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Curvature effects on the structure of
near-wall turbulence
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The interaction between near-wall turbulence and wall curvature is described for the
incompressible flow in a plane channel with a small concave–convex–concave bump on
the bottom wall, with height comparable to the wall-normal location of the main turbulent
structures. The analysis starts from a database generated by a direct numerical simulation
and hinges upon the anisotropic generalised Kolmogorov equations, i.e. the exact budget
equations for the second-order structure function tensor. The influence of the bump on
the wall cycle and on the energy production, redistribution and transfers is described in
the physical and scale spaces. Over the upstream side of the bump, the energy drained
from the mean flow to sustain the streamwise fluctuations decreases, and the streaks of
high and low streamwise velocity weaken and are stretched spanwise. After the bump
tip, instead, the production of streamwise fluctuations grows and the streaks intensify,
progressively recovering their characteristic spanwise scale. The wall-normal fluctuations,
and thus the quasi-streamwise vortices, are sustained by the mean flow over the upstream
side of the bump, while energy flows from the vertical fluctuations to the mean field
over the downstream side. On the concave portion of the upstream side, the near-wall
fluctuations form structures of spanwise velocity which are consistent with Taylor–Görtler
vortices at an early stage of development. Their evolution is described by analysing the
scale-space pressure–strain term. A schematic description of the bump flow is presented,
in which various regions are identified according to the signs of curvature and streamwise
pressure gradient.
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1. Introduction

Unveiling the dynamics of turbulent fluctuations, their sustaining mechanism and
their tendency to organise into coherent structures, i.e. regions that exhibit significant
correlation over a range of space and/or time larger than the smallest scale of the
flow (Robinson 1991), has interested scholars for decades: a full understanding would
improve our ability to predict the mean flow and, eventually, to control it. A large
number of studies has been devoted to identify and extract coherent structures in flows
bounded by planar walls, such as channel flows and boundary layers, and to characterise
their role in the sustaining mechanism of turbulence (Blackwelder & Kaplan 1976;
Robinson 1991; Hamilton, Kim & Waleffe 1995; Panton 1997; Jiménez & Pinelli 1999;
Schoppa & Hussain 2002). Streaks of high and low streamwise velocity (HSS and LSS)
and quasi-streamwise vortical structures (QSVs) are known to be major players in the
self-sustained near-wall cycle; see Jeong et al. (1997) for an overview and Jiménez (2022)
for a more recent discussion. These coherent structures are dynamically related, as the
QSVs advect higher/lower momentum downwards/upwards, generating HSS and LSS.

A plane wall, however, is just a simplified setting. In real-world applications, a turbulent
flow often develops over curved walls, which may induce favourable or adverse pressure
gradients, a non-constant friction along the flow direction and, possibly, flow separation.
In this work, we consider walls with mild, localised curvature, and aim at enriching
the canonical description of the near-wall turbulent cycle with an extensive scale-space
analysis of curvature effects. The simple flow chosen for the study develops in a plane
channel, where one of the two walls has a small bump.

The turbulent flow over a bump has been extensively studied, both experimentally
and numerically. It is used as a test case for development and validation of large eddy
simulation and Reynolds-averaged Navier–Stokes (RANS) models (Wu & Squires 1998;
Fröhlich et al. 2005; Breuer et al. 2009) and for exploring the dynamics of recirculating
regions in both the laminar (Gallaire, Marquillie & Ehrenstein 2007) and turbulent
(Mollicone et al. 2018) regimes. Baskaran, Smits & Joubert (1987) and Webster, Degraaff
& Eaton (1996a,b) experimentally investigated the development of a turbulent boundary
layer over a concave–convex–concave bump which does not produce flow separation,
and found that the mean velocity profile over the bump significantly deviates from
the law of the wall. Moreover, as confirmed later numerically (Wu & Squires 1998),
the concave–convex change of curvature on the upstream side of the bump and the
convex–concave one on the downstream side trigger two internal layers; the upstream one
rapidly grows far from the wall owing to the locally adverse pressure gradient. Marquillie,
Laval & Dolganov (2008) studied via direct numerical simulation (DNS) the budget
equation for the turbulent kinetic energy in a channel flow with a bump that produces
a small recirculation, and assessed the effect of the curvature on the velocity streaks
by resorting to velocity correlations. They found that strong coherent structures form
near the separated region, and that the LSS and HSS are first stretched in the spanwise
direction by the favourable pressure gradient and subsequently disappear after the flow
separation on the downstream side of the bump. Later, Marquillie, Ehrenstein & Laval
(2011) considered a larger value of the Reynolds number and focused on the dynamics of
the LSS, observing that the onset of their instability coincides with a strong production
of turbulent kinetic energy. Mollicone et al. (2017) studied via DNS the dynamics of
the separation bubble over the downstream side of a convex bump of parabolic shape,
considering various bump heights and Reynolds numbers. A larger height was found to
lead to a larger separation bubble, while a larger Reynolds number implies a smaller bubble
and a shear layer that remains closer to the wall. They used the budget equation for the
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turbulent kinetic energy to describe the production, transfer and dissipation of fluctuating
energy in physical space. Turbulent kinetic energy, after being produced in the separating
shear layer due to the pressure drop, is transferred within the bubble and downstream of the
bump, where it is eventually dissipated. In a later work, the same authors (Mollicone et al.
2018) provided a dynamical description of turbulence in the recirculating region behind the
same bump using the generalised Kolmogorov equation (GKE). The GKE (Danaila et al.
2001; Hill 2001) is the exact budget equation for the second-order structure function, which
is commonly interpreted as scale energy. As such, the GKE describes production, transport
and dissipation of turbulent energy, considering simultaneously the physical space and the
space of scales. Mollicone et al. (2018) found that the turbulent energy is mainly produced
at specific scales in the shear layer, and that its transfer towards the sink flow regions occurs
by means of both inverse and direct energy cascades.

