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Abstract
In ultra-short laser pulses, small changes in dispersion properties before the final focusing mirror can lead to severe
pulse distortions around the focus and therefore to very different pulse properties at the point of laser–matter interaction,
yielding unexpected interaction results. The mapping between far- and near-field laser properties intricately depends on
the spatial and angular dispersion properties as well as the focal geometry. For a focused Gaussian laser pulse under
the influence of angular, spatial and group-delay dispersion, we derive analytical expressions for its pulse-front tilt,
duration and width from a fully analytic expression for its electric field in the time–space domain obtained with scalar
diffraction theory. This expression is not only valid in and near the focus but also along the entire propagation distance
from the focusing mirror to the focus. Expressions relating angular, spatial and group-delay dispersion before focusing
at an off-axis parabola, where they are well measurable, to the respective values in the pulse’s focus are obtained by a
ray tracing approach. Together, these formulas are used to show in example setups that the pulse-front tilts of lasers with
small initial dispersion can become several tens of degrees larger in the vicinity of the focus while being small directly
in the focus. The formulas derived here provide the analytical foundation for observations previously made in numerical
experiments. By numerically simulating Gaussian pulse propagation and measuring properties of the pulse at distances
several Rayleigh lengths off the focus, we verify the analytic expressions.

Keywords: group-delay dispersion; pulse-front tilt; spatio-temporal couplings; third-order dispersion; ultra-short laser pulses

1. Introduction

It is well known that the focusing of femtosecond laser pulses
with even slightly tilted pulse fronts leads to an increase of
the tilt angle during propagation towards the focus, a reversal
of the tilt after the focus and a pronounced impact on the
field distribution in the focus. In particular, the influence of
pulse-front tilts and spatio-temporal couplings on the focus
of high-power lasers has attracted more and more interest in
recent years as several groups have either directly observed
the impact of pulse-front tilts in laser–matter interactions
or exploited pulse-front tilted lasers to optimize the
interaction. As has been shown, for example, spatio-temporal
couplings hamper reaching maximum intensity in the focus
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of petawatt-class laser pulses[1], limit the efficiency or
introduce a detuning in higher-harmonic generation[2,3],
impact the particle pointing direction in laser particle
acceleration setups[4,5], are utilized in nonlinear and quantum
optics[6] as well as to generate attosecond light pulses[7] and
are fundamental to the simultaneous spatial and temporal
focusing geometries used in ultra-short laser pulse material
processing[8,9].

In addition, exact knowledge of pulse-front tilt angles
resulting from spatio-temporal couplings is required in
traveling wave geometries, where pulse-front tilts are
exploited to maximize the overlap of a moving target with
a laser pulse[10–14], in the generation of THz-wave pulses,
where pulse-front tilts are exploited to match the group
velocity of the pump light pulse and the phase velocity
of the THz radiation[15,16], in laser plasma accelerators,
where spatio-temporal couplings can be used to control the
particle pointing direction[17–19], and in laser writing, where
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Figure 1. Envelope of a focused laser pulse at different points in time along its path. The laser pulse enters the focusing geometry from the top right,
traveling towards the focusing mirror below. The input pulse is under the influence of angular dispersion ADin and, thus, has a small pulse-front tilt before
focusing. Due to ADin, spatial dispersion SDin develops during propagation by distance L to the focusing off-axis parabola (OAP). At the OAP, the pulse is
deflected by 90◦ and then propagates the parabola’s effective focal distance feff down to the focus. Details of the pulse properties depicted further downstream
assume feff � L and omit pulse-front curvature. During propagation into the focus, pulse-front tilt grows and reaches a maximum some distance ahead of
the focus. Then it reduces and again equals its initial value in the focus. After the focus, this pulse-front rotation continues such that the tilt becomes zero
shortly behind the focus and in the following becomes opposite in direction compared to the tilt before focusing. Also during focusing, the transverse offset of
frequencies from the propagation axis grows in relation to the pulse’s width during propagation from the OAP to the focus. However, the effect of propagation
with angular dispersion on the value of spatial dispersion is negligible. It remains almost constant at the focal value SDfoc throughout propagation. After the
focus, pulse-front rotation continues until the tilt reaches a maximum, before it falls off again.

the pulse-front tilt can be exploited to control directional
asymmetries in written structures[20]. These applications
exploiting pulse-front tilts rely on dedicated dispersion
management and diagnostics in the laser system in order to
control the pulse’s tilt angle at the target point of interaction.

Today several techniques exist to diagnose pulse-front tilt
and other pulse parameters, such as duration, along the
beamline of a high-power laser up to the focus[21–26]. Yet, it is
not clear from the theory which tilt angle and pulse duration
are to be expected while the laser pulse propagates from
the last focusing mirror into the focus. The existing theory
focuses on the calculation of tilt angles before focusing,
where the laser is well collimated, or directly at the focus
position[10,27–32], either directly or indirectly through the
usage of approximations, and is not applicable at distances
of the order of the Rayleigh length or more from the focus.
Since Rayleigh lengths in tightly focusing geometries can
be as short as tens of micrometers, this is a significant
shortcoming.

As we present in this paper, the tilt and duration of fem-
tosecond pulses can significantly evolve over these distances,
resulting in deviations of pulse parameters at the actual
laser–matter interaction point compared to initial expec-
tations. Important typical affected pulse parameters are,
for example, the maximum intensity on the target, created
plasma density or charge separation in the target, laser deple-
tion length in the target and spatio-temporal overlap with an
evolving target region. That is, even if the dispersion proper-
ties are known before focusing, they may not be known at the
interaction point, so that correlations between pulse parame-
ters and observations in the laser–matter interaction cannot

be understood. These kinds of issues become particularly
relevant in applications where targets may not be reliably
aligned with an accuracy smaller than the Rayleigh length[33]

or where the laser–matter interaction already starts before
the laser pulse reaches its focus as, for example, in scenarios
where the laser focus is within a gas jet[34–36]. Particularly
in the latter, spatio-temporal couplings present at the start of
the interaction may significantly impact the laser’s evolution
in the target medium.

Here we derive for the first time analytic expressions
providing the tilt, duration and width of a focused laser
pulse under the influence of spatial, angular and group-delay
dispersion. These expressions are valid along the whole
propagation distance from the focusing off-axis parabola
(OAP) into the focus. They not only allow quantifying the
parameters of a pulse with dispersion in the surroundings of
the laser–matter interaction region, but also provide under-
standing of the spatio-temporal couplings in real focused
laser pulses. Specifically for high-power lasers, where pulse
parameters cannot be measured in the vicinity of the focus,
these formulas facilitate estimating pulse properties in the
interaction region from dispersion measurements before the
final focusing mirror. Since dispersions in the laser pulse
exist in experiments, for example, originating from mis-
alignment of laser system components or imperfect optics,
the presented results are particularly relevant when relating
laser pulse parameters to observations from the laser–matter
interaction, for example, via simulations, as they allow one
to adequately model the laser pulse in the interaction region.

Figure 1 sketches a typical situation encountered in exper-
iments, where a laser pulse with angular dispersion and
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Figure 2. Frequency–space domain visualization of the paths of two specific frequencies belonging to the spectrum of a Gaussian pulse that is under
the influence of angular dispersion and spatial dispersion. These frequencies are transversally Gaussian distributed, and the rays represent the path of the
respective distribution center. The pulse’s propagation direction is defined by the propagation direction z of the central frequency �0. The propagation
direction of frequency � encloses the angle θ (�) with the central frequency’s propagation direction in the focal plane. This expresses immanent angular
dispersion AD := dθ

d�

∣∣∣
�=�0

= θ ′ of the focusing Gaussian pulse, which can originate from both angular dispersion θ ′
in (�) and spatial dispersion x′

in (�)

before the focusing off-axis parabola. In the focal plane z = 0, the spatial offset xc = x0 (�) between the centers of beams � and �0 along the transverse
direction x expresses immanent spatial dispersion SD := dxc

d�

∣∣∣
�=�0

= x′
0 of the Gaussian pulse, which originates from angular dispersion before the off-axis

parabola.

consequential spatial dispersion, ADin and SDin respectively,
is focused at an OAP. During propagation to the focus the
pulse-front rotates, spatial dispersion increases and the pulse
duration increases.

For the derivation of the focused pulse parameters dur-
ing propagation, the problem is split into two work items,
allowing one to base the calculation on a combination of
geometrical optics and wave optics[37–40].

Firstly, the electric field of a defocusing laser pulse with
known dispersion in the focus is calculated using the Fresnel
diffraction integral (Ref. [41], p.636). This yields analytical
relations for the change of dispersion quantities and laser
parameters during propagation. Our results exceed previ-
ously published findings in that they are valid along the
whole propagation path from the focusing mirror to the focus
and beyond.

Secondly, the in-focus values of spatial, angular and group-
delay dispersion are analytically derived from the respective
quantities just before focusing at the OAP by a ray tracing
approach. The expressions we derive for in-focus second-
and third-order dispersion values exceed typical analysis
performed with Kostenbauder ray-pulse matrices[42].

Figure 2 provides an overview of the geometry underlying
the analytic calculations in the two steps. It visualizes impor-
tant quantities used throughout the derivations.

2. Deriving pulse properties during propagation

Our derivation of a laser pulse’s tilt angle, duration and width
from given spatial, angular and higher-order dispersion starts

by modeling the laser’s scalar electric field distribution in
frequency space Ê in the focal plane and propagating this
to an arbitrary distance z from the focus using the Fresnel
diffraction integral. We assume that the initial dispersion
is present only along one axis in the transverse plane. This
allows for a 2D formulation of laser propagation, where x is
the transverse direction and z is the laser propagation axis,
on the basis of cylindrical waves in the following. This work
can be extended to three dimensions by treating the other
transverse direction (y) with cylindrical waves analogously.

2.1. Initial field in the focus in the frequency–space domain

We assume the laser frequency spectrum and transverse
profile to be Gaussian in the focus:

Ê (x,z = 0,�)= ε�εxe−iϕ,

ε� (�)= e− τ2
0
4 (�−�0)

2
,

εx(x)= e
− (x−x0)

2

w2
0 ,

where ϕ = ϕ (x,z = 0,�) is the initial spectral phase of
the pulse, � = 2πν is the angular frequency, �0 is the
central laser frequency, (x,z) is the position considered
with z = 0 marking the focus, τ0 = τFWHM,I/

√
2ln2 is the

Fourier limited duration, τFWHM,I is the full width at half
maximum of the field’s time–space domain longitudinal
intensity distribution, w0 = wFWHM,I/

√
2ln2 is the focal
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width of the transverse spatial distribution of frequency �,
wFWHM,I is the focal full width at half maximum of the
undisturbed pulse’s time–space domain transverse spatial
intensity distribution and x0 = x0 (�) is the center position
of the spatial distribution of frequency � in the focus. The
latter is related to spatial dispersion SD, being defined as
the coefficient of the linear term in the expansion of the
transverse frequency distribution center xc with respect to
frequency:

SD := dxc

d�

∣∣∣∣
�=�0

. (1)

Since x0 = xc (z = 0), the initial value of spatial dispersion at
z = 0 is SDfoc = x′

0.
The laser’s spectral phase ϕ (x,z = 0,�) in the focus is

defined by the existence of angular dispersion in the focus
ADfoc. Angular dispersion manifests in the divergence of
propagation directions between frequencies, where the prop-
agation directions of frequency � and the central laser
frequency �0 enclose the angle θ = θ (�). Similar to SD,
AD is defined as the coefficient of the linear term in the
expansion of θ with respect to frequency:

AD := dθ
d�

∣∣∣∣
�=�0

= θ ′. (2)

We deduce the laser’s initial spectral phase ϕ from the
spectral phase φ of a plane wave of frequency� propagating
at an angle θ with respect to the z-axis:

φ (x,z,�)= �

c
(−xsinθ + zcosθ) .

