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ABSTRACT 

In this paper the motion of an orbiter of a satellite of one of the 
major planets is considered. The orbiter undergoes various perturbing 
effects. It is shown that the semi-analytical stroboscopic method is 
well suited to take into account all perturbations. 

1. INTRODUCTION 

The stroboscopic method is a semi-analytical method for orbit compu­
tation. The denomination "stroboscopic" is derived from the fact that 
the osculating orbital elements are only known at one well-defined 
point of the orbit, usually at perigee. The main advantages are the 
possibility of an easy inclusion of all types of perturbations, the 
speed of computation and the fair accuracy obtained even after many 
hundreds of revolutions. In this paper the essential steps for the 
application of the method will be given. 

The example to be considered here is a spacecraft, the orbiter, moving 
around one of the large satellites (such as JI to JIV, or SVI, or Nl) 
of a major planet (Jupiter, Saturn or Neptun). Such orbiters are tech­
nically feasible within the next decade. For various reasons the peri-
centre will be low and the eccentricity and the inclination can have 
arbitrary, large values : 

0<e<e*<1 

0<i<ir 

The upper limit e* of the eccentricity is defined by the sphere of 
influence of the satellite (Roth, 1975)-

2. PERTURBATIONS OF AN ORBITER 
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An orbiter of a satellite S will undergo a number of perturbations 
which determine the evolution of the orbit and therefore its stabili­
ty. In the case of a Galilean satellite as central body one has to 
consider at least the following perturbing forces. 

Perturbation Order of magnitude 
Oblateness of the satellite S e 

n 
Third-body perturbations by the e 
primary 

Fourth-body perturbations : Sun e2 

Satellites S (m * n) e2 

m 
Oblateness of the primary e2 

Atmospheric drag e2 

The orders of magnitude of the perturbations give only a rough indica­
tion. They depend considerably on the size of the orbit, the satelli­
tes and the primary planet. 

In the following the perturbations by the oblateness of the primary 
planet is considered as an example. At the end of the paper a few 
remarks will be made concerning the other perturbations (section 6). 

3. EXPANSION OF THE PERTURBING FUNCTION 

In a first step the perturbing potential has to be expanded in an 
appropriate way. The potential due to the oblateness of the primary 
planet is, as usual, expanded in terms of Legendre polynomials(1). 

OO Q 

v =-I ^rP n(f) (3-D 
n=2 d 

For Jupiter only the terms n = 2, k and 6 are known to a fair accura­
cy (Wong, 1975). 

It is now necessary to expand the perturbing acceleration 

— %&_ 

in terms of the elements of the planet and the orbiter using the 
wellknown expansion for d (see fig. 1). The algebra is, however, 

(T)The main term (n = 0) of the potential of the primary 
planet gives rise to the third-body perturbation mentioned 
in section 2. 
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Satellite Sn 

it of the 
Satellite Sn 

Fig. 1. Orbiter 0 of a s a t e l l i t e S 

Satellite Sm 

Fig. 2. Geometry of the fourth-body perturbation. 
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considerably more involved than in the classical case where the 
orbiter revolves around the primary planet. It can be shown that the 
radial, transversal and binomial component of the acceleration due 
to J have the form (Roth, 1975) 

n 

where p = a(l-e2) is the semi-latus rectum of the orbit and u' the 
longitude of the planet (primed quantities refer always to the per­
turbing primary). Y... (u1) are polynomials in sin u' and cos u', 

whereas T.., (9) depends on the true anomaly 9 of the orbiter. The 
1J (n) 

acceleration F. is therefore (in the first approximation) a func­
tion of a slow variable u' and a fast variable 9. The important step 
is to consider Y(u') as a function of the time t and to expand it in 
a Taylor series. This allows to introduce the mean and the eccentric 
anomalies M and E of the orbiter. Y(u') becomes (omitting subscripts 
for simplicity) 

Y = I 1_(-^] S Y(s)(t0)M
S (3.3) 

s=o ' 

(s) 
The derivates Y are evaluated on the osculating orbit of the planet 
around the satellite (in a system centered at the satellite) and 
are therefore easily available. Introducing (3.3) into (3.2) it is 
seen that the perturbing acceleration due to J becomes a double 

sum over j and s 

Fn = I I Fn (3.U) 
— ,L u —js 

j=o s=o 

with the obvious abbreviation F. . 

h. INTEGRATION OF THE LAGRANGEAN EQUATIONS 

The Lagrange equations are used in the Gaussian form and can be writ­
ten as a matrix equation 

dE 
- = L . F (U.1) 

It is essential to use orbital elements jC, e.g. the Keplerian ele­
ments (2) and an angle, such as the true anomaly 9, as independent 

(2) If the time is used instead of a time-element, then a se­
cond integration becomes necessary. 
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variable so that the pericentre is easily defined . 