Most of the work mentioned above considered relatively large bumps that drastically
alter the structure of the flow and produce a massive separation, and studied the dynamics
of the recirculating bubble. Smaller bumps have received less attention, and the description
of how a spatially localised curvature of the wall, mild enough to avoid recirculation,
affects the structure of the flow is lacking. This is the goal of the present work.

Moser & Moin (1987) were first to consider with DNS how curvature affects a
fully developed turbulent duct flow. In that case, however, the streamwise direction
is homogeneous, and the curvature is constant with the streamwise coordinate. Over
concave walls, new structures arise and alter the profiles of the Reynolds stresses. These
structures are referred to as Taylor–Görtler vortices (TGVs), first detected by Görtler
(1941) in laminar boundary layers over curved walls. They are pairs of counter-rotating
and streamwise-aligned vortices, which originate because of an imbalance between the
centrifugal force and the radial pressure gradient. For details on the TGVs and the related
instability, we refer the interested reader to Floryan (1991), Saric (1994), Luchini & Bottaro
(1998) and to the more recent works of Xu, Liu & Wu (2020) and Dagaut et al. (2021).
Whether TGVs are present in turbulent flows with localised curvature is still unclear.
In particular, TGVs have never been observed in the turbulent bump flow. For example,
Webster et al. (1996b) explicitly state that such vortices are absent in the flow over the
bump they considered, because the concave region is too short. Baskaran et al. (1987)
experimentally studied the response of a turbulent boundary layer to sudden changes of the
wall curvature and pressure gradient, considering a concave–convex–concave bump. In the
region of concave curvature they did not find evidence of TGVs, and asked the question
whether a convex curvature following a concave one can suppress these vortices. Hall
(1985) considered a three-dimensional laminar boundary layer and found that, in this case,
TGVs are suppressed because of a cross-flow instability mode prevailing over the TGV
instability mode. Benmalek & Saric (1994) studied the nonlinear evolution of TGVs over a
wall of variable curvature by means of the parabolised disturbance equations. They found
that a convex curvature significantly stabilises disturbances introduced by an upstream
concave region, resulting into a decay of the TGVs. Xu et al. (2020) investigated the
TGVs in a laminar boundary layer over a concave wall in a contracting/expanding stream
that generates an adverse/favourable pressure gradient, at a Görtler number of order 1.
They found that in presence of an adverse/favourable pressure gradient the TGVs saturate
earlier/later and at a lower/higher amplitude, if compared with the zero-pressure-gradient
case. To the best of our knowledge, evidence of TGVs in a fully developed turbulent flow
over a surface with a localised concave–convex change of curvature is not available.

In this work we investigate the turbulent flow past a small concave–convex–concave
bump that, unlike bumps considered in previous studies, does not generate a strong
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recirculation, and does not disrupt the upstream near-wall flow. Our specific aim is to
provide an extensive description of the effect of mild and localised changes of the wall
curvature on the organisation of the near-wall turbulence, and on the sustaining mechanism
of the velocity fluctuations. We start from the DNS database produced by Banchetti,
Luchini & Quadrio (2020), and study it by leveraging the anisotropic generalised
Kolmogorov equations, or AGKE (Gatti et al. 2020), to deal simultaneously with scales
and positions. The AGKE is a set of exact budget equations for each component of the
second-order structure function tensor, and describe production, transport, redistribution
and dissipation of the Reynolds stresses in the combined space of scales and positions.
Unlike the GKE used by Mollicone et al. (2018), the AGKE includes a pressure–strain term
that is essential to describe energy redistribution among components. Interesting insights
in the flow physics will be obtained, by describing how curvature affects the scale-space
energy production, redistribution and transfers. Moreover, statistical evidence of TGVs
will be provided, and their evolution will be described.

