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Mechanistic models (MMs) have served as causal pathway analysis and ‘decision-support’ tools within animal production systems
for decades. Such models quantitatively define how a biological system works based on causal relationships and use that
cumulative biological knowledge to generate predictions and recommendations (in practice) and generate/evaluate hypotheses
(in research). Their limitations revolve around obtaining sufficiently accurate inputs, user training and accuracy/precision of
predictions on-farm. The new wave in digitalization technologies may negate some of these challenges. New data-driven (DD)
modelling methods such as machine learning (ML) and deep learning (DL) examine patterns in data to produce accurate
predictions (forecasting, classification of animals, etc.). The deluge of sensor data and new self-learning modelling techniques
may address some of the limitations of traditional MM approaches – access to input data (e.g. sensors) and on-farm calibration.
However, most of these new methods lack transparency in the reasoning behind predictions, in contrast to MM that have
historically been used to translate knowledge into wisdom. The objective of this paper is to propose means to hybridize these
two seemingly divergent methodologies to advance the models we use in animal production systems and support movement
towards truly knowledge-based precision agriculture. In order to identify potential niches for models in animal production of the
future, a cross-species (dairy, swine and poultry) examination of the current state of the art in MM and new DD methodologies
(ML, DL analytics) is undertaken. We hypothesize that there are several ways via which synergy may be achieved to advance
both our predictive capabilities and system understanding, being: (1) building and utilizing data streams (e.g. intake, rumination
behaviour, rumen sensors, activity sensors, environmental sensors, cameras and near IR) to apply MM in real-time and/or with
new resolution and capabilities; (2) hybridization of MM and DD approaches where, for example, a ML framework is augmented
by MM-generated parameters or predicted outcomes and (3) hybridization of the MM and DD approaches, where biological
bounds are placed on parameters within a MM framework, and the DD system parameterizes the MM for individual animals,
farms or other such clusters of data. As animal systems modellers, we should expand our toolbox to explore new DD approaches
and big data to find opportunities to increase understanding of biological systems, find new patterns in data and move the
field towards intelligent, knowledge-based precision agriculture systems.
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Implications

Causal pathway-based ‘mechanistic models’ have supported
decision making and knowledge transmission in animal pro-
duction for decades, but their role in the era of ‘big data’ and
’data science’ is unclear. This positional paper proposes that
hybridization of modelling approaches represents a niche for
animal production where our cumulative biological knowl-
edge expressed in mechanistic models meets the emerging
data collection and predictive potential of data science using
machine learning and deep learning methods. While both

approaches have strengths and unique niches, their true
strength may lie in a synergistic relationship.

Introduction

The big data wave
The term ‘big data’ has gained considerable attention in
recent years, though its definition tends to differ across
disciplines (Morota et al., 2018). Common themes in ‘big
data’ definitions are (1) volume: that the volume of data
is so large that visual inspection and processing on a† E-mail: jellis@uoguelph.ca
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conventional computer is limited; (2) data types: may
include digital images, on-line and off-line video record-
ings, environment sensor output, animal biosensor output,
sound recordings, other unmanned real-time monitoring
systems as well as omics data (e.g. genomics, transcrip-
tomics, proteomics, metabolomics and metagenomics)
and (3) data velocity: the speed with which data are pro-
duced and analysed, typically in real-time. In order to gain
insight from these large volumes of readily available data,
it has become increasingly popular to apply data mining
and machine learning (ML) methodologies to cluster data,
make predictions or forecast in real-time. Thus, the topics
‘big data’ and ML, though not explicitly tied together, often
work hand-in-hand.

The emergence of big data and its associated analytics is
visible in scientific referencing platforms such as Scopus,
where yearly ‘big data’ references rose from 680 in 2012
to 16 562 in 2018. When combined with the keywords
‘cattle’, ‘pigs’ or ‘poultry’, the first reference to ‘big data’
appears in 2011, but there are only 172 total references
from 2011 to 2018 inclusive, indicating a much slower
development rate within animal production systems.
Liakos et al. (2018) highlighted that 61% of published
agriculture sector papers using ML approaches were
from the cropping sector, 19% in livestock production
and 10% in each of soil and water science, respectively.
There may be several reasons for the slower adoption rate
in animal production systems, including the current degree
of digitalization, the utility offered, low/unclear value

proposition, return-on-investment (ROI) and the challenge
of maintaining sensitive technology in corrosive, dusty and
dirty environments.

The use of models in animal agriculture
Models of all types (Figure 1) have a strong history of appli-
cation in animal production, where their objectives have
typically revolved around optimally feeding and growing
livestock. For an excellent review of the historical evolution
of model development and use, for example, in ruminant
nutrition, see Tedeschi (2019). Such a development path
has largely been paralleled in swine and poultry (Dumas
et al., 2008; Sakomura et al., 2015). These predominantly
nutritional models have evolved to mathematically express
our cumulative biological knowledge on how a systemworks,
developed in order to understand and manipulate nutrient
dynamics in the animal. Numerous modelling groups across
species, globally, have further developed detailed mechanis-
tic models (MMs) to solve problems both within the scientific
community as well as in practice. In the field, they serve as
‘decision support systems’ or ‘opportunity analysis’ plat-
forms. Here, we might define ‘opportunity analysis’ as the
ability to examine a variety of scenarios for their potential
outcomes, with the goal of improving performance, reducing
cost and minimizing environmental impact (e.g. Ferguson,
2015). These nutrition models have been modified, over
generations, to account for specific concerns of their eras
(e.g. environmental impact) via revisions, expansions and
sub-model development, illustrating the sound structural

Figure 1 (colour online) Types of models and their classification. ML=machine learning, ANN= artificial neural network, SVM= support vector machine, HMM=
hiddenMarkovmodel, PCA= principle component analysis, ICA= independent component analysis, ISOMAP= non-linear dimensionality reductionmethod, GLM=
general linear model.
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nature of MMs – being based on biological principles
allows addition of content, as opposed to requiring complete
redevelopment for a new innovation.