Expanding this about � ≈ �0 and evaluating at the focus
position z = 0, the laser’s initial spectral phase ϕ is obtained.
Up to the third order it reads, cf. Appendix A.1,

ϕ (x,z = 0,�)≈ − x
c
�0θ

′ (�−�0)− 1
2

x
c

(
2θ ′ +�0θ

′′)(�−�0)
2

− 1
6

x
c

(
3θ ′′ +�0θ

′′′ −�0θ
′3)(�−�0)

3

+ 1
2

GDDfoc(�−�0)
2 + 1

6
TODfoc(�−�0)

3

=: −α x
w0

+ 1
2

GDDfoc(�−�0)
2 + 1

6
TODfoc(�−�0)

3,

where

α (�)= w0

c

[
�0θ

′ (�−�0)+ 1
2

(
2θ ′ +�0θ

′′)(�−�0)
2

+1
6

(
3θ ′′ +�0θ

′′′ −�0θ
′3
)
(�−�0)

3
]

.

(3)

The quantity α/w0 can be regarded as the series
expansion of a frequency’s wave vector x-component,
kx = −(�/c)sinθ (�)≈ −α (�)/w0.

The expansion of the spectral phase in the focus above
includes values GDDfoc and TODfoc at z = 0 for group-
delay dispersion and third-order dispersion in the focus,
respectively. Generally, group-delay dispersion GDD and
third-order dispersion TOD are defined as follows:

GDD := d2ϕ

d�2

∣∣∣∣
�=�0

, (4)

TOD := d3ϕ

d�3

∣∣∣∣
�=�0

, (5)

and evolve during propagation. Their values in the focus are
determined from known values before the focusing mirror,
emerging, for example, through material dispersion within
the laser system, plus contributions from dispersion coupling
through focusing, as will be shown later.

2.2. Field at some distance from the focus in the frequency–
space domain

The field distribution outside the focus is obtained by prop-
agating the initial field with the Fresnel diffraction integral
for cylindrical waves[41,43], cf. Appendix A.2,

Ê (x,z,�)=
√
�

2πc
e
−i
(
�
c z− π

4

)
√

z

∞∫
−∞

Ê (ξ,z = 0,�)e−i �2cz (x−ξ)2 dξ

=
√
�

2πc
e
−i
(
�
c z− π

4

)
√

z
ε�e−i 1

2 GDDfoc(�−�0)
2
e−i 1

6 TODfoc(�−�0)
3

×
∞∫

−∞
εx (ξ)e

iα ξ
w0 e−i �2cz (x−ξ)2 dξ

= ε�

(
1+ z2

z2
R

)−1/4

e
−
[
x−
(

x0− c
�0w0

αz
)]2
[

1
w2

0

(
1+z2/z2

R

)+i �2c
z(

z2+z2
R

)
]

× e−i�c zeiα x
w0 ei α

2
4

z
zR ei 1

2 arctan z
zR e−i 1

2 GDDfoc(�−�0)
2

× e−i 1
6 TODfoc(�−�0)

3
, (6)

where zR = �w2
0/(2c) is the Rayleigh length, λ0 = 2πc/�0

is the central laser wavelength and the well-known width
w(z) and radius of curvature R(z) of the propagating laser
pulse can be identified as

w(z)= w0

√
1+ z2

z2
R
, (7)

R(z)= z
(

1+ z2
R

z2

)
. (8)
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While these expressions for w and R are frequency
dependent in general, we set zR ≈ πw2

0/λ0 to good
approximation in Equation (6) for the following calculations.
Equation (6) is a well-known result[44]. See Appendix A for
details of this and the following derivations.

As is evident from the proportionality of the laser’s Gaus-
sian transverse profile center xc (z,�)= x0 −αzc/(�0w0) to
α in Equation (6), a frequency’s spatial distribution center
is subject to higher-order dispersion. From this, the scaling
of spatial dispersion with distance from the focus can be
derived using Equation (1), which reads to the first order as

SD(z)= SDfoc −ADfocz.

Furthermore, Equation (6) allows identifying the advance-
ment of higher-order dispersion with distance from the focus
by performing the respective number of derivatives of the
spectral phase ϕ (x,z,�)= −Arg

[
Ê (x,z,�)

]
with respect to

� and evaluating at � = �0. Accordingly, advancements of
GDD and TOD with z are obtained using Equations (4) and
(5), respectively, cf. Appendix A.3,

GDD(z)= GDDfoc +4
x
w
β3β5 +2�0

(
2

x
w
β4 +β2

3

)
β5 −2β6,

(9)

TOD(z)= TODfoc +12
x
w
β4β5 +6β2

3β5 +12�0
x
w
β5δ1

+12�0β3β4β5 −6δ2, (10)

where

δ1 = z
6w�0

(
3θ ′′ +�0θ

′′′ −�0θ
′3 − x′′′

0

)
,

δ2 = 1
2c

[
θ ′ (2θ ′ +�0θ

′′)z+ 1
3

(
3θ ′′ +�0θ

′′′ −�0θ
′3
)

x
]
,

making use of the definitions in Equation (13) given below.
Equations (9) and (10) are more complex than those

typically used[44] and exhibit a variation over the trans-
verse pulse profile either due to angular dispersion or the
combination of spatial dispersion and diffraction or both.
Moreover, even along the laser propagation axis (x = 0)
spatial dispersion contributes to group-delay dispersion:

GDD(z)|x=0 = GDDfoc + �0

c
SD(z)2

R
− �0

c
AD2

focz. (11)

This contribution compensates phase run-up outside the
focus for off-axis traveling frequencies by taking phase
front curvature into account. Phase run-up outside the focus
originates from the term proportional to AD2

focz, which
itself represents a correction of phase due to a corrected
traveling distance for off-axis traveling frequencies. Since
this traveling distance correction is based upon a plane wave
assumption, it is only valid near the focus, where z � zR,

and the correction by the term ∝ SD2/R is necessary. Far
from the focus, where z 	 zR and R(z) ≈ z, the two correc-
tions cancel each other out in the case of vanishing spatial
dispersion in the focus: GDD (z 	 zR)|x=0,SDfoc=0 = GDDfoc.

The above form of the initial field in the focus
E (x,z = 0,�) assumes that all frequencies focus at the same
position z = 0 along the central frequency’s propagation
direction. This holds as long as the phase fronts of the
expanded laser pulse, which is focused by the OAP, are flat.
Typically this requires keeping the distance between the last
telescope in the laser system and the OAP well below the
Rayleigh range of the expanded laser pulse. If this is not
the case, chromatic aberration will occur and further distort
the pulse, as has been studied for focusing by a lens[45].

2.3. Field at some distance from the focus in the time–space
domain

The field distribution in the time–space domain is obtained
by Fourier transforming the above field distribution in the
frequency domain (Equation (6)) to the time domain:

E (x,z,t)= 1
2π

∫
Ê (x,z,�)ei�td�.

The result presented in the following allows for the first
time to read off analytical relations for the scaling of pulse-
front tilt and pulse duration valid in the close vicinity, as well
as far from the focus.

In order to perform the Fourier transform, the in-focus
transverse distribution center x0 of a frequency is expanded
up to the second order, x0 ≈ x′

0 (�−�0)+ 1
2 x′′

0(�−�0)
2,

and the definition in Equation (3) of α is inserted in the
complex argument of Equation (6), allowing one to order
terms in powers of �−�0. Neglecting every contribution
of the third order and higher, cf. Equations (98)–(129) in
Appendix A.3,

Ê (x,z,�)=
(

1+ z2

z2
R

)−1/4

e− x2

w2 e−i�0
x2

2cR e−i�0
c zei 1

2 arctan z
zR

× e
−
[(
β1+2 x

w β4+β2
3
)+i
(

1
2 GDDfoc+2 x

w β3β5+(2 x
w β4+β2

3
)
�0β5−β6

)]
(�−�0)

2

× e
−
[
2 x

w β3+i
(
β2+ x2

w2 β5+2�0
x
w β3β5

)]
(�−�0)

, (12)

where

β1 = τ 2
0

4
,

β2 = z
c

−�0θ
′ x
c
,

β3 = −SD(z)
w

,

β4 = 1
2w

(
2θ ′ z
�0

+�0θ
′′ z
�0

− x′′
0

)
,
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β5 = w2

2cR
,

β6 = 1
2c

[
�0θ

′2z+ (2θ ′ +�0θ
′′)x], (13)

and the approximated field can be analytically transformed
to the time domain. The assumption of vanishing third- and
higher-order dispersion for a particular setup can be verified
with the help of Equation (123) from Appendix A. From
this, it becomes clear that third-order contributions to the
envelope and phase are negligible if 128 · [(x/w)δ1 +β3β4

]
/

τ 3
0 � 1 and 11 ·TOD(z)/τ 3

0 � 1, respectively, which assumes
that the spectral amplitude is only significant for frequencies
|�−�0| ≤ 4/τ0 (the amplitude falls below e−4 of its initial
value for a larger frequency deviation). In practice, these
requirements are fulfilled for standard high-power, ultra-
short laser pulses. For example, the requirements take abso-
lute values of 3 × 10−6 and 1 × 10−6, respectively, when
evaluated at a Rayleigh length distance from the focus at
the pulse center for a pulse of wavelength λ0 = 800 nm
and duration τFWHM,I = 5 fs (τ0 = 4.25 fs), being tightly
focused to w0 = 2 µm and angularly dispersed in the focus
ADfoc = 1 µrad/nm.

Further defining

γ1 = 1+8
x
w
β4

τ 2
0

+4
β2

3

τ 2
0
,

γ2 =
[

1
2

GDDfoc +2
x
w
β3β5 +

(
2

x
w
β4 +β2

3

)
�0β5 −β6

]
4
τ 2

0

= GDD(z)
2
τ 2

0
,

γ3 = −2
x
w
β3

τ0
= 2

SD(z)
w2τ0

x,

γ4 =
(

t −β2 − x2

w2 β5 −2�0
x
w
β3β5

)
1
τ0
,

allows to write the field in the time domain in a compact
form. The time–space domain field is, cf. Equations (130)–
(135) in Appendix A.3,

E (x,z,t)= 1
τ0

√
π

[(
1+ z2

z2
R

)(
γ 2

1 +γ 2
2

)]−1/4

e
i�0

(
t− z

c − x2
2cR

)

× ei 1
2

(
arctan z

zR
−arctan γ2

γ1

)
e
− x2

w2γ1

(
1+8 x

w β4/τ
2
0

)

× e
−

⎡⎣τ0γ4− (
τ0γ3)

(
τ2
0 γ2

)
τ2
0 γ1

⎤⎦2

τ2
0

(
γ1+γ 2

2 /γ1
)

e
i

(
γ 2

4 −γ 2
3

)
γ2+2γ3γ4γ1

γ 2
1 +γ 2

2 , (14)

provided γ1 > 0, otherwise the Fourier transform over the
Gaussian spectrum cannot be performed analytically since
the frequency–space domain field (Equation (12)) grows
exponentially with (�−�0)

2. For a detailed explanation, see
Appendix A.3, Equation (130). Future work may model the

spectrum with a different function in order to remove the
requirement γ1 > 0.