The paper is organised as follows. In § 2.1 the DNS database is described, while in
§ 2.2 the AGKE is briefly recalled. Section 3 deals with the topology of the mean flow,
and identifies the main regions of the bump flow. Then in §§ 4 and 5 the AGKE analysis
is presented separately for the upstream and downstream parts of the bump. In § 6 the
effect of the bump on the scale-space energy transfers is studied. Lastly, § 7 provides some
concluding remarks. The statistical results obtained in the present work are made available
in the public repository at https://doi.org/10.5281/zenodo.7879911.

2. Methods

2.1. The DNS database
We use the DNS database of the turbulent flow over a small bump produced by
Banchetti et al. (2020). Their paper contains full details on the numerical method and
the related computational procedures, which are only briefly recalled here. Figure 1
sketches the computational domain and the reference frame. A Cartesian coordinate
system is used with the x, y and z axes respectively denoting the streamwise, wall-normal
and spanwise directions. The computational domain consists of two streamwise-adjacent
blocks. The upstream portion is a canonical periodic channel with planar walls, and its
streamwise length is 4πh, where h is half the channel height. The downstream portion,
with the bump on the lower wall, extends from x = 4πh (where an inflow boundary
condition is used) to x = 4πh + 12h (where an outflow boundary condition is used), with
dimensions (Lx, Ly, Lz) = (12h, 2h, 2πh). The bump is two-dimensional, and its geometry
is analytically defined by the sum of two overlapping Gaussian curves, i.e.

H(x)
h

= a exp

[
−

(
x/h − 4π − b

c

)2
]

+ a′ exp

[
−

(
x/h − 4π − b′

c′

)2
]
, (2.1)

with a = 0.0505, b = 4, c = 0.2922 and a′ = 0.060425, b′ = 4.36, c′ = 0.3847. The
maximum height of the bump is hb = 0.0837h at x ≈ 16.7h. This geometry resembles
that in Marquillie et al. (2008), but has a significantly smaller size to reduce blockage and
to decrease the size of the recirculating region over the downhill side.

The flow is governed by the incompressible Navier–Stokes equations for velocity u =
(u, v,w) and pressure p. No-slip and no-penetration conditions are applied at the walls, and
periodic conditions are set at the spanwise boundaries. In the upstream portion, periodic
conditions are used also in the streamwise direction, whereas inflow and convective
outflow conditions are used for the downstream portion.
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Figure 1. Sketch of the computational domain and the reference frame. The portion with x/h < 4π

corresponds to a periodic plane channel flow; the peak of the small bump is at x/h ≈ 16.7. An instantaneous
snapshot of the streamwise velocity field u is plotted on a streamwise-parallel plane; flow is from left to right.

The bulk Reynolds number Reb = Ubh/ν, based on the bulk velocity Ub and on the
channel half-height h, is Reb = 3173; ν is the kinematic viscosity of the fluid. For the
upstream plane channel flow, it corresponds to a friction Reynolds number of Reτ =
uτh/ν = 200, where uτ = √

τw/ρ is the friction velocity defined with the wall shear stress
τw and density ρ.

The Navier–Stokes equations are integrated in time using the DNS code introduced
by Luchini (2016), written in the CPL computer programming language (Luchini 2020,
2021). The code uses second-order accurate finite differences on a staggered grid in the
three directions. An implicit, second-order accurate immersed-boundary method is used
to deal with the non-planar wall (Luchini 2013). The computational domain is discretised
with (Nx,Ny,Nz) = (1120, 312, 241) points. In the wall-normal and spanwise directions,
the same distribution of points is adopted in the upstream and downstream portions of
the domain, to avoid interpolation. In the spanwise direction the distribution is uniform,
yielding a resolution of �z ≈ 0.01h that in the upstream portion corresponds to �z+ ≈ 2
(viscous or plus units are defined with the local friction velocity uτ ). In the wall-normal
direction, instead, the resolution is higher close to the wall, with the grid spacing in the
vicinity of the bump being�y+ ≈ 0.2. For the streamwise direction, a uniform distribution
is used in the upstream channel leading to �x ≈ 0.01h and �x+ ≈ 2. In the downstream
portion, instead, a larger number of points is employed close to the bump to maintain the
same resolution in viscous units, �x+ ≈ 2, despite the variation of the local friction.