The role of mechanistic models in the big data era
Given the push towards fully automated ML systems to inter-
pret the new wave of big data available on-farm and the
strong predictive abilities of data-driven (DD) models, the
role of MMs is occasionally questioned, as ML-based systems
can also be programmed to predict outcomes similar to
MMs (e.g. milk yield, feed conversion ratio, etc.). While there
are places of overlap, it may be that a distinctive niche
remains for both MM and ML modelling approaches, as well
as opportunities for both academia and industry to profit
from a hybridization or integration of the two approaches.
However, this prospect means that the future animal science
modeller will require a revised toolbox to cope with advances
in technology, statistics and the business of animal produc-
tion itself.

The objective of this paper is to examine the niche for both
conventional MM and new DD modelling approaches as we
move into an era of big data and to postulate on opportuni-
ties for the two approaches to cooperate and propel the field
of animal science forward. This paper will first examine the
attributes and niches currently occupied by MM and new
DD methods, and then postulate on possible approach inte-
gration strategies, which may aid in the goal of producing
animal products more efficiently – both economically and
environmentally.

Mechanistic modelling methodology

Mechanistic models seek to describe causation (though
they always contain empirical components). A MM may
be defined as an equation or series of equations, which
predict(s) some aspect of animal performance based on its
underlying principles (France, 1988). If the animal is consid-
ered level ‘i’, then the organ may be considered level ‘i− 1’,
the tissue level ‘i− 2’, the cell level ‘i− 3’ and the flock or
herd may be considered level ‘iþ 1’. Therefore, a MM
may seek to describe level i observations with level i− 1 hier-
archical representation. The general assumption with MM
development is that behaviour of the system can be predicted
from the sum of its modelled parts, and that we know
the system’s causal pathways. In some instances, we may
postulate on the causal pathway via development of a
MM and use the modelling/experiment exercise to decide
whether we consider this pathway ‘known’ or not.

France (1988) described three important attributes of such
a ‘hierarchical’ MM system:

1. Each level has its own language, concepts or principles. For example,
the terms ‘forage DM’ and ‘pasture management’ have little
meaning at the cell or organelle level;

2. Each level is an integration of items from lower levels. Discoveries
or descriptions at a lower level can be used at the higher level in

an explanatory way to aid understanding (mechanism and
mode-of-action) and

3. Successful operation at the higher level requires the lower level to
function properly but not necessarily vice versa. The example
France (1988) provides is that of a cup – if it is smashed it will
no longer function as a cup, but the molecular properties are
hardly altered.

In development, the MM approach requires conceptualiza-
tion of a hypothesis centred on how a system works, and
thus how variables are interconnected. A MM is developed
by looking at the structure of the system under investigation,
distinguishing its key components and quantitatively
analysing the behaviour of the whole system in terms of
its individual components and their interactions with one
another. The general approach taken in the development
of a MM could be summarized as follows:

1. Problem identification, hypothesis generation and definition of
model bounds. For example, a digestion kinetic model may
choose to focus onmacronutrient digestibility and ignore vitamins
and minerals or what the animal does with the macronutrients
post-absorption;

2. Model conceptualization. Graphical representations such as
boxes and arrows are used to depict known or hypothesized
causal pathways;

3. Data collection (extant or new) to develop the model, generally
piecewise, addressing small biological components of the
model (e.g. passage rate prediction within a digestion kinetic
model);

4. Model equations and assumptions: Deciding on the type of
equation to represent fluxes, assigning equations to the arrows,
parameters to equations (science execution);

5. Model evaluation (statistical, graphical, sensitivity, behaviour and
scenario) performed by modeller;

6. Repeat steps 1 to 5 for subsequent phases of model development.

Difficulty is often encountered discriminating between
essential and nonessential components of a MM, in deter-
mining the appropriate equation structure assigned to a
relationship and when deciding on the required level of
model complexity – thus the need for clearly defined boun-
daries and objectives from the outset. Often the model will
inform the developer when additional complexity or recon-
sideration of structure is required – that is, when it fails to
predict an outcome. In this way, there is often a strong
back-and-forth between model development and data-based
experimental work –whereby data-based experimental work
is used to parameterize a MM, and the MM may indicate in
return where knowledge or data are missing from the body of
literature in that area.

Such MMs are often coded using programming languages
such as Fortran, C/Cþ/C#, Python, R and Delphi. It is common
that MMs are also dynamic (though it is not a requirement),
meaning that they simulate over time. This is often accom-
plished through a series of integrated differential equations
(e.g. Dijkstra et al., 1992) but can also be accomplished
by a series of ‘do’ loops (e.g. hourly and daily) within a code
(e.g. Emmans, 1981).

Animal production models in the era of big data
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Model evaluation is conducted separately from model
development, manually by the developer, and generally
includes an assessment of model performance (precision
and accuracy), model behaviour and sensitivity analysis, as
well as the evaluation of a model’s ability to predict the
correct response to ‘scenario’ data. This evaluation is accom-
plished via the application of a range of evaluation metrics
including root mean square prediction error, concordance
correlation coefficient, residual plot analysis as well as a host
of other performance metrics and visualization strategies
(e.g. Tedeschi, 2006). The goal is to determine how well
the model performs across a range of existing data and,
if applicable, to identify weak points, which require reassess-
ment or modification. The model evaluation process may be
manual, performed by the developer (e.g. using the error
metrics indicated above), or if the exercise is to fit a
MM to existing data, the model may be parameterized via
fitting algorithms such as Levenberg–Marquardt, steepest-
descent/gradient descent, Newton method, etc. to minimize
a residual error metric.

Niche for mechanistic models

Opportunity analysis
Mechanistic models aim to represent causality in complex
systems. Historically, the most prominent niche occupied
by MMs in animal production has been that of solving
problems where the intricacies in animal data are too great
to solve the problem experimentally. This is where represen-
tation of the underlying biology of a system with a MM
can assist in determining the impact of a given change
(e.g. when concurrent influencers cancel each other out).
Mechanistic models have been used to solve problems
such as: (1) identification of performance limiting factors;
(2) determination of the optimal nutrient contents of a feed;
(3) evaluation of management factors to optimize perfor-
mance (Ferguson, 2015); (4) examine strategies such as those
to reduce nutrient excretion into the environment (Pomar and
Remus, 2019) or (5) forecasting outcomes in scenarios not yet
seen in practice (Ferguson, 2015). Such MMs are developed
to synthesize our biological knowledge into platforms
(models) from which ‘wisdom’ and decision-making support
can be gained. Within the context of this discussion, the
data-information-knowledge-wisdom pyramid of Ackoff
(1989) (as illustrated recently in Tedeschi, 2019) is referenced
to define knowledge and wisdom. Within this framework,
data þ context = information, information þ meaning =
knowledge, and knowledge þ insight = wisdom (discussed
further below).