Introducing now the expansion (3-h) into the equation (H.1) it is 
seen that for each couple (j, s) an equation of the following form is 
obtained 

JZ^=LFn (U.2) 
d —js 

Considering the expressions (3.2) and (3.3) it is seen that the 
equations (U.2) have essentially the same form for fixed values n and 
j and varying s. In a first-order perturbation theory the elements are 
kept constant on the right-hand side of {k.2). It turns out that only 
integrals of the following type are occuring 

i,n,q,s;9) = -rl a\ I »*S Sin 9COS 9 ,. M. oi 

I(m,n,q,s;9) = | M d9 (4.3, 

with A = 1+e cos0 and m+n<q. Numerous recursion formulae can be deri­
ved for these integrals (Sridharan, 1973). It is also possible to 
introduce the eccentric anomaly E as new independent variable.The 
integrand of (I+.3) becomes in this case a finite Poisson polynomial 
in E which is easy to integrate. Again recursive relations exist which 
can be used for the evaluation of the integrals (Roth, 1971 » 197*+) • 
Obviously, these relations are ideally suited for the application of 
formula manipulation techniques. 

5. THE STROBOSCOPIC METHOD 

For the application of the stroboscopic method the integrals (4.3) are 
evaluated between the limits E = 0 and E = 2TT. The integration is 
therefore performed over one revolution from pericentre to pericentre. 
This has the advantage to lead to a considerable simplification of the 
final formulae since many of the terms vanish after integration. 

Carrying out the integration provides the variation AE_ of the elements 
after one complete revolution 

AE11 = y y AE1? ( 5 . 1 ) 
- L. L -js 

J s 
Now, the elements (at pericentre) are updated according to 

E + AE11 => E (5-2) 

which provides the new initial values. With these new elements and 

the new time t +A£ it is possible to calculate new values for the 
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derivates Y and all other quantities. Performing again the integra­
tion the increments AE_ of the next revolution are obtained. This is 
repeated until the desired final time is reached. 

REMARKS 

1. It has some advantage to keep the indefinite integrals (4.3) since 
they are needed if the short-period terms have to be recovered. More­
over, they are necessary for the derivation of a second-order pertur­
bation theory. 

2. The recursive relations mentioned in section 4 could be used to cal­
culate directly the numerical values of the definite integrals (4.3) 
with the upper limit 2TT . 

3. Updating the elements after each revolution (formula 5.2) implies 
that the results are somewhat better than with a pure first-order per­
turbation theory. In addition the contributions of the long-period 
terms are obtained implicitly. 

Obviously the method sketched for the oblateness perturbation J by 

the primary planet can be applied in a similar way to the other per­

turbations F_ mentioned in section 2. At each step (each revolution) 

all corresponding increments AE_ are separately calculated and combi­
ned to the total increment 

AE = I AEq (5.3) 

It will be necessary to expand the various perturbing forces in the 
way explained in section 3- However, the expansion (3.3) is only 
needed if the perturbation is non-conservative. In order to be con­
sistent it is necessary to derive the perturbations to the appropriate 
order. In the case of forces of the order e it will be necessary to 
use a second-order perturbation theory, at least for the main term 
(j = 0) in an expansion like (3.2). 

6. SURVEY OF THE VARIOUS PERTURBATIONS 

In the following we present shortly the status concerning the various 
perturbations mentioned in section 2. 

Oblateness of the Satellite S 
n 

The increments AE_ of the first order are given by the wellknown se­
cular terms. In some cases it will be necessary to consider also the 
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second-order term J for which convenient expressions have been given 

by Merson (1963). 

Third-body perturbation 

The first-order perturbation theory of a third body has been developed 
by Lidoy (1962) and later extended by Roth (1968, 1971). A second-
order perturbation theory for<the main term has however not yet been 
developed. 

Fourth-body perturbation 

The geometry of the problem is shown in figure 2. The perturbing body 
(the sun, the satellites S (m / n) is moving around the third body 

(Jupiter). The distance d depends in this case on the motion of Jupiter, 
the satellite S and the orbiter. The expansion of the perturbing for-

m 
ce in the satellite-centered system is considerably more involved as in 
the third-body case. This expansion is presently under investigation. 

Oblateness of the primary planet 

The development of the corresponding perturbing function and the deri­
vation of the first-order increments for J and J, has been given by 

Roth (1975). 

Atmospheric drag 

The largest satellites of the major planets are known to have an at­
mosphere. It is therefore necessary to consider the perturbation by 
the drag. The orbits under consideration will have a relatively low 
pericentre and a large eccentricity. In this case the developments 
given by King-Hele (1962, I96U) are very satisfactory (see also Roth, 
1970). 
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