The momentum equation is advanced in time by a fractional-step method using
a third-order Runge–Kutta scheme. The Poisson equation for the pressure is solved
using an iterative successive over-relaxation (SOR) algorithm. The time step is set at
�t = 1.5 × 10−3h/Ub, corresponding to an averaged Courant–Frederic–Levy number of
approximately 0.5. After reaching statistical equilibrium, statistics are accumulated for
T ≈ 1000 h/Ub, with the database consisting of 335 equally spaced snapshots.

Unless otherwise indicated, hereafter quantities are made dimensionless with h and Ub;
capital letters refer to mean fields, while small letters indicate the fluctuations around
them. Throughout the paper, �y is used to indicate the distance from the lower wall in the
y direction; given the small slope of the bump,�y remains a good proxy for the actual wall
distance even on the curved portion of the surface, with a difference that is everywhere less
than 0.4 %.

2.2. The anisotropic generalised Kolmogorov equations (AGKE)
The AGKE is a set of exact budget equations for the second-order structure function
tensor

〈
δuiδuj

〉
, derived without approximations by manipulation of the Navier–Stokes

972 A39-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

72
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.723


D. Selvatici, M. Quadrio and A. Chiarini

equations (see Gatti et al. 2020, for full details). The operator 〈·〉 indicates ensemble
averaging as well as averaging in time, if the flow is statistically stationary, and in
the homogeneous directions. The AGKE is useful to study anisotropic, inhomogeneous
and multiscale turbulent flows as they provide a dynamical description of turbulence
considering simultaneously the physical space and the space of scales. The structure
function tensor

〈
δuiδuj

〉
is based on the increment of the fluctuating velocity vector δu =

u(xb)− u(xa) between two points xb and xa, with X = (xa + xb)/2 and r = xb − xa
being their mid-point and separation vector. In the general case,

〈
δuiδuj

〉
is a function

of seven independent variables, i.e. the six coordinates of X and r, and time t. In the
present case, the AGKE is applied to a statistically stationary flow, with the spanwise
z direction being statistically homogeneous. Therefore the independent variables reduce
to five, i.e. (rx, ry, rz,X, Y). The tensor

〈
δuiδuj

〉
incorporates the covariances

〈
uiuj

〉
of the

velocity fluctuations and the spatial correlation tensor Rij〈
δuiδuj

〉
(X , r) = V ij(X , r)− Rij(X , r)− Rji(X , r), (2.2)

where
V ij(X , r) = 〈

uiuj
〉 (

X + r
2

)
+ 〈

uiuj
〉 (

X − r
2

)
, (2.3)

is the sum of the covariances evaluated at X ± r/2, and

Rij(X , r) =
〈
ui

(
X + r

2

)
uj

(
X − r

2

)〉
. (2.4)

For large enough |r|, the correlation tensor vanishes, and
〈
δuiδuj

〉
reduces to V ij. At large

separations, therefore, the AGKE is equivalent to the sum of the budget equations for
the single-point Reynolds stresses evaluated at X ± r/2. Therefore, the combination of
the AGKE and the budget for the Reynolds stresses is equivalent to the Kármán–Howart
equation for the correlation tensor. Thus, the information provided by the AGKE is
equivalent to the more classical description based on the spectrally decomposed Reynolds
stress budgets (Kawata & Alfredsson 2018; Lee & Moser 2019), whenever the latter is
feasible. Moreover, in the limiting case of stationary, homogeneous, isotropic turbulence
the AGKE reduces to the classical Kolmogorov equation where the only independent
variable is r = |r|.

The AGKE, once tailored to the present flow, can be compactly written as

∂φk,ij

∂rk
+ ∂ψ
,ij

∂X

= ξij. (2.5)

The left-hand side of (2.5) features the divergence of the flux vectorΦ ij = (φij,ψ ij), where
the scale flux φij and the spatial flux ψ ij read

φk,ij = 〈
δUkδuiδuj

〉︸ ︷︷ ︸
mean transport

+ 〈
δukδuiδuj

〉︸ ︷︷ ︸
turbulent transport

− 2ν
∂

∂rk

〈
δuiδuj

〉
︸ ︷︷ ︸

viscous diffusion

k = 1, 2, 3; (2.6)