Performance optimization
In practice, MMs are often linked to an optimizer – a coding
algorithm where, given a desired objective (e.g. minimize
cost, maximize growth/milk production, efficiency or ROI),
it will determine the optimal solution (e.g. diet formulation)
(Ferguson, 2014) to achieve that outcome. Mechanistic

models linked to an optimizer may therefore also consider
how genetics, environment or management considerations
incorporated into the MM play into determining the optimal
feeding program, which takes their capabilities well beyond
the scope of traditional feed formulation software (e.g. least
cost formulation). Optimization programs essentially auto-
mate the decision-making process – coincidentally, already
a ‘hybridization’ of the MM and DD approach, via the
iterative fitting algorithms used in optimization (similar to
the way a DD model may find a solution).

Understanding biological systems
Intellectually and academically, MMs provide animal scien-
tists the opportunity to explore how a biological system
works, extract meaningful information from data (e.g. meta-
bolic fluxes from isotope enrichments (France et al., 1999)
and thus increase our understanding of complex systems
and advance the whole field of animal science. They are often
used to summarize experimental data to derive meaningful
parameters used in other applications, for example, frac-
tional rates of rumen degradation (France et al., 2000) or
specific rates of mammary cell proliferation (Dijkstra et al.,
1997). In research, MMs are not immune to failure. In fact,
they are excellent tools for identifying areas where scientific
knowledge is lacking, or where a hypothesis on the regula-
tion of a system may be wrong. Failure of a MM to simulate
reality indicates an area where the system has not been
appropriately described, and this could be due to a false
assumption, a lack of appropriate data or because the level
of aggregation at which the model runs is not appropriate for
the research question. When models interact iteratively with
animal experimentation, MMs assist movement of the whole
field forward by increasing our biological knowledge.

Approach limitations: mechanistic models

Current limitations of the conventional MM approach revolve
around their manual nature, extensive input requirements
and developer/end-user training requirements. From the
end-user perspective, these challenges may mean that
MMs may not be user-friendly or approachable enough to
guarantee use and acceptance. Some have suggested that
such problems are rooted in communication and training
as opposed to user-friendliness (Cartwright et al., 2016),
and protocols to improve the user experience, such as cus-
tomer journey mapping, are recommended (Vasilieva, 2018).

Tedeschi (2019) reflected that innovation in MM for rumi-
nant nutrition had gone stagnant since 2010 and proposed
several reasons why, including (1) the field had reached a
certain level of maturity or that (2) students are not being
properly introduced to the required ‘systems thinking’
approach. We further suggest that the ‘lag’ observed by
Tedeschi (2019) could have an additional origin related to
reaching a level of success with nutritional models beyond
which we need to integrate with other disciplines – genetics,
epigenetics, health, animal management, environment,
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whole farm modelling and life cycle assessment – before
further knowledge (and then wisdom) can be extracted from
the generated models.

Data-driven methodologies

In contrast to MMs, DD models structurally rely on correla-
tions within a data set to determine the best combination
of input variables that predict the desired outcomes, based
on goodness-of-fit as opposed to mode-of-action or mecha-
nism. Hence, their structure is ‘driven by the data’. Perhaps
the most widely known and applied DD method in animal
nutrition is linear and non-linear regression, including
meta-analysis. In the world of data science, such a model
represents a ‘supervised’ ML method (Figures 1 and 2,
defined below). As modern regression methods are already
commonly applied in animal science, they will not be further
discussed in this paper, except with respect to discussing
where they fall in model classification schemes. Rather, the
objective here is to examine ‘new’ frontiers in DD modelling,
which might alter or interact with MMs as the field moves for-
ward. In many cases, advanced regression models might inter-
act with new DD modelling methods in the same way. At their
core, DD regression models may contain some mechanistic
elements, depending on the driving variables and selected
structure (Sauvant and Nozière, 2016; Tjørve and Tjørve,
2017). Also, although we often discuss DD v. MMs in black-
or-white terms (France, 1988), the lines between mechanistic
and DD models are blurry in practice.

A broader categorization of DD models (beyond tradi-
tional regression) that fits with the scope of big data and data
science broached in this paper is presented in Figures 1 and 2.
Data-driven models may be grouped based on the type of
learning used therein (supervised and unsupervised), the
nature of the data (continuous and discrete) and the category
of problems they solve (classification, regression, clustering
and dimensionality reduction). Conventional regression
modelling (including linear regression, stepwise regression,
multivariate regression, etc.), Bayesian models, classification
models and most artificial neural network (ANN) models
constitute supervised learning models, where the aim is to
predict an output variable according to a ‘new’ set of

input variables (not previously encountered in training).
In supervised learning, as it pertains to ‘big data’, ML systems
are presented with inputs and corresponding outputs, and
the objective is to construct a general rule, or model, which
maps the inputs to outputs. Here, ML may be defined as the
ability for a machine to automatically detect patterns in data
without being strictly programmed to do so (although its
learning algorithm is based on a pre-specified function).
By ‘learning’, we refer to the ability for the model to improve
predictive performance through an iterative process over
time on a defined ‘training data set’. Such supervised DD
models are developed via application of statistical fitting
procedures to minimize error between predictions and obser-
vations (reviewed below). Compared to the MM approach
where evaluation of model performance might be manual,
ML systems automate this step and iterate towards the
best model. The performance of the MLmodel in a specific task
is defined by a performance metric such as minimizing the
residual error or mean square error, the same tools applied
withinMM evaluations. This is called the ‘loss’ function, in data
science. The goal is that the ML model will be able to predict,
classify or reduce the dimensionality of new data using the
experience obtained during the training process.