The only problematic term with respect to the requirement
γ1 > 0 is the middle term in γ1 being proportional to β4,
which also appears in the nominator of the exponent of
the transverse profile scaling as e−x2

in Equation (14). In
general, this term cannot be neglected and its contribution
can become significant in certain regimes, for example, for
pulses with a duration of the order of only a few femtosec-
onds or shorter. These regimes demand to verify γ1 > 0 when
using the analytic expression for the total field or those for
the pulse’s spatio-temporal properties further below.

There is, however, the ‘long pulse’ regime where the term
proportional to β4 can be neglected and γ1 remains positive
always. In this regime,

∣∣8β4/τ
2
0

∣∣� 1, which can be rewritten
as 8π |�0ADfoc|(w0/λ0)(�0τ0)

−2 � 1, with |�0ADfoc| =∣∣tanψtilt,ADfoc

∣∣ representing pulse-front tilt in the focus due
to ADfoc alone. That is, the middle term proportional to β4

will not be of relevance in γ1 as long as the ADfoc induced
angle of pulse-front tilt ψtilt,ADfoc satisfies

∣∣tanψtilt,ADfoc

∣∣�
λ0(�0τ0)

2/(8πw0), meaning that the tilt angle needs to be
of the order of the ratio of the pulse duration (measured
in number of laser oscillations) over the pulse width (mea-
sured in wavelengths) and provided that the pulse duration
extends over several laser oscillations. Exemplarily, for a
λ0 = 0.8 µm, τFWHM,I = 30 fs (τ0 = 25.5 fs) pulse with a focal
width of πw0 ≡ 60λ0, the ‘long pulse’ regime is reached
if ψtilt,ADfoc � 82◦, and the requirement relaxes further for
smaller focal spot diameters.

To our knowledge, the term 8(x/w)
(
β4/τ

2
0

)
in γ1 has

not been taken into account in previous analysis of spatio-
temporal couplings and its appearance outside the long pulse
regime could only be recognized from the fully analytic
treatment presented here.

While expressions for typically interesting intensity-
related pulse parameters are derived from the time–space
domain field (Equation (14)) in the following, it has several
more areas of applicability. For example, one can derive the
phase-related wavefront rotation[29] or feed the field into self-
consistent simulations of pulse propagation or laser–matter
interaction.

2.4. Duration, width and tilt of the propagating pulse

From Equation (14) the duration T and width W of the
propagating Gaussian laser pulse with spatial, angular and
group-delay dispersion in the focus are readily identified.
These are the denominators of the fractions in the exponents
of the last and next to last real exponential:

τ 2 = τ 2
0 γ1 = τ 2

0

[
1+8

x
w
β4

τ 2
0

+4
SD(z)2

w2τ 2
0

]
, (15)
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T2 = τ 2
0

(
γ1 + γ 2

2

γ1

)
= τ 2 +4

GDD(z)2

τ 2 , (16)

W2 = w2 τ 2

τ 2
0 +8 x

wβ4
. (17)

However, W generally is not a typical Gaussian pulse
width, as it still depends on the transverse coordinate x. This
rather shows that the transverse envelope does not keep a
Gaussian shape during propagation but evolves to something
more complex. (By setting x = W in Equation (17) and
solving the resulting cubic equation in W/w it is possible
to yield a value for W that corresponds to its original
meaning for a Gaussian beam, that is, as the distance from
the pulse center along the transverse direction where the
intensity reduces to 1/e2 compared to its center value.) Yet,
these deviations from a Gaussian profile are not of relevance
in the long pulse regime where the term proportional to
β4 can be neglected. Then W quantifies the width of a
normal Gaussian transverse profile. That is, the laser pulse
keeps a Gaussian transverse profile and the spatio-temporal
couplings do not alter the transverse profile to something
more complex during propagation.

The expression for pulse duration (Equation (16)) is
structurally equal to previously published results[44], but
comprises more complex expressions for τ and GDD(z),
Equations (15) and (9), respectively. In the long pulse
regime, τ assumes the well-known form τ 2 = τ 2

0 +
4SD(z)2/w2, and represents pulse elongation due to spatial
dispersion alone. In cases where pulse elongation takes
place via group velocity dispersion in a dispersive material,
the proportion of spatial dispersion is zero and τ = τ0.

From the numerator of the exponent of the last real
exponential in Equation (14) the time delay t0 of the pulse
maximum can be identified:

τ0γ4 − (τ0γ3)
(
τ 2

0 γ2
)

τ 2
0 γ1

=: t − t0,

where

t0 = z
c

−�0ADfoc
x
c

+ x2

2cR
− �0

c
SD(z)

R
x+4

SD(z)
w2

GDD(z)
τ 2 x.

The time delay is directly connected to the pulse-front tilt
by

tanψtilt = d(ct0)

dx

∣∣∣∣
x=0
,

which yields, cf. Appendix A.4,

tanψtilt = −�0ADfoc −�0
SD(z)

R
+4c

SD(z)
w2

[
GDD(z)
τ 2

]
x=0

.

(18)

In this expression, the first term represents a constant base
value of pulse-front tilt due to angular dispersion, which is
the true value of pulse-front tilt in the center of the focal
plane[27]. The remaining terms represent deviations from the
focal plane center value due to radial offset of the point of
evaluation or pulse propagation.

The second term is zero in the focus, but non-zero outside.
For a specific frequency, it represents an effective angle of
propagation due to increasing SD during propagation, just as
AD represents an angle of propagation. It can be the major
source of pulse-front tilt outside the focus, as observed for
the setups in the next section. Its derivation is a main result
of this work.

The structure of the third term is in line with previous find-
ings[44]. However, the definition for GDD(z)|x=0 is extended
in this work by the contribution of spatial dispersion, that is,
the term proportional to SD2/R in Equation (11).

Note that the definition of pulse-front tilt is not unique. The
above definition is with respect to time delay t0 of the pulse
maximum along the transverse direction at some position z,
but pulse-front tilt can be defined with respect to longitudinal
spatial offset z0 between the pulse maximum and pulse
center along the transverse direction at some time t, too. The
relation between the two definitions is

tanαtilt = d(z0)

dx

∣∣∣∣
x=0

= − tanψtilt.

3. Deriving pulse dispersion in the focus of an off-axis
parabola

Using the above formulas to estimate pulse properties dur-
ing propagation of a tightly focused laser pulse requires
knowledge about the dispersion in the focus. Usually, these
dispersion properties in the focus are unknown but estimated
from the dispersion properties before the focusing mirror,
where these can be measured. Using a ray tracing approach,
dispersion parameters in the focus are derived in the follow-
ing from the known dispersion parameters before focusing,
which couple during reflection at the focusing mirror. We
denote parameters before focusing with subscript ‘in’, and
parameters in the focus with subscript ‘foc,coupl’. The in-
focus dispersion values derived in this section will be used
in the next section as input for the in-focus dispersion values
in the pulse parameter formulas, Equations (18) and (16),
where the latter are denoted with subscript ‘foc’.

We will assume focusing of the laser pulse at an OAP, as
is standard for high-power laser systems. The pulse has only
first-order contributions x′

in and θ ′
in to spatial and angular

dispersion, respectively, before focusing. Group-delay
dispersion before focusing GDDin is not explicitly taken into
account as it does not evolve, but can simply be added to the
in-focus value of group-delay dispersion GDDfoc,coupl, that
is, GDDfoc = GDDfoc,coupl +GDDin, and similar for TODfoc.
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Figure 3. Propagation of rays of different frequency during focusing of a laser pulse at an OAP. The central frequency’s incident ray (orange) propagates
parallel to the axis of the OAP. The incidence plane is perpendicular to the ray and located at the point of incidence of the ray on the OAP surface. The ray
encloses with the OAP’s surface normal the angle δ, which determines the angle of deflection ψdefl,0 = 2δ. During subsequent propagation into the focus, the
central frequency ray covers the effective focal distance feff,0 = f /cos2 (ψdefl,0/2

)
. The focal plane is perpendicular to the central frequency ray and located

in the OAP’s focus. A second ray belonging to frequency� (green) encloses the angle θin with the central frequency ray and has a transverse spatial offset of
xin at the incidence plane. The propagation angle θin is negative in this setup. Compared to the central frequency ray, the second ray propagates an additional
distance Lin until it is incident on the mirror surface. Its deflection angle ψdefl, effective focal distance feff, propagation angle θ and propagation distance
until the focal plane Lfoc differ from the central frequency ray. The point where the second ray pierces the focal plane defines its transverse spatial offset x0.

Obtaining estimates for dispersion-coupling induced in-
focus values of spatial dispersion SDfoc,coupl, angular
dispersion ADfoc,coupl, group-delay dispersion GDDfoc,coupl

and third-order dispersion TODfoc,coupl relies on analytic
tracing of rays representing the propagation of the center
of a frequency’s transverse spatial distribution. Figure 3
sketches sample rays and defines all quantities used in the
following derivation of dispersion properties in the focus.

3.1. Angular dispersion

In the focus, the rays of frequency � and �0 enclose the
propagation angle θ being required to calculate angular
dispersion by Equation (2). The propagation angle is deter-
mined from the difference between the angles enclosed by
the OAP’s optical axis and the deflected rays of � and
�0. Since there is angular dispersion already present before
deflection at the mirror, the angle enclosed by the deflected
ray of frequency � and the OAP’s optical axis is ψdefl − θin,
which leads to

θ (�)= ψdefl − θin −ψdefl,0.

The deflection angle of frequency � is given by

ψdefl = 2δ, (19)

where the tangent of δ can be determined from the slope of
the mirror surface at the position of incidence ξ :

δ = arctan
ξ

2f
. (20)

The position of incidence is obtained by computing the
intersection point between the ray and the mirror surface,
that is, by equating(

zray + ξ 2
0

4f

)
tanθin = ξ − (ξ0 − xin) and zOAP = −ξ

2

4f
,

where the z-axis points along the axis of propagation of the
incident central frequency ray but originates at the vertex
of the parabola. The resulting equation for the incidence
position is

0 = tanθin

4f
ξ 2 + ξ − (ξ0 − xin)− tanθin

4f
ξ 2

0

⇐⇒ 0 = a
ξ 2

f 2 +b
ξ

f
+ c,

where

a = tanθin

4
,

b = 1,

c = −ξ0 − xin

f
− tanθin

4
ξ 2

0

f 2 .

This quadratic equation in ξ/f has the solution

ξ = 2f
−1+√

1− tanθinc
tanθin

≈ p+
(

q− p2

4f

)
θin, where p = ξ0 − xin and q = ξ 2

0

4f
, (21)
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with which δ and thus ψdefl can be calculated for any
frequency �, cf. Equations (20) and (19), respectively. We
assume ξ0 to be given from the manufactured deflection
angle and effective focal distance for the central frequency:

ξ0 = feff,0 sinψdefl,0.

