z S1‘3(Bl,n])Sl,](BZan2)

1<vi<L 1< <L
= O(B) By(log B; log B>)>L¥e'*™ (log log B))™'/%),
Z S12(B1,n1)S 13(B2, n2)

1<vi<L 1<w <L

_ O(Ble(log B, log Bz)—szefmeZi]z(log log Bz)—l/s)’
Z . Z S 13(B1,n1)S 12(By, n2)

1<vi<L 1<w<L

= O(B) By(log B; log B>)2Lfe'? =™ (log log B;)™'/%),
and

Z Z S13(B1,n1)S13(B, n2)

1<vi<L 1<w <L

63

2.7)

(2.8)

2.9)

= O(B, B>(log B log B,) 2L*e'™*™)(log log B, log log B,)™'/). (2.10)

Inserting (2.2)—(2.10) into (2.1), with 7; = (log log B;)'/®! for i = 1, 2, we deduce

Proposition 2.1.

3. Completion of the proof

We begin by providing an upper bound for R33, as contained in the following

proposition.

ProposiTioN 3.1. We have

Z Z S3(By, n1)S 3(Ba, n2)

1<vi<L 1<w<L

< 67.3739(1 + 0(1))A*"* B, By(log B, log B,) 2L*.

|R33| =

Proor. Applying Cauchy’s inequality to the definition of 7T'(«) yields

T (a1 + a2)l < VITQa))Tar)l.

Hence

) Z S3(B1, n1)S3(Ba, n2)

1<vi<L 1<w<L

I<vi<L I<w<L

= ‘f f S2(a1, B))S*(az, B))TH (a1 + a2)e(-Biay — Byas) da da;
m\Ay Jm\ Ay
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< f f IS (@1, B1)S*(a2, B)T* (@) + an)l - |T(a; + ax)™* day da,
m\Ay I\ A

2

< f IS (i BHT?(2ay)| - IT2a)| "% da;.
i=1 i\ A,

Note that, for «; € m; \ A, and sufficiently large B;,
ITQa)| <|T(a)|+2<AL+2 < (1 +o(1))AL.
Then

. Z S3(B], nl)S3(BZ, I’lz)

1<vi<L 1<w<L

2
<(+oMyan[ | f 1S (i, BT?(2a)| dav;. 3.1)
i=1 Ymi\A
A careful examination of the argument of [3, Lemma 9] yields

f 1S*(ci, BHT*(2a)| da;
m; \ Ay
< (Co(Cy —2)C, + 1.1056 log 2 + o(1))B;L*(log B;) 2. (3.2)

where C; =7.8209 according to Wu [11, Theorem 1], C, < 1.93657 according to
Pintz [9, Lemma 2’] and 1.1056 comes from the Chebyshev inequality for m(B;).
Inserting (3.2) into (3.1),

) Z S3(B1, n1)S3(Ba, n2)

1<vi<L 1<v<L
BB, L*

<67.3739(1 + o(1)(AL) ™ ——————.
(1 +o(1))(AL) (log B, log By
This completes the proof of Proposition 3.1. |

To complete the proof of the main theorem, it remains to estimate the other seven
terms in (1.6), which we will do now.

Firstly, we consider
D D) Si(BiLn)S 3By, ma),

I<vi<L I<w<L

which equals, according to Lemma 2.2,

2Co(1 - 2w)B; (log By) ™ Z Z Zk(d) f S(a, By)e(—ma) da

1<vi<L 1<v<L dln M\ A,
+ O(e_me](log Bl)_2 Z .. Z nl . S(a,’ Bz)e(—nza') da’)
l<vi<L 1<w<L (1) o\,
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cofmamny Y%y u(omo)”

X1, €B(n) 15m<L 1<v<L ¢(n)\(my, n)

X f S (a, By)e(—mra) da)
my \ A
=T, +T,+T;s,

say. By Lemma 2.3, Proposition 3.1 and Cauchy’s inequality,

Ty < 2Co(1 = 2w)By(log BQ*J >y (Z k(d))2

1<v;<L 1<w<L diny

2
X Z . Z (f S (a, Br)e(—nra) da)
1<v <L l<vp<L ¥ M2\F

Sl \/67.3739/11‘—4B§L’<

B 1)? (log By)*
< 67.0029(1 + o(l))Ak/2 2B\ B,L*(log B; log B,)™2.

<2Cy(1 + 0(1))

Similarly, combining Corollary 2.4, Proposition 3.1 and Cauchy’s inequality yields
T, = o(B  B,L"(log B, log By) ™),
and combining Lemma 2.6, Proposition 3.1 and Cauchy’s inequality yields
T5 = o(B1 B, L*(log B; log B>)™2).
In conclusion,

) Z S1(B1,n1)S3(Ba, n2)

1<vi<L 1<w<L

< 67.0029(1 + o(1))A*>72B, B, L¥(log B, log B,)™>.

In the same fashion, we can deduce that

Z Z S3(B1,n1)S1(Ba, n2)

1<vi<L 1< <L

< 67.0029(1 + o(1))A">72 B, B, L¥(log B, log B,)™>.
Next, fort=1,2,3,s=1, 3,

. Z SZ(Bl,nl)S;(Bz,nz)

1<vi<L 1<w<L
1
2 2
= Z Z f IS (e, By)l doz-f IS (a, Bo)* da
I<vi<L 1<ve<L YMuNAy 0
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B,

< e meas A, B’
1921; lSl/ZkSL log B,

< B ™“B,L*, (3.3)

provided
measA, = B]_Eu) < B
with
g 263/308 in general,
~13/4 under the generalised Riemann hypothesis,

that is,

_ {0.716344 in general, (3.4)

0.862327 under the generalised Riemann hypothesis.

The second inequality of (3.3) follows from

which is an immediate consequence of the Parseval identity and the prime number
theorem, and the last inequality, especially the value of A, follows from Pintz [10,
Corollary 1] and Liu [7, Lemma 3.3]. Similarly, for j =1, 3,

. Z S {(B1,n1)S 2(Ba, n2) < BBy L (3.5)

1<vi<L 1<w<L
with (3.4).
Now we reach our conclusion:

3

R(Bi,B)= > > o+ > Si(Bi,n)Sk(Bs,ma)

Jok=1 1<y <L 1<w<L

> D D SuBLm)SI(Brm)

1<vi<L 1<w<L
=1 D D SsBr S a(By, m)
1<vi<L 1<w<L
- Z Z S1(B1, n1)S3(B2, n2)
1<vi<L I<w<L
=1 D DD S3(Br, S 1(By, ma)| + OB BY LY + BB, LY.

1<vi<L 1<w<L

Therefore,
R(B] s Bz) >0
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if
1.74293(1 — 4w) > 2 X 67.00290%%72 + 67.3739254,

and w is a sufficiently small constant. Hence

63 in general,

31 under the generalised Riemann hypothesis

1s admissible.
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