Conversely, in unsupervised learning, there is no distinc-
tion between inputs and outputs, and the goal of the learning
is to discover groupings in the data. ‘Clustering’ is a type
of unsupervised learning problem aimed to find natural
groupings, or clusters, within data. Examples of clustering
techniques include k-means (Lloyd, 1982), hierarchical clus-
tering (Johnson, 1967) and the expectation maximization
(Dempster et al., 1977). Dimensionality reduction, another
unsupervised learning method, is the process of reducing
the number of variables under consideration by reducing
their number to a set of principal variables (components).
Principle component analysis (PCA) is a common example
of a widely applied dimensionality reduction technique.

Across DD approaches, the steps in development are
similar to those of MM model development, with the major
exception of hypotheses generation and model conceptuali-
zation, and might be considered to be:

1. Objective identification (what is to be predicted),
2. Database collection and management (e.g. sensor data, big data

and small data),
3. Model encoding (inputs, modelling assumptions, rules, statistical

method, etc.),
4. Model training and evaluation (statistical) – often performed

iteratively by the system itself, as opposed to manually, as discussed
in the previous MM section.

Such DDmodels are coded in programming languages similar
to those used to develop MMs such as FORTRAN, C/Cþ/C#,
Python, R and Delphi.

A significant difference between the MM and DD method-
ology lies in their interpretability. The MM is a fully ‘white
box’ approach – the reasoning behind predictions is fully
visible and the logic can be followed. However, most DDFigure 2 (colour online) Data-driven model classifications.
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methodologies are ‘black box’, meaning a prediction is pro-
duced, which may in fact be a very good prediction, but a
causal explanation or rationale for the prediction is absent.

To delve further, this paper will describe in more detail
clustering, ANNs and dimensionality reduction, as they are
methods commonly applied to interpret big data.

Clustering (unsupervised machine learning)
Clustering algorithms, such as k-means and several variants,
seek to learn the optimal division of groups of points from prop-
erties of the data (Figure 3). The three basic steps of the pro-
cedure are (1) initialization – k initial ‘means’ (centroids) are
generated at random, (2) assignment – k clusters are created
by associating each observation with the nearest centroid and
(3) update – the centroid of the clusters becomes the new
mean. Steps (2) and (3) are repeated iteratively until conver-
gence is reached, where the result is that the sum of squared
errors is minimized between points and their respective cent-
roids. The ‘cluster centre’ is the arithmeticmean of all the points
belonging to the cluster, and each point must be closer to its
own cluster centre than to the other cluster centres.

Hierarchical clustering is a type of unsupervised ML algo-
rithm used to cluster unlabelled data points. Similar to
k-means clustering, hierarchical clustering group together
data points with similar characteristics. Dendrograms are
used to follow the division of data into clusters (Figure 4).

In essence, a dendrogram is a summary of the distance matrix
between all the items that must be clustered. A dendrogram
cannot be used to infer the number of clusters. Rather, that
can be established based on a user-defined threshold that
is equivalent to drawing a horizontal line through the den-
drogram that will separate the items into a finite number of
clusters (Figure 5).

Artificial neural networks (mostly supervised machine
learning)
The ANN is an example of a supervisedMLmodel. The ANN is
designed to computationally mimic the perceived structure
and function of neurons in the brain. These models attempt
to emulate complex functions such as pattern recognition,
cognition, learning and decision making (McCulloch and
Pitts, 1943). The brain does so via billions of neurons that
inter-connect, process and interpret information. The struc-
ture of an ANN is therefore like a simplified version of the
biological neural network, whereby a number of ‘nodes’
are arranged in multiple interconnected layers. Each node
is able to integrate the provided input via a weighted sum
upon which an activation function (typically logistic) is
applied. Exceeding the threshold of this activation function
provides an output, which emulates the firing of a neuron
in the brain.

An ANN must contain at least three components: (1) the
input layer, which inputs data into the system; (2) one or
more hidden layers, where the learning takes place and
(3) an output layer, where the decision or prediction is pre-
formed (Figure 6). Most types of ANNs take several inputs,
process them through ‘neurons’ from a single or multiple
hidden layer and return the result using an output layer.
This result estimation process is known as ‘forward propagation’.
The ANN then compares the result with an actual output,
assesses the level of error and which neuron weight contrib-
uted most to the total error and then adjusts the weights
and biases to minimize that error. This step is known as
‘backwards propagation’. The weight and bias adjustment
uses the same algorithms as used for parameterization
of MM (e.g. Levenberg–Marquardt, full batch gradient
descent, stochastic gradient descent and scaled conjugate
gradient algorithm).

Figure 3 (colour online) Two distinct clusters of nine Canadian cities using the driving distance metric.

Figure 4 (colour online) Dendrogram representing the clustering of nine
Canadian cities based on the driving distances among them.
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One of the most popular types of ANN is the multi-layer
perceptron (MLP) (Rosenblatt, 1958; Aitkin and Foxall,
2003). AMLP contains multiple ‘hidden layer’ nodes between
the input and the output layers of the ANN (Figure 7). In this
type of model, all layers are fully connected – every node in a
layer is connected to every node in the previous and following
layer (except the input and output layers). Models with multi-
ple hidden processing layers are referred to as deep ANNs or
‘deep learning’ (DL) models. These models can, like any ANN,
be either supervised, partially supervised or unsupervised
(e.g. where the ‘feature’ or node extraction is performed
by the model itself).

Dimensionality reduction (unsupervised machine learning)
With the advent of advanced computing techniques, high-
throughput data collection hardware (sensors) and increas-
ingly faster hardware platforms, large and complex data
sets are generated that may include thousands of ‘features’
or variables. The increase in the dimensionality of the data
requires an exponential increase in the number of observa-
tions if all possible combinations of feature values are to
be included. This is almost impossible to achieve in practice,
and the number of data features (p) is generally significantly
larger than the number of observations (n). A typical example
of the problem appears in genome-wide association studies
where the number of variables is in the tens of thousands
(e.g. 50 K genotyping arrays), while the number of observa-
tions is at least one order of magnitude lower. Two related
but distinct approaches are applied when such situations
occur in practice: feature selection and feature engineering.
Feature selection focuses on the selection of relevant features
to be used in modelling the data. The relevance is established
using statistical (e.g. select high variance variables) or
other data-focused techniques and criteria. Feature engineer-
ing focuses on the generation of new features from
existing features, by applying various linear (e.g. PCA, linear
discriminant analysis and factor analysis) or non-linear
(e.g. multi-dimensional scaling, isometric feature mapping and
spectral embedding) transformations and operations on them.