With the above solution for the incidence point on the
parabola surface, angular dispersion in the focus can be
calculated:

ADfoc,coupl = d
d�

[
2arctan

(
ξ

2f

)
− θin −ψdefl,0

]
�=�0

= − 1
feff,0

x′
in − θ ′

in. (22)

3.2. Spatial dispersion

Calculating spatial dispersion according to Equation (1)
requires one to determine the spatial offset x0 of frequency
� in the focal plane. According to Figure 3, the spatial offset
x0 can be determined from x̃0:

x0 = x̃0

cosθ
,

which is itself determined by x̃0 = feff sinθin. Thus,

SDfoc,coupl = d
d�

(
feff sinθin

cosθ

)
�=�0

= feff,0θ
′
in. (23)

3.3. Group-delay dispersion

Calculating group-delay dispersion according to Equation
(4) requires one to determine the phase advance of every
frequency from the incidence plane to the focal plane, which
can be calculated from a frequency’s optical path length. The
path of a ray starts where its phase front intersects with the
incidence position of the central frequency ray on the mirror
surface and it ends where its phase front intersects with the
focus (see Figure 3). The path length of a frequency � is
divided into two sections, Lin and Lfoc. The former is the
distance from the starting point until the ray intersects with
the parabola surface, while the latter is the distance from the
parabola surface until the focal plane. The phase advance is

ϕ (�)= �

c
(Lin +Lfoc), (24)

where

Lin (�)= −xin sinθin + ξ 2
0 − ξ 2

4f cosθin
, Lfoc (�)= feff cosθin,

with which

GDDfoc,coupl = d2ϕ

d�2

∣∣∣∣
�=�0

= −�0

c

(
feff,0θ

′
in

2 +2θ ′
inx′

in

)
.

(25)

3.4. Third-order dispersion

For future real and numerical experiments the value of third-
order dispersion in the focus can be of interest. It is evaluated
by applying Equation (5) on the phase advance (Equation
(24)):

TODfoc,coupl = d3ϕ

d�3

∣∣∣∣
�=�0

= 3
θ ′

in
c

(
�0ξ0

θ ′
inx′

in
f

− feff,0θ
′
in −2x′

in

)
.

(26)

4. Showcasing pulse-front tilt and pulse duration scaling

In exemplary long and short focal range setups, pulse-front
tilt and pulse duration during propagation of a focusing pulse
through its focus are presented in the following. As is shown,
pulse-front tilts can become several tens of degrees large in
the close vicinity of a couple of tens of micrometers around
the focus. Pulse-front tilts of this order were observed in
previous numerical experiments[8], but could not be fully
analytically explained.

The laser pulse is focused at an OAP, and for the calcula-
tion we assume that dispersion parameters before reflection
at the OAP, that is, angular dispersion ADin and spatial dis-
persion SDin, are known. From these, the dispersion values in
the focus are deduced by Equations (22), (23) and (25) using
θin = ADin and x′

in = SDin. The in-focus dispersion values
ADfoc,coupl, SDfoc,coupl and GDDfoc,coupl, respectively, are then
plugged into Equations (16) and (18) in order to determine
pulse duration and tilt, respectively, during propagation.

All setups will use a laser pulse with a central wavelength
λ0 = 0.8 µm, duration τFWHM,I = 30 fs and width Din =
πwin = 100 mm (99% power transmission through an aper-
ture of this diameter for Gaussian beams) before focusing.

4.1. Short focal length setup

This setup’s OAP has feff,0/Din = 2.5 (= f /#), focusing the
incident pulse to a width wFWHM,I = 2.35 µm and resulting
in a Rayleigh length zR = 16 µm.

Figure 4 visualizes pulse-front tilt and pulse duration in the
course of propagation through the focus for angular disper-
sion values before focusing ranging from ADin = 5×10−3 to
1 µrad/nm without spatial dispersion before focusing, that is,
SDin = 0. While small values of ADin below 10−2 µrad/nm
result in a maximum pulse-front tilt of −3.6◦ at a Rayleigh
length before the focus, higher values such as 0.25 µrad/nm
result in a large maximum pulse-front tilt of −51◦ at about
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Figure 4. Pulse-front tilt and pulse duration in the course of propagation of a 0.8 µm, τFWHM,I = 30 fs, Din = 100 mm laser pulse through the focus of
the short focal range setup without spatial dispersion before the focusing mirror. The colors of the lines represent angular dispersion values before focusing
ADin = 5 × 10−3,1 × 10−2,2.5 × 10−2,5 × 10−2,0.1,0.25,0.5,1 µrad/nm. Originating from ADin, there is angular dispersion, and hence pulse-front tilt, in
the focus ADfoc = −ADin. Correspondingly, the position of zero pulse-front tilt along the beamline is outside the focus, as shown in the inset. Since absolute
values of pulse-front tilt in the focus | ψtilt | are below 0.05◦ for all values of ADin, this offset is negligible in practice for this particular example.

the same position. Angular dispersion before focusing of
1 µrad/nm results in an even larger maximum pulse-front tilt
of −61◦ at 3.5 Rayleigh lengths before the focus. Generally,
it can be observed that larger values of ADin result in larger
maximum pulse-front tilt farther away from the focus. In
all of these examples, group-delay dispersion in the focus
GDDfoc,coupl due to ADin is negligible, as it is only −0.2 fs2

for the largest ADin. To ease comparison to the numerical
results shown later, the in-focus value GDDfoc is therefore
set to zero in the calculations.

The major source of these large pulse-front tilts is the
appearance of spatial dispersion, that is, the term −�0SD/R
in Equation (18). In this term, SD and R together define
a maximum propagation angle, which at the same time
is the maximum angle enclosed by a phase front and the
laser propagation axis. Just as for −�0θ

′, this angle leads
to a maximum time delay along the transverse direction
and therefore pulse-front tilt. This pulse-front tilt caused
by spatial dispersion varies during propagation due to the
varying radius of curvature R. It reaches its maximum at a
Rayleigh length from the focus, where the respective time
delay is largest due to R being smallest, and it vanishes in the
focus where R is infinite such that there is no time delay.

The third term in Equation (18) constitutes a damping of
the leading second term. For larger angular dispersion before
focusing it provides for the shift of maximum pulse-front tilt
to positions beyond the Rayleigh length, which is the position
where the second term peaks.

In contrast to pulse-front tilt, the increase of pulse duration
is only relevant for the two largest ADin values, with a
maximum of 3.5τ0 in the focus for ADin = 1 µrad/nm.

The source of pulse elongation is again spatial dispersion,
described by Equation (15) alone since GDD is assumed
to vanish in the focus. Spatial dispersion leads to a loss of
overlap between spatial distributions of frequencies, which

thins out the local spectrum. This effect is largest in the focus
where the spatial frequency distributions are smallest, and
thus the local spectrum is smallest and the pulse duration is
longest.

The above setup neglects SDin, that is, spatial dispersion
generated by angular dispersion during propagation from
the laser system’s compressor until the OAP. Assuming
10 m distance from the compressor until the OAP, spatial
dispersion before focusing at the OAP due to propagation
with angular dispersion is SDin = −ADin · 10 m =
−0.05,−0.1,−0.25,−0.5,−1,−2.5,−5,−10 µm/nm. This
spatial dispersion before focusing will not influence spatial
dispersion in the focus, according to Equation (23), but
it will increase angular dispersion, and therefore pulse-
front tilt, in the focus. Pulse-front tilts in the focus are
ψtilt = 0.01◦,0.02◦,0.04◦,0.09◦,0.18◦,0.45◦,0.90◦,1.79◦,
respectively. Since these are still small, the overall picture
of the scaling remains equal compared to the setup with
SDin = 0. In particular, maximum values of pulse-front tilt
and duration do not change.

4.2. Long focal range setup

This setup’s OAP has feff,0/Din = 250, focusing the incident
pulse to a width wFWHM,I = 19 µm and resulting in a
Rayleigh length zR = 1.0 mm.

Figure 5 visualizes pulse-front tilt and pulse duration in
the course of propagation through the focus for the same
range of angular dispersion values before focusing as for
the short focal range setup and without spatial dispersion
before focusing. Due to equal laser parameters, the scaling
is qualitatively equal to the short focal range setup. Only
the maximum value of pulse-front tilt is reduced, since the
radius of the pulse-front curvature scales quadratically in
the focal distance while spatial dispersion scales linearly for
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Figure 5. Pulse-front tilt and pulse duration in the course of propagation through the focus of the long focal range setup without spatial dispersion before
focusing. Parameters are equal to the short focal range setup (see Figure 4).

equal laser parameters before focusing. In total, this results
in less time delay between frequencies along the transverse
direction, reducing pulse-front tilt.

Pulse duration in focus remains equal between long and
short focal range setups, as the ratio of spatial dispersion
and width in focus, which determines pulse elongation, is
independent of focal length.

The considerations for group-delay dispersion in the focus
and spatial dispersion before focusing outlined for the short
focal range setup can be identically applied to this long focal
range setup.

5. Comparing analytical results with numerical
simulations

The obtained pulse-front tilt and pulse duration of the
short focal range setup are cross-checked by numerically
Fourier transforming the propagated pulse in Fourier space
(Equation (6)) for the setup with ADin = 1 µrad/nm
and measuring pulse-front tilt and pulse duration from
the obtained time–space domain spatio-temporal intensity
envelope on a grid. This intensity envelope is obtained from
the complex field distribution by taking the absolute square.
Taking from this 2D intensity distribution two 1D intensity
distributions at constant transverse positions xcenter and xout

allows for measuring pulse-front tilt. We chose xcenter = 0
and xout = w0. By determining the respective times tcenter and
tout at which the intensity reaches its maximum along these
two 1D intensity distributions, the pulse-front tilt angle can
be approximated by

tanψtilt,num = c(tcenter − tout)

xcenter − xout
. (27)

Pulse duration is measured by the least square fit of
a Gaussian curve I0 exp

[−(t − tcenter)
2/
(
2σ 2
)]

to the 1D
intensity distribution at xcenter, where I0 equals the maximum

of the intensity distribution. The fit determines σI,t, which is
related to the pulse duration of the field by T = 2σI,t.

Figure 6 visualizes intensity envelope distributions at dif-
ferent distances z from the focus together with measured and
predicted contours for the pulse front as well as measured
values of pulse-front tilt and duration. Agreement between
measured and predicted values can be observed, from which
we conclude successful verification of the analytic formulas
derived in this work.

The remaining differences between measured and pre-
dicted values originate from finite sampling of the intensity
distribution along the t-axis. The arrival time of the intensity
maximum at some x can only be determined with an uncer-
tainty about the size of the time sampling step, which results
in an uncertainty on the pulse-front tilt angle. It is of the
order of one degree or less in our setup.

Note, since the pulse’s width in the focus is significantly
smaller than its length, the visible envelope ellipse is not
aligned with the drawn contour of the pulse front. However,
for each x the highest intensity is indeed on this contour,
which just defines this contour as the pulse front. Further
note that the difference in the analytically calculated absolute
value of the pulse-front tilt angle between z = −zR and z = zR

originates from the fact that the position where the pulse-
front tilt vanishes is slightly behind the focus at z> 0.