Figure 5 (colour online) Equivalence between clusters and dendrogram interpretation.

Figure 6 Single layer artificial neural network (ANN) (perceptron), where
X1, X2, X3 represent inputs and W1, W2, and W3 represent weights.
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As a common example, in a PCA analysis, a set of obser-
vations of ‘possibly’ correlated variables are orthogonally
transformed into a set of linearly uncorrelated variables
called ‘principal components’. The first principal compo-
nent accounts for the largest proportion of outcome
variance, and each succeeding component in turn has
the highest variance possible with the constraint that it
is orthogonal to the preceding component. The resulting
vectors are each a linear combination of the original
variables which are uncorrelated. Similar to an ANN, the
objective of these models are to account for as much varia-
tion as possible, but interpretation of the ‘meaning’ of the
underlying structure is difficult.

Niche for data-driven models

Machine learning methods have been shown to help solve
multidimensional problems with complex structures in the
pharmaceutical industry and medicine, as well as in other
fields (LeCun et al., 2015). In this respect, they represent
a very powerful data synthesis technique. Similarly, Liakos
et al. (2018) found in a review that within the agriculture
sector, papers using ML approaches largely focused on
disease detection and crop yield prediction. The authors
reflected that the high uptake in the cropping sector likely
reflects the data intense nature of crop production and the
extensive use of imaging (spectral, hyperspectral, near-IR,
etc.). Based on a review of the available literature, currently
the application ‘niche’ occupied by ML/big data models in
animal production revolve around problems that fall into
the following categories:

(i) Classification (supervised) or clustering (unsupervised) problems,
where the model will group data based on common characteris-
tics (features),

(ii) Prediction problems, where the models ‘learn’ a function (not
necessarily mathematical) that best describes (fits) the data or

(iii) Dimensionality reduction problems, where the model will select
a subset of features that best represent the data.

However, the categories mentioned above are really
‘methodologies’ rather than niches and might be further
generalized within the animal production setting therefore
as ‘pattern recognition’ (encompassing classification and
clustering) and ‘predictive ability’.

Pattern recognition
Broadly, DD methodologies demonstrate strength interpret-
ing various types of novel data streams (e.g. audio, video and
image) to cluster, classify or predict based on supervised
or unsupervised approaches and mapping of patterns within
the data. Within animal production, this has most notably
been applied to animal monitoring and disease detection.

For example, a series of sensor types, with ML models
behind them to interpret and classify the data, have been
developed for use in practice to monitor changes in animal
behaviour (which may signify a change in health status,
injury or heat) or are used for animal identification.
Numerous publications have shown the ability of sensors
to classify animal behaviour (grazing, ruminating, resting,
walking, etc.), for example, via 3-axis accelerometers
and magnetometers (Dutta et al., 2015), optical sensors
(Pegorini et al., 2015) or depth video cameras (Matthews
et al., 2017), along with ML models to classify the collected
data. As continuous human observation of livestock to the
extent that a subtle change in behaviour could be observed
and early intervention applied is often impractical, the niche
for automatedmonitoring systems to track animal movement
and behaviour has formed.

As well, several other examples of how big data and ML
has been applied to the task of early disease detection can be
found in the literature. Several researchers have developed
ANN models, which analyse poultry vocalizations in order
to detect changes and identify suspected disease status
earlier than conventionally possible. For example, Sadeghi
et al. (2015) recorded broiler vocalizations in healthy and
Clostridium perfringens infected birds. The authors identified
five features (clusters of data) using an ANN model, which
showed strong separation between healthy and infected

Figure 7 (colour online) Multi-layer artificial neural network (ANN).
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birds and were able to differentiate between healthy and
infected birds with an accuracy of 66.6% on day 2 and
100% on day 8 after infection. Similar to vocalization, infec-
tion may lead to detectable differences in movement patterns
(Colles et al., 2016; optical flow analysis) and the surface
temperature of animals (Jaddoa et al., 2019; IR thermal
imaging), leading to earlier diagnosis of disease outbreak.

Predictive abilities
Data-driven methodologies have also found a niche in fore-
casting and predicting, for example, numerical outcomes due
to their strong fitting abilities and ability to map even minute
levels of variation (e.g. within an ANN). As such, within
animal production systems they are well situated to forecast
performance metrics of economic importance such as BW,
egg production or milk yield. Alonso et al. (2015) used a sup-
port vector machine classification model to forecast the BW
of individual cattle, provided the past evolution of the herd
BW is known. This approach outperformed individual regres-
sions created for each animal in particular when there were
only a few BWmeasures available and when accurate predic-
tions more than 100 days away were required. Pomar and
Remus (2019) and Parsons et al. (2007) as well as White
et al. (2004) proposed the use of a visual image analysis
system to monitor BW in growing pigs from which they could
determine appropriate feed allocations.

Approach limitations: machine learning

Over-fitting
A significant limitation with ML/big data model training is
their tendency to over-train, where the ML model learns
the ‘noise’ within the training data which leads to poor
generalization capacity (the ability to make predictions on
‘new’ data sets) (Basheer and Hajmeer, 2000). To overcome
this problem, the ‘gold standard’ is that the development
process should include (1) a training data set, (2) an internal
cross-validation data set and (3) a testing (external) data set.
Within an ANN, the number of hidden layers is critical
for adequate prediction but must be limited to deter the
ANN from learning such background ‘noise’ – however,
the number of hidden layers is typically chosen by trial
and error by the developer.

Data volume requirements
As with all models, with DD models one must be cautious of
biases introduced via skewed training data (e.g. to favour
other characteristics, such as chicken age or background
noise, Astill et al., 2018). Data-driven models are data-
hungry, requiring large data sets for training and evaluation
purposes to rule out biases, noise and data imbalance.
Ideally, these large data sets would also have a large variability,
covering as many foreseeable scenarios as possible (Kamilaris
and Prenafeta-Boldu, 2018).

Lack of transparency
Perhaps the most serious criticism of most ML models as they
are applied to big data is the lack of transparency in the
rationale behind each prediction. Although the means to
obtain the prediction are known, via the algorithm used,
the features responsible for causing the prediction, even from
a mathematical point of view, are not always discernible
(Knight, 2017). In this respect, the model represents a ‘black
box’. To deal with this interpretability problem, several
methods have been developed to show how ANNs build
up their understanding (see ‘explainable AI’, e.g. Samek
et al. 2017). Examples of these include ‘feature visualization’
(e.g. see Olah, 2017), ‘style transfer’ (e.g. Gatys et al., 2016)
and inserting ‘attention mechanisms’ into the ANN to track
what it focuses on (e.g. Ilse et al., 2018). To gain knowledge
from the information generated (according to the Ackoff
(1989) pyramid), it is likely that these visualization methods
will need to be widely adopted.

Potential overlap and synergies between approaches

Tedeschi (2019) proposed that modelling may be entering a
second era of growth like the one experienced in the 1950s,
the former being caused by the fourth industrial revolution.
The slow but apparentmove towards a ‘smart industry’ in which
the Internet of Things and robotics track and trace everything
that is going on in a farm provides a second ‘boost’ to the appli-
cation of mathematical modelling of all types in agriculture.

Table 1 summarizes the potential niche areas (by topic,
according to the niches identified above) and relative
(application) strengths of the two approaches. Some of this
niche differentiation is based on the data type – for example,
within the realm of image, video and sound interpretation,
DD/ML models can turn data into information via pattern
recognition, whereas MMs cannot. At the other extreme,
MMs are much more equipped to simulate what is ‘likely’
to happen in a situation not previously seen in practice.
(A DD model could not do so – predictions are based on what
it has been previously trained on.) However, the strength of
this niche differentiation is further dependent on the digital
maturity of the environment, as not all production systems
globally will automate their data, and animal production
might remain rather manual in somemarkets. This distinction
creates another niche division between the approaches
where both remain and have value.

Although the spectrum of digitalization is continuous,
it could also be discussed within a categorical hierarchy of
increasing digitalization:

1. No digitalization: Simple empirical models may preside, which
can address major issues with easily manipulated equations
and minimal input data;

2. Manual data pipeline: A MM model with a custom developed
front-end may be most suitable;

3. A small digital pipeline with a limited number (1 or 2) of data
streams: May enable automatic input population for application
of MM models (e.g. see the ‘precision agriculture’ section below);
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4. A medium digital pipeline: Would mean combining different data
sources with management systems delivering real-time data. Some
simulation functions of MMmay be replaced by real-time variation.
The need for heavy-duty front-end development may be reduced.

5. A fully digitized pipeline: Would enable MM and DD models to
run a farm, monitoring the status and automatically implement
generated recommendations (e.g. Tesla’s AutoPilot and vertical
farming).

Within such a categorical analysis of the spectrum, a com-
plete lack of digitalization (1) might suite the use of a simple
model by, for example, a third party consultant, based on rough
information provided (frommemory or estimation) by the farmer.
This scenario is often present in under-developed countries.
The development of a manual data pipeline (2) (e.g. measuring
and recording of data) allows the development of improved
‘benchmarking’ abilities – and therefore more reliable model
predictions from such a simple empirical or MM. With a small
continuous digital pipeline (3), continuous optimization and
real-time benchmarking (as is being achieved now in precision
nutrition for swine, e.g. Pomar et al., 2015) becomes possible.
It is at this point on the scale of digitalization that things become
interesting – for example, if BW is measured automatically,
do we forecast BW from a DDmodel, or dowe use themeasured
BW data as an input to our MM to optimize – for example –
ration composition? From this point forward, there also presents
a niche for hybridization of the DD and MM approaches, which
are further detailed below. A medium-sized digital pipeline
(4) would allow real-time optimization of integral parts of the

MM engine and combine it with digital data. For example,
a ration MM optimized off real-time or DD forecasted intake
and BW data and on the side utilizing an ANN on audio/video
data to determine, for example, health, activity level or behav-
iour. A full digital pipeline (5) would allow monitoring and opti-
mization of the entire system. This would allow a MM to be
utilized as the basis and optimize/augment with DD learning
patterns never envisioned – straight up the ladder of causation
(e.g. see Pearl & Mackenzie, 2018). Similar to vertical farming, it
would mean the automated management of a farm. To our
knowledge, (5) does not yet exist within animal production
systems.

The most likely points for overlap between DD and MM
approaches are therefore (1) within a digitalized market
and (2) with those models which deal with predicting animal
performance and related intermediaries. This is because
within this realm, both DD and MM have demonstrated suc-
cess (‘response prediction’ (MM) and ‘prediction abilities’
(DD)). It might be important to consider again that while we
distinguish MM and DD approaches, they already have con-
siderable technical overlap, though they use different termi-
nology. For example, the ‘loss function’ is a residual error
term, minimized with both supervised DD fitting methods
(e.g. within an ANN) and the parameterization and optimi-
zation of MM models. ‘Supervised ML’ models include com-
monly applied methodologies such as regression techniques,
‘unsupervised ML’ models include the PCA method, applied
for decades in animal science. The real difference, as
intended to be highlighted in this review, is their application

Table 1 Identified areas of strength for mechanistic modelling and data-driven models, as well as potential overlap

Area
Mechanistic
modelling

Data-driven
modelling

Nutrition: Balancing and optimizing
use and delivery of

Amino acids X
Energy X
Vitamins and minerals X
Non-nutritional qualities of feed X
Nutrition ×Management × Environment
interactions

X

Feed additives X
Nutrition × Health interactions X

Environment Temperature X X
Humidity X X
Ventilation X X
Bedding X X

Sustainability Nitrogen X X
Phosphorous X X
Greenhouse gases X X

Variance/uniformity Raw materials X
Manufacturing X
Animal & carcass attributes X