6. Conclusions

We presented analytical expressions allowing one to evaluate
the electric field, width, duration and tilt of dispersive, tightly
focused, short pulse, Gaussian lasers in the vicinity and far
from their focus in the time–space domain, which was not
possible before. With the help of these expressions we were
able to link the appearance of large pulse-front tilts of several
tens of degrees, observed within a few Rayleigh lengths
distance from the focus of a laser pulse featuring only weak
angular dispersion, to the accompanying spatial dispersion.
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Figure 6. Distribution of the time–space domain intensity envelope along the transverse direction x and time t at different distances z from the focus.
Pulse parameters are equal to Figure 4 with ADin = 1 µrad/nm. All distributions are normalized to the respective expected maximum value in the focus
E(x = 0,z = 0,t = 0)2, cf. Equation (6). Colored lines mark pulse-front contours as expected from analytic and numeric determination of the pulse-front
tilt angle, Equations (18) and (27), respectively. In addition, the duration of the field envelope is provided, which is obtained from the least square fit of a
Gaussian curve to the 1D intensity distribution along x = 0.

Numerical evaluation of the tilt and duration of Gaussian
pulses propagated in simulations verified the predictions
provided by the analytic expressions, which proves their
applicability.

The possibility of generating large pulse-front tilts in the
vicinity of the laser’s focus with moderate to low pulse
elongation is thereby interesting on its own, as generating
and utilizing pulses with large pulse-front tilts becomes
simpler in ‘out-of-focus’ interaction geometries without the
cost of large pulse elongation usually connected to large
pulse-front tilt.

Moreover, the presented analytic expressions of the dis-
persion variation during propagation or of the full electric
field can be of general use, for example, to simply estimate

pulse properties at any position along the beamline of a given
laser system, or to study the interaction of these pulses with
other fields or matter in complex geometries and with correct
phase contributions analytically or in simulations.

Appendix A. Derivation of formulas

A.1. Definition of a Gaussian pulse’s electric field in the
frequency–space domain at the input plane

Most generally in this scalar theory, the pulse’s electric field
in spectral domain is written as

Ê
(−→r ,�)= ÊA

(−→r ,�)e−iϕ(−→r ,�),
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where Ê is the spectral amplitude, ϕ is the spectral phase of
the pulse, � = 2πν is the angular frequency and −→r is the
position considered.

The pulse’s frequency dependent spectral phase

ϕ = �

c
−→e � ·−→r

resembles a plane wave’s phase where −→e � is the propagation
direction of frequency �. The pulse’s central frequency
�0 propagates along z. Assuming a pulse with angular
dispersion AD, every other frequency’s propagation direc-
tion encloses an angle θ (�) with the central frequency’s
propagation direction, allowing one to write

ϕ (�)= �

c
[−xsinθ (�)+ zcosθ (�)] .

Expanding this about �≈�0:

ϕ (�)≈ ϕ (�0)+ dϕ
d�

∣∣∣∣
�=�0

(�−�0)+ 1
2

d2ϕ

d�2

∣∣∣∣
�=�0

× (�−�0)
2 + 1

6
d3ϕ

d�3

∣∣∣∣
�=�0

(�−�0)
3 +. . .

requires evaluation of the following derivatives:

dϕ
d�

= 1
c
(−xsinθ + zcosθ)+ �

c
(−xcosθ − zsinθ)θ ′,

(28)

d2ϕ

d�2 = 1
c
(−xcosθ − zsinθ)θ ′ + 1

c
(−xcosθ − zsinθ)θ ′

+ �

c
(xsinθ − zcosθ)θ ′2 + �

c
(−xcosθ − zsinθ)θ ′′,

(29)

= 2
c
(−xcosθ − zsinθ)θ ′ + �

c
(xsinθ − zcosθ)θ ′2

+ �

c
(−xcosθ − zsinθ)θ ′′, (30)

= 1
c
(−xcosθ − zsinθ)

(
2θ ′ +�θ ′′)

+ �

c
(xsinθ − zcosθ)θ ′2, (31)

d3ϕ

d�3 = 1
c
(xsinθ − zcosθ)

(
2θ ′2 +�θ ′θ ′′)

+ 1
c
(−xcosθ − zsinθ)

(
2θ ′′ + θ ′′ +�θ ′′′)

+ 1
c
(xsinθ − zcosθ)θ ′2 + �

c
(xcosθ + zsinθ)θ ′3

+ �

c
(xsinθ − zcosθ)2θ ′θ ′′, (32)

= 1
c
(xsinθ − zcosθ)

(
2θ ′2 +�θ ′θ ′′ + θ ′2 +2�θ ′θ ′′)

+ 1
c
(−xcosθ − zsinθ)

(
3θ ′′ +�θ ′′′)

+ �

c
(xcosθ + zsinθ)θ ′3, (33)

= 1
c
(xsinθ − zcosθ)

(
3θ ′2 +3�θ ′θ ′′)

+ 1
c
(−xcosθ − zsinθ)

(
3θ ′′ +�θ ′′′ −�θ ′3) (34)

at �=�0.

ϕ (�0)= z
c
�0, (35)

dϕ
d�

∣∣∣∣
�=�0

= z
c

− x
c
�0θ

′, (36)

d2ϕ

d�2

∣∣∣∣
�=�0

= −x
c

(
2θ ′ +�0θ

′′)− z
c
�0θ

′2, (37)

d3ϕ

d�3

∣∣∣∣
�=�0

= − z
c

(
3θ ′2 +3�0θ

′θ ′′
)

− x
c

(
3θ ′′ +�0θ

′′′ −�0θ
′3
)
, (38)

where θ ′ = dθ
d�

∣∣
�=�0

now. In essence,

ϕ (�)≈ z
c
�0 +

( z
c

− x
c
�0θ

′
)
(�−�0)

− 1
2

[ z
c
�0θ

′2 + x
c

(
2θ ′ +�0θ

′′)](�−�0)
2 (39)

− 1
6

[ z
c

(
3θ ′2 +3�0θ

′θ ′′
)

+ x
c

(
3θ ′′ +�0θ

′′′ −�0θ
′3
)]

× (�−�0)
3 +. . . . (40)

The spectral amplitude ÊA = ε� (�)εx(x) of the pulse
incorporates its Gaussian spectrum

ε� (�)= e− τ2
0
4 (�−�0)

2
,

where τ0 = τFWHM,I/
√

2ln2 represents the Fourier limited
duration, and its Gaussian transverse envelope

εx(x)= e
− [x−x0(�)]2

w2
0 ,

where x0 and w0 represent a frequency’s spatial distribution
center position and width, respectively.

In the input plane at z = 0, the pulse’s electric field is
assumed to be

Ê (x,z = 0,�)

= ε�(�)exp

{
− [x− x0(�)]2

w2
0

}

× exp
{

i
w0
c

[
�0θ

′ (�−�0) + 1
2

(
2θ ′ +�0θ

′′)(�−�0)
2

+ 1
6

(
3θ ′′ +�0θ

′′′ −�0θ
′3)(�−�0)

3
]

x
w0

}
, (41)
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= ε�(�)exp

[
− x0(�)

2

w2
0

]
exp

(
− x2

w2
0

)

× exp
{

2x0 (�)

w0

x
w0

+ i
w0
c

[
�0θ

′ (�−�0) + 1
2

(
2θ ′ +�0θ

′′)(�−�0)
2

+ 1
6

(
3θ ′′ +�0θ

′′′ −�0θ
′3)(�−�0)

3
]

x
w0

}
. (42)

Using x′ = x/w0,

Ê
(
x = w0x′,z = 0,�

)
= ε�(�)exp

[
− x0(�)

2

w2
0

]
exp
(
−x′2)

× exp
{

2x0 (�)

w0
x′ + i

w0
c

[
�0θ

′ (�−�0) + 1
2

(
2θ ′ +�0θ

′′)(�−�0)
2

+ 1
6

(
3θ ′′ +�0θ

′′′ −�0θ
′3)(�−�0)

3
]

x′
}
, (43)

= ε� (�)e
−α1 e−x′2

e(α2+iα3)x′
, (44)

where

α1 = x0(�)
2

w2
0
, (45)

α2 = 2x0 (�)

w0
= 2

√
α1, (46)

α3 = w0

c

[
�0θ

′ (�−�0)+ 1
2

(
2θ ′ +�0θ

′′)(�−�0)
2

+1
6

(
3θ ′′ +�0θ

′′′ −�0θ
′3
)
(�−�0)

3
]

. (47)

A.2. Calculation of the propagated pulse’s electric field in
the frequency–space domain

Propagation of the pulse with the Rayleigh–Sommerfeld
diffraction integral yields the field at a distance z from the
focus:

Ê(x,z,�)=
√
�

2πc
e−i

(
�
c z− π

4

)
√

z

∞∫
−∞̂

E (ξ,z = 0,�)e−i �2cz (x−ξ)2 dξ,

(48)(
ξ ′ = ξ

w0
⇒ dξ = w0dξ ′ ⇒

)
=
√

1
π

√
�

�0

√
�0w2

0

2cz
e−i

(
�
c z− π

4

)

×
∞∫

−∞
Ê
(
w0ξ

′,z = 0,�
)

e−i �
�0

�0w2
0

2cz

(
x

w0
−ξ ′)2

dξ ′, (49)

(
zR = �0w2

0

2c
⇒
)

=
√

1
π

√
�

�0

√
zR

z
e−i

(
�
c z− π

4

)

×
∞∫

−∞
Ê
(
w0ξ

′,z = 0,�
)

e
−i �

�0
zR
z

(
x2

w2
0

− 2x
w0
ξ ′+ξ ′2

)
dξ ′, (50)

=
√

1
π

√
�

�0

zR

z
e−i

(
�
c z− π

4

)
e
−i �

�0
zR
z

x2

w2
0

×
∞∫

−∞
Ê
(
w0ξ

′,z = 0,�
)

e−i �
�0

zR
z

(
ξ ′2− 2x

w0
ξ ′)

dξ ′, (51)

=
√

1
π

√
α4e−i

(
�
c z− π

4

)
e
−iα4

x2

w2
0

×
∞∫

−∞
Ê
(
w0ξ

′,z = 0,�
)

e−i
(
α4ξ

′2−α5ξ
′)

dξ ′, (52)

where

α4 = �

�0

zR

z
, (53)

α5 = �

�0

zR

z
2x
w0

= α4
2x
w0

. (54)

Insert the input field from above:

Ê (x,z,�)=
√

1
π

√
α4e−i

(
�
c z− π

4

)
e
−iα4

x2

w2
0 ε� (�)e−α1

×
∞∫

−∞
e−ξ ′2

e(α2+iα3)ξ
′
e−i

(
α4ξ

′2−α5ξ
′)

dξ ′, (55)

=
√

1
π

√
α4e−i

(
�
c z− π

4

)
e
−iα4

x2

w2
0 ε� (�)e−α1

×
∞∫

−∞
e−(1+iα4)ξ

′2
e[α2+i(α3+α5)]ξ ′

dξ ′, (56)

(
α6 = α3 +α5 = α3 +α4

2x
w0

⇒
)

=
√
�

�0

√
1
π

√
zR

z
e−i

(
�
c z− π

4

)

× e
−i �

�0
zR
z

x2

w2
0 ε� (�)e−α1

∞∫
−∞

e−(1+iα4)ξ
′2

e(α2+iα6)ξ
′
dξ ′.

(57)

Compute the integral

=
√

1
π

√
α4e−i

(
�
c z− π

4

)
e
−iα4

x2

w2
0 ε� (�)e−α1

√
π

e− i
4
(α2+iα6)

2

−i+α4√
1+ iα4

,

cancel
√
π , rewrite the last denominator and move

exp(iπ/4) into it:

= √
α4e−i�c ze

−iα4
x2

w2
0 ε� (�)e

−α1 e
− i

4
(α2+iα6)

2

−i+α4
[
e−iπ/2 (1+ iα4)

]−1/2
,

(58)

= √
α4e−i�c ze

−iα4
x2

w2
0 ε� (�)e

−α1 e
− i

4
(α2+iα6)

2

−i+α4
(
−i− i2α4

)−1/2
,

(59)

= √
α4e−i�c ze

−iα4
x2

w2
0 ε� (�)e

−α1 e
− i

4
(α2+iα6)

2

−i+α4 (α4 − i)−1/2, (60)
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= √
α4e−i�c ze

−iα4
x2

w2
0 ε� (�)e−α1 e− i

4
(α2+iα6)

2

−i+α4

×
(√

α2
4 +1e−iarctan 1

α4

)−1/2

. (61)

Cancel in amplitude:

= α
1/2
4 e−i�c ze

−iα4
x2

w2
0 ε� (�)e−α1 e− i

4
(α2+iα6)

2

−i+α4

(
α2

4 +1
)−1/4

ei 1
2 arctan 1

α4 ,

(62)

= ε� (�)

(
1+ 1

α2
4

)−1/4

e−i�c ze−α1 e− i
4
(α2+iα6)

2

−i+α4 e
−iα4

x2

w2
0 ei 1

2 arctan 1
α4 .

(63)

Insert relations for α2, α6 and α5:

= ε� (�)

(
1+ 1

α2
4

)−1/4

e−i �c ze−α1 e− i
4

[
2√
α1+i

(
α3+α4

2x
w0

)]2
α4−i e

−iα4
x2

w2
0 ei 1

2 arctan 1
α4 .

(64)

Now uncrustify the middle exponential in order to retrieve
a nice-to-read and interpretable form of the field:

e−α1 e− i
4

[
2√
α1+i

(
α3+α4

2x
w0

)]2
α4−i e

−iα4
x2

w2
0 , (65)

= e−α1 e− i
4

[
2√
α1+i2α4

(
α3
2α4

+ x
w0

)]2

α4−i e
−iα4

x2

w2
0 , (66)

= e−α1 e− i
4

{
2√
α1+i2α4

[(
α3

2α4
+ x

w0
−√

α1

)
+√

α1

]}2

α4−i e
−iα4

x2

w2
0 , (67)

= e−α1 e− i
4

[
2√
α1+i2α4

√
α1+i2α4

(
α3
2α4

+ x
w0

−√
α1

)]2

α4−i e
−iα4

x2

w2
0 , (68)

= e−α1 e− i
4

[
2√
α1(1+iα4)+i2α4

(
α3
2α4

+ x
w0

−√
α1

)]2

α4−i e
−iα4

x2

w2
0 , (69)

= exp(−α1)exp
{
− i

4
{[4 α1(1+ iα4)

2 −8
√
α1 (α4 − i)α4

×
(
α3

2α4
+ x

w0
−√

α1

)
−4α2

4

(
α3
2α4

+ x
w0

−√
α1

)2
]
(α4 − i)−1

}}

× exp

(
−iα4

x2

w2
0

)
, (70)

= exp(−α1)exp
{
− i

4
{[−4 α1(α4 −1)2 −8

√
α1 (α4 − i)α4

×
(
α3

2α4
+ x

w0
−√

α1

)
−4α2

4

(
α3
2α4

+ x
w0

−√
α1

)2
]
(α4 − i)−1

}}

× exp

(
−iα4

x2

w2
0

)
, (71)

= e−α1 eiα1(α4−i)e
i2

√
α1α4

(
α3
2α4

+ x
w0

−√
α1

)

× e
iα2

4

(
α3
2α4

+ x
w0

−√
α1

)2

α4−i e
−iα4

x2

w2
0 , (72)

= eiα1α4 e
i2

√
α1α4

(
α3
2α4

+ x
w0

−√
α1

)
e

iα2
4

(
α3
2α4

+ x
w0

−√
α1

)2

α4−i e
−iα4

x2

w2
0 ,

(73)

= e−iα1α4 e
i2

√
α1α4

(
α3
2α4

+ x
w0

)
e

iα2
4

(
α3
2α4

+ x
w0

−√
α1

)2

α4−i e
−iα4

x2

w2
0 , (74)

= e−iα1α4 e
i2

√
α1α4

(
α3
2α4

+ x
w0

)
e

iα2
4

(
α3
2α4

+ x
w0

−√
α1

)2

α4−i

× e
−iα4

[(
α3
2α4

+ x
w0

−√
α1

)
−
(
α3
2α4

−√
α1

)]2
, (75)

= exp(−iα1α4)exp
[

i2
√
α1α4

(
α3

2α4
+ x

w0

)]
× exp

{
iα2

4

[(
α3
2α4

+ x
w0

−√
α1

)2
(α4 − i)−1

]}

× exp

{
−iα4

[(
α3

2α4
+ x

w0
−√

α1

)2
−2
(
α3

2α4
+ x

w0
−√

α1

)

×
(
α3
2α4

−√
α1

)
+
(
α3

2α4
−√

α1

)2
]}
, (76)

= e−iα1α4 ei2
√
α1α4

(
α3
2α4

+ x
w0

)
eiα2

4

(
α3
2α4

+ x
w0

−√
α1

)2

α4−i

× e−iα4

(
α3
2α4

+ x
w0

−√
α1

)2

× e
−iα4

[(
−2 α3

2α4
−2 x

w0
+2

√
α1

)(
α3
2α4

−√
α1

)
+
(
α3
2α4

−√
α1

)2
]
,

(77)

= e−iα1α4 ei2
√
α1α4

(
α3
2α4

+ x
w0

)
eiα2

4

(
α3
2α4

+ x
w0

−√
α1

)2

α4−i

× e−iα4

(
α3
2α4

+ x
w0

−√
α1

)2

× e−iα4

(
−2 α3

2α4
−2 x

w0
+2

√
α1+ α3

2α4
−√

α1

)(
α3
2α4

−√
α1

)
, (78)

= e−iα1α4 ei2
√
α1α4

(
α3
2α4

+ x
w0

)
eiα2

4

(
α3
2α4

+ x
w0

−√
α1

)2

α4−i

× e−iα4

(
α3
2α4

+ x
w0

−√
α1

)2

× e−iα4

[
−2 x

w0
−
(
α3
2α4

−√
α1

)](
α3
2α4

−√
α1

)
, (79)

= e−iα1α4 ei2
√
α1α4

(
α3
2α4

+ x
w0

)
eiα2

4

(
α3
2α4

+ x
w0

−√
α1

)2

α4−i

× e−iα4

(
α3
2α4

+ x
w0

−√
α1

)2

× e
−iα4

[
−2 x

w0
α3
2α4

+2 x
w0

√
α1−

(
α2

3
4α2

4
−2 α3

2α4
√
α1+α1

)]
, (80)

= e−iα1α4 ei2
√
α1α4

(
α3
2α4

+ x
w0

)
eiα2

4

(
α3
2α4

+ x
w0

−√
α1

)2

α4−i

× e−iα4

(
α3
2α4

+ x
w0

−√
α1

)2

× e
−iα4

(
−2 x

w0
α3
2α4

+2 x
w0

√
α1− α2

3
4α2

4
+2 α3

2α4
√
α1−α1

)
, (81)

= e−iα1α4 ei2
√
α1α4

(
α3
2α4

+ x
w0

)
eiα2

4

(
α3
2α4

+ x
w0

−√
α1

)2

α4−i

× e−iα4

(
α3
2α4

+ x
w0

−√
α1

)2
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× e
−iα4

(
−2 x

w0
α3
2α4

+2 x
w0

√
α1− α2

3
4α2

4
+2 α3

2α4
√
α1−α1

)
, (82)

= e−iα1α4 ei2
√
α1α4

(
α3
2α4

+ x
w0

)
eiα2

4

(
α3

2α4
+ x

w0
−√

α1

)2

α4−i

× e−iα4

(
α3
2α4

+ x
w0

−√
α1

)2

× ei x
w0
α3 e−i2

√
α1α4

(
α3
2α4

+ x
w0

)
ei

α2
3

4α4 eiα4α1, (83)

= eiα2
4

(
α3

2α4
+ x

w0
−√

α1

)2

α4−i e−iα4

(
α3
2α4

+ x
w0

−√
α1

)2

ei x
w0
α3 ei

α2
3

4α4 ,

(84)

= e

(
α3
2α4

+ x
w0

−√
α1

)2
(

iα2
4

α4−i −iα4

)
ei x

w0
α3 ei

α2
3

4α4 , (85)

= e

(
α3
2α4

+ x
w0

−√
α1

)2
[

iα2
4−iα4(α4−i)

α4−i

]
ei x

w0
α3 ei

α2
3

4α4 , (86)

= e

(
α3
2α4

+ x
w0

−√
α1

)2
(

iα2
4−iα2

4−α4
α4−i

)
ei x

w0
α3 ei

α2
3

4α4 , (87)

= e

(
α3
2α4

+ x
w0

−√
α1

)2
[
− α4(α4+i)
(α4−i)(α4+i)

]
ei x

w0
α3 ei

α2
3

4α4 , (88)

= e
−
(
α3
2α4

+ x
w0

−√
α1

)2 α2
4+iα4
α2

4+1 ei x
w0
α3 ei

α2
3

4α4 , (89)

= e
−
(
α3
2α4

+ x
w0

−√
α1

)2
(

α2
4

α2
4+1

+i α4
α2

4+1

)
ei x

w0
α3 ei

α2
3

4α4 , (90)

= e
−
(
α3
2α4

+ x
w0

−√
α1

)2
(

1
1+1/α2

4
+i α4

α2
4+1

)
ei x

w0
α3 ei

α2
3

4α4 . (91)

In conclusion, the propagating field in Fourier space can
be written as

Ê (x,z,�)

= ε� (�)

(
1+ 1

α2
4

)−1/4

e
−
[
α3
2α4

+ x
w0

− x0(�)
w0

]2( 1
1+1/α2

4
+i α4

1+α2
4

)

× e−i�c zeiα3
x

w0 ei
α2

3
4α4 ei 1

2 arctan 1
α4 , (92)

= ε� (�)

(
1+ 1

α2
4

)−1/4

× e
−
{

x−
[
x0(�)− c

�0w0
α3z
]}2
[

1
w2

0

(
1+1/α2

4

)+i �

2cz
(

1+α2
4

) ]

× e−i�c zeiα3
x

w0 ei
α2

3
4α4 ei 1

2 arctan 1
α4 , (93)

where the second form allows one to identify

w(z)= w0

√
1+ z2

z2
R
, (94)

R(z)= z
(

1+ z2
R

z2

)
, (95)

and repeat here for completeness:

α3 = w0

c

[
�0θ

′ (�−�0)+ 1
2

(
2θ ′ +�0θ

′′)(�−�0)
2

+1
6

(
3θ ′′ +�0θ

′′′ −�0θ
′3
)
(�−�0)

3
]
, (96)

α4 = �

�0

zR

z
=�

w2
0

2cz
≈ zR

z
. (97)

A.3. Transformation of the propagated pulse’s electric field
to the time–space domain

The field in the time–space domain is obtained by Fourier
transforming the frequency domain field:

E (x,z,t)= 1
2π

∫
Ê (x,z,�)ei�td�, (98)

(
�′ = (�−�0)τ0 ⇒)= 1

2π
ei�0t

τ0

∫
Ê
(

x,z,
1
τ0
�′ +�0

)
ei�′ t

τ0 d�′.