Benchmarking Monitoring performance over time X
Forecasting in real-time X

Health Disease outbreak status X
Mortality/condemnations X

Animal management Monitoring animal health X
Epigenetics (e.g. early life nutrition) X X
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in conjunction with big data and modern computing power.
The most appropriate approachmay therefore depend largely
on the market and the objective of developing and deploying
the model. If the objective is forecasting performance for
management decision purposes (e.g. what date will a flock
of broilers reach market weight, based on their current
growth?), then DD approaches may be most appropriate,
with their powerful fitting and forecasting abilities (given
enough historical data). If the objective is to manipulate
the system (e.g. nutritional formulation), problem solve
and troubleshoot, or ‘increase knowledge’ (academic,
‘why’ and ‘how’ do things work as they do?) then likely
the cumulative biological knowledge present in MM, perhaps
hybridized with DD, will yield the most information to the
user. While some argue that DD/‘big data’ can, and will,
occupy this niche of ‘opportunity analysis’ and ‘decision
support’ occupied by MM, the data science field has yet to
achieve success in this area. It will likely be considerable time
until (1) the required level of digitalization is achieved in
animal production systems and (2) a DD can use that data
to inform causality (Pearl & Mackenzie, 2018).

Whereas each core approach (MM and DD) has its funda-
mental limitations, a potential hybridization (as suggested
around step (3) in the degrees of digitalization of a market)
may enable a solution that has more to offer than the sum
of its parts. In fact, such hybridizations are already being
developed, largely within the realm of ‘precision agriculture’
(discussed further in the sections below). By integrating the
causal pathways of MMmodels with the more advanced and
more widely deployable learning algorithms of DD models,
hybrids could model the entirety of variables that play a role
in both the animal and the farm, increasing both knowledge
and wisdom generation. The following section will go further
to propose additional routes by which these two fields
may be joined along the pathway to full digitalization in
the near future.

Data-driven models may serve as inputs to mechanistic
models
A mainstream criticism of MMs has always revolved around
the type, amount and difficulty of obtaining accurate inputs
and outputs. With the big data wave and increased prevalence
of sensor data, this will become more manageable. Extensive
feed characterization is increasingly available via rapid technol-
ogies (e.g. Foskolos et al., 2015), in-pen/walk-over weigh scales
allow frequent weight data collection (e.g. Dickinson et al.,
2013), wearable accelerometers allow monitoring of feeding
activity and animal behaviour (Borchers et al., 2016), environ-
mental sensors allow real-time collection of environmental data
(temperature, humidity and air quality) and several biosensors
even allowmonitoring of internal conditions (Neethirajan et al.,
2017). A notoriously difficult area of prediction, particularly in
ruminants, remains dry matter intake (DMI) (e.g. Halachmi et
al., 2004). At the simplest level, the ability to get reasonable
estimates or actual values of DMI in non-controlled conditions
has incredible value to the development, use and application of
MMs. To the modeller aiming to understand biology (and thus

how it can be harnessed for a desired outcome), the big data
wave represents a new era in data resolution.

The requirement for interaction betweenMMand true ‘big
data’ will be that (1) MMs will need to be deployed in cloud-
based data pipelines, (2) the time-step of the data will have
to be aligned with the time-step of the MM (or vice versa) –
either the data significantly simplified or the time-step
considered within MM reduced to model changes within
day, (3) the reliability and error around sensor data pre-
interpreted by ML need to be known (e.g. body fat estimation
from cameras) and (4) MMs may have to prepare (and
innovate) for different data types (e.g. behaviour data).

This interaction between big data and MM has, in fact,
already been accomplished and demonstrated most notably
in swine, where precision feeding systems utilize sensor data
and iterate with a MM to determine the optimal blend of two
contrasting feeds for individual animals. For example, Pomar
et al., (2015) and Parsons et al., (2007) describe a precision
feeding system for swine, whereby amodel with both mecha-
nistic and empirical components (where empirical may be
classified as a DD approach such as regression) is provided
with real-time BW and feed intake data from the barn.
Within this framework, an empirical model uses up-to-date
data for each pig to estimate daily starting estimates for
BW, feed intake and daily gain. These forecasted values
are then entered into the MM to estimate standardized ileal
digestible lysine and other amino acid requirements, as well
as the optimal concentration of these nutrients in the feed
for the day. Based on the model-forecasted nutrient require-
ments, animals are individually fed a blend of two feeds
targeted to their optimized requirement.

Precision agriculture aims to deliver nutrients proportional
to each individual’s need in order to improve nutrient utiliza-
tion, efficiency of production, uniformity and to reduce the
impact of farming on the environment (Bongiovanni and
Lowenberg-Deboer, 2004; Pomar and Remus, 2019), and
thus has benefited hugely from the introduction of real-time
monitoring and sensor technologies. The general require-
ments as outlined by Pomar et al. (2015) are (1) the ability
to precisely and rapidly evaluate the nutritional potential of
feed ingredients; (2) real-time determination of individual
animal or group nutrient requirements (via a MM); (3) the
ability to formulate balanced diets which limit the amount
of excess nutrients and (4) the concomitant adjustment of
dietary nutrient supply to match the requirements of individ-
ual animals within the group. In order to feed animals
individually, individual monitoring of at least BW (in-pen
weigh scales or visual image analysis) or milk production
(depending on species) and daily feed intake (via animal
identification tags and individual feeders) is required and
there must be equipment in place to allow targeted nutrient
delivery to individual animals.

What may not have been attempted yet is the integration of
other ML-interpreted big data, such as health and reproductive
status, activity (energy budget) and environment, which may
account further for between-animal or between-farm differences
in performance.
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Mechanistic models may serve as inputs to data-driven
models
Another way that the fields could hybridize might include
using the outcomes from a MM as a potential input ‘node’
value for a DD, for example, an ANN. In this way, some
‘biological common sense’ might be supplied to the ANN,
potentially useful for decision-making support. Considerations
would revolve around careful specification of the range of
additional inputs considered to avoid over-parameterization,
collinearity and variables serving as inputs to the MM and also
as inputs to the ANN directly. Particularly for topics problematic
to MM prediction, this might represent an innovative approach
to explore.

Another example might be in modelling supply chain
dynamics. This is an example of an area where ML models
may be successfully applied at the highest level to assist deci-
sion making within animal production systems (Stefanovic &
Milosevic, 2017). Such supply chain models may be valuable
for (in particular) integrators, with complex logistical consid-
erations and fluctuating market demands, whereby a larger
ML model framework may forecast market changes and
the resulting financial impact, and suggest course corrective
action ‘now’ to augment negative impacts in the future.
An imbedded or ‘consulted’ MM may be able to suggest
farm-level changes to augment outcomes, reduce variability
or reduce loss. In this way, for the integrator of the future,
MMs may provide ‘optimization’ capabilities within large
decision management platforms (e.g. when to slaughter,
which farms to invest on for improvements, diet modifica-
tions to hit targets/mitigate losses, etc.).

Mechanistic models used to interpret big ‘omics’ data
There is a plethora of ‘omics’ data currently being generated
but with minimal biological interpretation of their meaning
(data translated into information) (Crow et al., 2019;
Misra et al., 2018). Crow et al. (2019) examined the
predictability of differential gene expression and found that
the same sets of genes keep coming up as differentially
expressed in experiments, regardless of the treatment
applied. In trials that examine the rumen microbiome, we
have little knowledge of whether these microbial differences
have actual implications for the animal (efficiency, CH4 and
milk FA profile). In these areas, omics data analysis may
benefit from teaming with MMs, to move towards interpre-
tation of the generated big data. Such MMs might also be
able to inform omics pathway analysis via, for example,
metabolic control analysis (sensitivity analysis on a real
system, as opposed to a simulated one), where control points
in a pathway could be identified from differential gene
expression data. Academically, MMs may serve as a bridge
between quantitative and qualitative analysis, such as this.

Full integration of mechanistic model code with machine
learning fitting
As we move towards ‘precision agriculture’ across species,
one must ask whether that includes the ability to manipulate
and optimize the system or simply have accurate real-time

information and the ability to forecast. If the former, there
will be the need for biological models, with the cumulative
knowledge about how a system works, to be fully integrated
with the ML models’ ability to make accurate predictions on
individual animals. One possible way to achieve this, may
be individual parameterization of MMs, via integrating
backwards propagation techniques applied within ANNs
(for example) into a MM, while placing biological confidence
limits aroundMM parameters permitted to vary between ani-
mals to prevent extending beyond biologically sensible val-
ues. Knowledge of the biological uncertainty, and setting
bounds to limit purely empirical fitting of the model, may
be critical to keep the integrity of the MM. Pomar and
Remus (2019) propose a real-time closed feedback system
to determine nutrient requirements and subsequent feed
intakes for individual pigs by combining both MM and ML.

The true challenge to widespread adoption of precision
feeding in animal production is likely financial and logistical –
requiring a substantial investment in the facility re-design and
technology upgrade. Not until the ROI can be demonstrated,
logistical barriers overcome and trust in the system is developed
(there is much at stake within animal production if things go
wrong) (Cartwright, 2016), is precision feeding likely to be taken
up by the industry as a solution for the future.

A diagrammatic of how this integration might generate
value is presented in Figure 8. Figure 8 summarizes the
flow from a problem statement to data to information to
knowledge to wisdom (as illustrated in the data-information-
knowledge-wisdom pyramid of Ackoff, 1989) and how MM
and ML may assist at different steps of that flow. In general,
the ML/big data methods may independently only get us
so far as the translation of data into information (perhaps
up until knowledge – e.g. disease detection). TheMMmethods
translate knowledge into wisdom but may lack sufficient
information. Their integration would seemingly benefit both
realms on the path to explainable AI.

Summary

This paper illustrates a niche for both MM and ML modelling
approaches within animal production based on (1) the way
in which we use models and (2) a varying degree of global
digitalization, but that substantial opportunity also exists
to expand the utilization and interpretation of data by hybrid-
izing these approaches. Hybridization has already been initi-
ated within the precision feeding sector but may be expanded
to address other issues including those reviewed in this
paper, thereby moving the data science field closer to
‘explainable AI’. Elshawi et al. (2019) comment that current
ML models are not yet providing the end-user with any
‘smartness’ in the decision-making process. Ching et al.
(2018) observe that understanding how users should inter-
pret models to make testable hypotheses about the ML
model remains an ‘open challenge’. Therefore, we see a
distinct niche for the hybridization of approaches (predictive
strength meets causality) in the near future.
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Second, what might also be evident now is that at their
core, MM and supervised ML models use many of the same
methodologies (e.g. model parameterization and optimiza-
tion algorithms), though they may use them differently
and apply different terminology. Many DD methodologies
are also decades old – but modern computing power and
new data streams have revolutionized their use.

Lastly, the expansion to utilize new methodologies and
hybridization of approaches between MM and DD will
require that the next generation of animal science modellers
is provided with a revised toolbox, such that they can utilize
the emerging suite of DD modelling methodologies available
to them. To address this, universities must (1) adapt course
content to include training animal scientists in new
and advanced DD methodologies (Xu and Rhee, 2014),
(2) collaborate between departments to bridge the gap
between data science and animal science and advocate for
multidisciplinary teams or (3) accept passage of the baton
to data scientists. The last option may limit the current level
of integration of modelling with experimental research and
the resulting advancement of knowledge we obtain via this
collaboration.
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Figure 8 (colour online) Full integration of mechanistic and data-driven models in the translation of data → information → knowledge → wisdom (where
MM = mechanistic modelling, ML = machine learning modelling, dotted lines are feedback loops). Research may generate both data (1) and knowledge (3).
‘Big data’ interpreted by ML may generate information (2), which in itself may be used for decision making but relies on correlation (thereby lacking knowledge
or wisdom). Within this framework, MMs may be seen as where biological knowledge is accumulated (3), and these may on their own be used to derive wisdom
(4) – though they often lack sufficient driving information. Hybridization of ML andMM (*) may close the loop between prediction accuracy/precision and causality.
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