(99)

In order to perform the Fourier transform, the exponents
of the frequency domain field are rewritten in powers of�−
�0. In the following, we will keep only terms of the order of
(�−�0)

3 or lower.

Ê (x,z,�)= exp

[
− τ

2
0
4

(
�−�0

)2](1+ z2

z2
R

)−1/4

× exp

{
−
{

x− dx0
d�

(
�−�0

)− 1
2

d2x0
d�2

(
�−�0

)2 − 1
6

d3x0
d�3

(
�−�0

)3
+
[
�0θ

′ (�−�0
)+ 1

2

(
2θ ′ +�0θ

′′)(�−�0
)2

+ 1
6

(
3θ ′′ +�0θ

′′′ −�0θ
′3)(�−�0

)3] z
�0

}2( 1
w2 + i

�−�0
2cR

+ i
�0
2cR

)}

× exp
(

−i
�−�0

c
z
)

exp
(

−i
�0
c

z
)

exp
{
i
[
�0θ

′ (�−�0
)

+ 1
2

(
2θ ′ +�0θ

′′)(�−�0
)2 + 1

6

(
3θ ′′ +�0θ

′′′ −�0θ
′3)(�−�0

)3] x
c

}
× exp

{
i
[
�0θ

′ (�−�0
)+ 1

2

(
2θ ′ +�0θ

′′)(�−�0
)2

+ 1
6

(
3θ ′′ +�0θ

′′′ −�0θ
′3)(�−�0

)3]2 z
2�0c

}

× exp
(

i
1
2

arctan
z

zR

)
, (100)

=
(

1+ z2

z2
R

)−1/4

exp
(

−i
�0
c

z
)

exp
(

i
1
2

arctan
z

zR

)

× exp

[
− τ

2
0
4

(
�−�0

)2]exp
[
−i

z
c

(
�−�0

)]
× exp

{
−
[

x
w

+ 1
w

(
�0θ

′ z
�0

− dx0
d�

)(
�−�0

)
+ 1

2w

(
2θ ′ z

�0
+�0θ

′′ z
�0

− d2x0
d�2

)(
�−�0

)2
+ z

6w�0

(
3θ ′′ +�0θ

′′′ −�0θ
′3 − d3x0

d�3

)(
�−�0

)3]2
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×
[

1+ i
w2

2cR

(
�−�0

)+ i�0
w2

2cR

]}

× exp
{

i
[
�0θ

′ (�−�0
)+ 1

2

(
2θ ′ +�0θ

′′)(�−�0
)2

+ 1
6

(
3θ ′′ +�0θ

′′′ −�0θ
′3)(�−�0

)3] x
c

}
× exp

{
i
[
�0θ

′ (�−�0
)+ 1

2

(
2θ ′ +�0θ

′′)(�−�0
)2

+ 1
6

(
3θ ′′ +�0θ

′′′ −�0θ
′3)(�−�0

)3]2 z
2�0c

}
, (101)

≈
(

1+ z2

z2
R

)−1/4

exp
(

−i
�0
c

z
)

exp
(

i
1
2

arctan
z

zR

)

× exp

[
− τ

2
0
4

(
�−�0

)2]exp
[
−i
( z

c
−�0θ

′ x
c

)(
�−�0

)]
× exp

{
−
[

x
w

+ 1
w

(
�0θ

′ z
�0

− dx0
d�

)(
�−�0

)
+ 1

2w

(
2θ ′ z

�0
+�0θ

′′ z
�0

− d2x0
d�2

)(
�−�0

)2
+ z

6w�0

(
3θ ′′ +�0θ

′′′ −�0θ
′3 − d3x0

d�3

)(
�−�0

)3]2

×
[

1+ i
w2

2cR

(
�−�0

)+ i�0
w2

2cR

]}

× exp
[

i
1
2

(
2θ ′ +�0θ

′′) x
c

(
�−�0

)2]
× exp

[
i
1
6

(
3θ ′′ +�0θ

′′′ −�0θ
′3) x

c

(
�−�0

)3]
× exp

{{
i
[
�0θ

′ (�−�0
)]2 +�0θ

′ (2θ ′ +�0θ
′′)(�−�0

)3} z
2�0c

}
, (102)

=
(

1+ z2

z2
R

)−1/4

exp
(

−i
�0
c

z
)

exp
(

i
1
2

arctan
z

zR

)

× exp

[
− τ

2
0
4

(
�−�0

)2]exp
[
−i
( z

c
−�0θ

′ x
c

)(
�−�0

)]
× exp

{
−
[

x
w

+ 1
w

(
�0θ

′ z
�0

− dx0
d�

)(
�−�0

)
+ 1

2w

(
2θ ′ z

�0
+�0θ

′′ z
�0

− d2x0
d�2

)(
�−�0

)2
+ z

6w�0

(
3θ ′′ +�0θ

′′′ −�0θ
′3 − d3x0

d�3

)(
�−�0

)3]2

×
[

1+ i
w2

2cR

(
�−�0

)+ i�0
w2

2cR

]}

× exp
{

i
1
2c

[
�0θ

′2z+ (2θ ′ +�0θ
′′)x](�−�0

)2}
× exp

{
i

1
2c

[
θ ′ (2θ ′ +�0θ

′′)z+ 1
3

(
3θ ′′ +�0θ

′′′ −�0θ
′3)x

](
�−�0

)3}
,

(103)

=
(

1+ z2

z2
R

)−1/4

exp
(

−i
�0
c

z
)

exp
(

i
1
2

arctan
z

zR

)
× exp

[
−β1

(
�−�0

)2]exp
[−iβ2

(
�−�0

)]
× exp

{
−
[
x/w+β3

(
�−�0

)+β4
(
�−�0

)2 + δ1
(
�−�0

)3] 2

×[1+ iβ5
(
�−�0

)+ i�0β5
]}

exp
[
iβ6
(
�−�0

)2]exp
[
iδ2
(
�−�0

)3]
, (104)

where

β1 = τ 2
0

4
, (105)

β2 = z
c

−�0θ
′ x
c
, (106)

β3 = 1
w

(
�0θ

′ z
�0

− dx0

d�

)
, (107)

β4 = 1
2w

(
2θ ′ z
�0

+�0θ
′′ z
�0

− d2x0

d�2

)
, (108)

β5 = w2

2cR
, (109)

β6 = 1
2c

[
�0θ

′2z+ (2θ ′ +�0θ
′′)x], (110)

δ1 = z
6w�0

(
3θ ′′ +�0θ

′′′ −�0θ
′3 − d3x0

d�3

)
, (111)

δ2 = 1
2c

[
θ ′ (2θ ′ +�0θ

′′)z+ 1
3

(
3θ ′′ +�0θ

′′′ −�0θ
′3
)

x
]

.

(112)

If only first-order dispersions are present, then

β1 = τ 2
0

4
, (113)

β2 = z
c

−�0θ
′ x
c
, (114)

β3 = 1
w

(
θ ′z− dx0

d�

)
, (115)

β4 = θ ′z
w�0

, (116)

β5 = w2

2cR
, (117)

β6 = 1
2c

(
�0θ

′2z+2θ ′x
)
, (118)

δ1 = − z
6w
θ ′3, (119)

δ2 = 1
2c

(
2θ ′2z− 1

3
�0θ

′3x
)

. (120)

Proceeding with writing in powers:

Ê (x,z,�)≈
(

1+ z2

z2
R

)−1/4

exp
(

−i
�0
c

z
)

exp
(

i
1
2

arctan
z

zR

)
× exp

[
−β1 (�−�0)

2
]

exp
[−iβ2 (�−�0)

]
× exp

{
−
[

x2

w2 +2
x
w
β3 (�−�0)+2

x
w
β4 (�−�0)

2 +β2
3 (�−�0)

2

+
(

2
x
w
δ1 +2β3β4

)
(�−�0)

3
][

1+ iβ5 (�−�0)+ i�0β5
]}

× exp
[
iβ6 (�−�0)

2
]

exp
[
iδ2 (�−�0)

3
]
, (121)

=
(

1+ z2

z2
R

)−1/4

e− x2

w2 e−i�0
x2

2cR e−i�0
c zei 1

2 arctan z
zR

× e−2 x
w β3(�−�0)e

−i
(
β2+ x2

w2 β5+2�0
x
w β3β5

)
(�−�0)

× e−
(
β1+2 x

w β4+β2
3

)
(�−�0)

2
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× e−i
(

2 x
w β3β5+2�0

x
w β4β5+�0β

2
3β5−β6

)
(�−�0)

2

× e−2( x
w δ1+β3β4)(�−�0)

3

× e−i
(

2 x
w β4β5+β2

3β5+2�0
x
w β5δ1+2�0β3β4β5−δ2

)
(�−�0)

3
.

(122)

The terms of order (�−�0)
3 are kept in the above

expression, in order to read off the change of third-order
dispersion with propagation.

The following neglects these terms of order (�−�0)
3, as

they cannot be analytically Fourier transformed. Of course,
for a specific set of laser pulse parameters it must be
verified that these terms are indeed negligible and do not
significantly contribute to the laser pulse’s amplitude and
phase in the frequency–space domain. Limiting expressions
for estimating the validity of the approximation can be
obtained by assuming that only frequencies � = �0 ± 4

τ0
contribute to the spectral amplitude. The contribution of
frequencies outside this bandwidth is close to zero due to
the Gaussian spectrum ε�

(
|�−�0| ≤ 4

τ0

)
≤ e−4. Replacing

(�−�0)
3 → 64

τ3
0

in Equation (122) yields a limiting expres-

sion 128
[
(x/w)δ1 +β3β4

]
/τ 3

0 � 1 for the real part of the
spectral amplitude and 11TOD(z)/τ 3

0 � 1 for the spectral
phase after identifying the term in parentheses as 1

6 TOD(z).
The field to be integrated is

Ê
(

x,z,
1
τ0
�′ +�0

)
ei�′ t

τ0

=
(

1+ z2

z2
R

)−1/4

e− x2

w2 e−i�0
x2

2cR e−i�0
c zei 1

2 arctan z
zR

× e−2 x
w
β3
τ0
�′

e
i
(

t−β2− x2

w2 β5−2�0
x
w β3β5

)
1
τ0
�′

× e
−
(

1+2 x
w
β4
β1

+ β2
3
β1

)
β1
τ2
0
�′2

× e
−i
(

2 x
w β3β5+2�0

x
w β4β5+�0β

2
3β5−β6

)
1
τ2
0
�′2
, (123)

=
(

1+ z2

z2
R

)−1/4

e− x2

w2 e−i�0
x2

2cR e−i�0
c zei 1

2 arctan z
zR

× e
−
[(

1+2 x
w
β4
β1

+ β2
3
β1

)
1
4 +i
(
2 x

w β3β5+2�0
x
w β4β5+�0β

2
3β5−β6

)
1
τ2
0

]
�′2

× e

[
−2 x

w
β3
τ0

+i
(

t−β2− x2

w2 β5−2�0
x
w β3β5

)
1
τ0

]
�′
, (124)

=
(

1+ z2

z2
R

)−1/4

e− x2

w2 e−i�0
x2

2cR e−i�0
c zei 1

2 arctan z
zR

× e− 1
4 (γ1+iγ2)�

′2
e(γ3+iγ4)�

′
, (125)

where

γ1 = 1+2
x
w
β4

β1
+ β2

3

β1
= 1+8

x
w
β4

τ 2
0

+4
β2

3

τ 2
0
, (126)

γ2 =
(

2
x
w
β3β5 +2�0

x
w
β4β5 +�0β

2
3β5 −β6

) 4
τ 2

0
, (127)

γ3 = −2
x
w
β3

τ0
, (128)

γ4 =
(

t −β2 − x2

w2 β5 −2�0
x
w
β3β5

)
1
τ0

. (129)

Using the relation following

+∞∫
−∞

e− 1
4 (γ1+iγ2)x2

e(γ3+iγ4)xdx = 2
√
π

e
(γ3+iγ4)

2

γ1+iγ2√
(γ1 + iγ2)

, if γ1 > 0,

(130)

the Fourier transform of the frequency domain field is

E (x,z,t)= 1
2π

ei�0t

τ0

(
1+ z2

z2
R

)−1/4

× e− x2

w2 e−i�0
x2

2cR e−i�0
c zei 1

2 arctan z
zR

×
∫

e− 1
4 (γ1+iγ2)�

′2
e(γ3+iγ4)�

′
d�′, (131)

= 1
2π

ei�0t

τ0

(
1+ z2

z2
R

)−1/4

× e− x2

w2 e−i�0
x2

2cR e−i�0
c zei 1

2 arctan z
zR

×2
√
π

e
(γ3+iγ4)

2

γ1+iγ2√
(γ1 + iγ2)

, (132)

= 1
τ0

√
π

(
1+ z2

z2
R

)−1/4

× e
i�0

(
t− z

c − x2
2cR

)
ei 1

2 arctan z
zR e−

x2

w2 e
(γ3+iγ4)

2

γ1+iγ2 (γ1 + iγ2)
−1/2,

(133)

= 1
τ0

√
π

(
1+ z2

z2
R

)−1/4

× e
i�0

(
t− z

c − x2
2cR

)
ei 1

2 arctan z
zR e− x2

w2 e
(γ3+iγ4)

2

γ1+iγ2

×
[(
γ 2

1 +γ 2
2

)1/2
eiarctan γ2

γ1

]−1/2

, (134)

= 1
τ0

√
π

[(
1+ z2

z2
R

)(
γ 2

1 +γ 2
2

)]−1/4

× e
i�0

(
t− z

c − x2
2cR

)
e

i 1
2

(
arctan z

zR
−arctan γ2

γ1

)
e− x2

w2 e
(γ3+iγ4)

2

γ1+iγ2 .
(135)

Concentrating on the last two exponentials,

e− x2

w2 e
(γ3+iγ4)

2

γ1+iγ2 = e− x2

w2 e
(γ3+iγ4)

2

γ1+iγ2
γ1−iγ2
γ1−iγ2 , (136)

= e− x2

w2 e

(
γ 2

3 −γ 2
4 +i2γ3γ4

)
(γ1−iγ2)

γ 2
1 +γ 2

2 , (137)
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= e− x2

w2 e

γ 2
3 γ1−γ 2

4 γ1+2γ3γ4γ2+i
[
2γ3γ4γ1−

(
γ 2

3 −γ 2
4

)
γ2
]

γ 2
1 +γ 2

2 , (138)

= e− x2

w2 e

γ 2
3 γ1−

(
γ 2

4 −2γ4
γ3γ2
γ1

)
γ1+i

[
2γ3γ4γ1−

(
γ 2

3 −γ 2
4

)
γ2
]

γ 2
1 +γ 2

2 , (139)

= e− x2

w2

× e

γ 2
3 γ1−

[
γ 2

4 −2γ4
γ3γ2
γ1

+
(
γ3γ2
γ1

)2−
(
γ3γ2
γ1

)2
]
γ1+i

[
2γ3γ4γ1−

(
γ 2

3 −γ 2
4

)
γ2
]

γ 2
1 +γ 2

2 ,

(140)

= e− x2

w2

× e

γ 2
3 γ1+ (γ3γ2)

2
γ1

−
[
γ 2

4 −2γ4
γ3γ2
γ1

+
(
γ3γ2
γ1

)2
]
γ1+i

[
2γ3γ4γ1−

(
γ 2

3 −γ 2
4

)
γ2
]

γ 2
1 +γ 2

2 ,

(141)

= e− x2

w2 e

γ 2
3

(
γ1+ γ 2

2
γ1

)
−
(
γ4− γ3γ2

γ1

)2
γ1+i

[
2γ3γ4γ1−

(
γ 2

3 −γ 2
4

)
γ2
]

γ 2
1 +γ 2

2 , (142)

= e− x2

w2 + γ 2
3
γ1 e

−
(
γ4− γ3γ2

γ1

)2

γ1+γ 2
2 /γ1 e

i

(
γ 2

4 −γ 2
3

)
γ2+2γ3γ4γ1

γ 2
1 +γ 2

2 , (143)

γ3 = e
− x2

w2

(
1−4

β2
3

τ2
0 γ1

)
e
−
(
γ4− γ3γ2

γ1

)2

γ1+γ 2
2 /γ1 e

i

(
γ 2

4 −γ 2
3

)
γ2+2γ3γ4γ1

γ 2
1 +γ 2

2 , (144)

γ1 = e
− x2

w2γ1

(
1+8 x

w
β4
τ2
0

+4
β2

3
τ2
0

−4
β2

3
τ2
0

)
e
−
(
γ4− γ3γ2

γ1

)2

γ1+γ 2
2 /γ1 e

i

(
γ 2

4 −γ 2
3

)
γ2+2γ3γ4γ1

γ 2
1 +γ 2

2 ,

(145)

= e
− x2

w2γ1

(
1+8 x

w β4/τ
2
0
)
e
−
(
γ4− γ3γ2

γ1

)2

γ1+γ 2
2 /γ1 e

i

(
γ 2

4 −γ 2
3

)
γ2+2γ3γ4γ1

γ 2
1 +γ 2

2 , (146)

= e
− x2

w2γ1

(
1+8 x

w β4/τ
2
0
)
e
−
τ0γ4− (

τ0γ3)
(
τ2
0 γ2

)
τ2
0 γ1

2

τ2
0

(
γ1+γ 2

2 /γ1
)

e
i

(
γ 2

4 −γ 2
3

)
γ2+2γ3γ4γ1

γ 2
1 +γ 2

2 .
(147)

From this expression the width W and pulse duration T of
the pulse in the time domain can be identified:

W2 = w2
1+8 x

w
β4
τ2

0
+4

β2
3
τ2

0

1+8 x
w
β4
τ2

0

= w2 τ
2
0 +8 x

wβ4 +4β2
3

τ 2
0 +8 x

wβ4
, (148)

T2 =
(
τ 2

0 γ1 + τ 4
0 γ

2
2

τ 2
0 γ1

)
, (149)

= τ 2
0 +8

x
w
β4 +4β2

3

+16

[
2 x

wβ3β5 + (2 x
wβ4 +β2

3

)
�0β5 −β6

]2
τ 2

0 +8 x
wβ4 +4β2

3
. (150)

However, the width W can only be called a width if the
second-order term to spatial dispersion, β4, is neglected.
However, it is not negligible in general.

For the solution of the inverse Fourier transform (Equation
(131)) to be valid, γ1 > 0 needs to be ensured where the term

proportional to β4 can become problematic if z, x or �0θ
′ is

negative.

8
x
w
β4

τ 2
0

= 8
x
w

1
2w

(
2θ ′ z
�0

+�0θ
′′ z
�0

− d2x0

d�2

)
1
τ 2

0
, (151)

⇒ 8
x
w

1
w
θ ′ z
�0

1
τ 2

0
, (152)

= 8
x
w
�0θ

′

�2
0τ

2
0

z
w

� z
w
, (153)

= z

w0

√
1+ z24c2

�2
0w4

0

, (154)

= z/w0√
(�0w0/c)2 +4(z/w0)

2
(�0w0/c) . (155)

If 4 z
w0

� �0
c w0 and �0

c w0 � 1, then z � w0 and the
considered term = z/w0 � 1, meaning that the middle term
is negligible with respect to the first term in γ1 (= 1).
If 4 z

w0
	 �0

c w0, then the considered term = �0
c w0 � 1,

meaning that the middle term could potentially become
a problem. However, this also means z

w0
	 1, in which

case β2
3 	 β4 as can be estimated for first-order angular

dispersion, that is, θ ′′ = dx0
d� = 0. Actually, β4 � β2

3 if and
only if z

w 	 �0θ
′, which will not be true very close to the

focus z � w if �0θ
′ ∼ 1. Therefore, this term should never

become a problem.
Nevertheless, the values of β4 and β4/β

2
3 are always

verified in the numerical examples.

A.4. Extraction of the analytic relation for the pulse-front
tilt

The pulse-front tilt can be derived from the exponent of the
longitudinal Gaussian envelope. Thereto, it is rewritten as

τ0γ4 −
(τ0γ3)

(
τ2

0 γ2

)
τ2

0 γ1

= t −β2 − x2

w2 β5 −2�0
x
w
β3β5

−
(−2 x

wβ3
)

4
[
−β6 +2 x

wβ3β5 +
(

2 x
wβ4 +β2

3

)
�0β5

]
τ2

0 +8 x
wβ4 +4β2

3
=: t − t0,

where

t0 = β2 + x2

w2 β5 +2�0
x
w
β3β5

+8

( x
wβ3
)[
β6 −2 x

wβ3β5 − (2 x
wβ4 +β2

3

)
�0β5

]
τ 2

0 +8 x
wβ4 +4β2

3
, (156)
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and the tangent of the tilt angle is given by

tanψtilt = d(ct0)

dx

∣∣∣∣
x=0

.

In the expression for t0, only β2 and β6 depend on x. That
is, the derivatives of all other βk with respect to x vanish.
The derivative of the last term evaluated at x = 0 vanishes,
too, except for the case where the derivative of its first factor
occurs in the product rule.

tanψtilt = c
d
dx

{
β2 + x2

w2 β5 +2�0
x
w
β3β5

+8

( x
wβ3
)[
β6 −2 x

wβ3β5 − (2 x
wβ4 +β2

3

)
�0β5

]
τ 2

0 +8 x
wβ4 +4β2

3

}
x=0

,

(157)

= c
{

d
dx

( z
c

−�0θ
′ x
c

)
+2

x
w2 β5 +2�0

1
w
β3β5

+ 8
w
β3
[
β6 −2 x

wβ3β5 − (2 x
wβ4 +β2

3

)
�0β5

]
τ 2

0 +8 x
wβ4 +4β2

3

}
x=0
,

(158)

= −�0θ
′ +2c�0β3

β5

w
+ �0β3

w
4θ ′2z−8cβ2

3β5

τ 2
0 +4β2

3
. (159)
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