ψ
,ij = 〈
U∗

 δuiδuj

〉︸ ︷︷ ︸
mean transport

+ 〈
u∗

δuiδuj

〉︸ ︷︷ ︸
turbulent transport

+ 1
ρ

〈δpδui〉 δ
j + 1
ρ

〈
δpδuj

〉
δ
i︸ ︷︷ ︸

pressure transport

−ν
2
∂

∂X


〈
δuiδuj

〉
︸ ︷︷ ︸

viscous diffusion


 = 1, 2; (2.7)
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here, δij is the Kronecker delta. In each flux the mean, turbulent and pressure transports
and the viscous diffusion are recognised, in analogy with the usual decomposition of the
single-point budget equations for the Reynolds stresses (Pope 2000). The right-hand side
of (2.5), ξij, is the source term and is defined as

ξij = − 〈
u∗

kδuj
〉
δ

(
∂Ui

∂xk

)
− 〈

u∗
kδui

〉
δ

(
∂Uj

∂xk

)
− 〈
δukδuj

〉 (∂Ui

∂xk

)∗
− 〈δukδui〉

(
∂Uj

∂xk

)∗

︸ ︷︷ ︸
Pij

+ 1
ρ

〈
δp
∂δui

∂Xj

〉
+ 1
ρ

〈
δp
∂δuj

∂Xi

〉
︸ ︷︷ ︸

Πij

− 4ε∗ij︸︷︷︸
Dij

; (2.8)

the superscript ∗ indicates the average between the two points X ± r/2. The source
ξij(X , r) describes the net production of

〈
δuiδuj

〉
in the space of scales (r) and in the

physical space (X ). Here, Pij is the production term and describes the energy exchange
between the mean field and the fluctuating field; Πij is the pressure–strain term and
describes the energy redistribution among the components of

〈
δuiδuj

〉
; Dij is the viscous

dissipation, and is defined via the pseudo-dissipation tensor εij = ν
〈
(∂ui/∂xk)(∂uj/∂xk)

〉
.

The sum of the AGKE for the three diagonal components yields the GKE for the turbulent
kinetic energy (Danaila et al. 2001; Hill 2001).

Similarly to the budget equation for the Reynolds stress tensor (here recovered for large
separations), designating fluxes and sources is partly conventional, with the implication
that cause–effect relationships between them must be considered with care. The pressure
transport term, indeed, may be moved at the right-hand side and combined with the
pressure–strain term to obtain the velocity–pressure gradient term Rij = 〈

δui∂δp/∂Xj
〉 +〈

δuj∂δp/∂Xi
〉
. We prefer to keep a separate pressure–strain term as it reveals the

redistributive effect of the fluctuating pressure: owing to continuity, Πij vanishes for the
budget of the scale energy (trace of the

〈
δuiδuj

〉
tensor). Also, one may or may not combine

viscous diffusion with pseudo-dissipation, to obtain dissipation (Pope 2000). It is worth
mentioning that, as stated in Jiménez (2016) for the budget of the Reynolds stresses, the
AGKE is singular when interpreted as an equation for the vector of the fluxes (ψ ij,φij).
Indeed, its solution is defined up to a solenoidal vector field. Therefore, one should
consider several fluxes that differ for a zero-divergence term, and discriminate properties
intrinsic to the flow physics from those linked to the particular choice of the flux vector.
However, this aspect is beyond the scope of the present work, and we focus only on the
vector of the fluxes as obtained directly after manipulation of the Navier–Stokes equations.

The AGKE has been successfully used (Chiarini et al. 2022b) in a turbulent Couette
flow to describe the role of the main structures in the sustaining mechanism of the velocity
fluctuations, and to reveal the coexistence of direct and inverse cascades of turbulent
stresses; they have been also employed to describe the structure of turbulence in the
flow around an elongated rectangular cylinder (Chiarini et al. 2022a). The AGKE terms
are computed here with the same code developed by Gatti et al. (2019) and used by
Chiarini et al. (2022a), which – for computational efficiency – evaluates correlations
pseudospectrally whenever possible, leveraging Parseval’s theorem.

A preliminary study of the Reynolds stress tensor budget equations in the whole domain
allows us to restrict the discussion of the AGKE terms to the subdomain 15 ≤ x ≤ 22,
0 ≤ y ≤ 0.8 centred on the bump. We will consider the rx = ry = 0 subspace. Indeed, the
near-wall structures are known to be mostly aligned in the streamwise direction, hence
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Figure 2. (a) Streamwise evolution of the (absolute value of the) curvature radius R (blue line), with dashed
lines indicating vertical asymptotes; the red line shows the streamwise evolution of the Görtler number, defined
in the text. (b) Streamwise evolution of Reτ on the bottom (blue) and top (red) walls. In (a,b), the bump is
drawn with arbitrary vertical scale.

their statistical trace is best seen considering spanwise and wall-normal separations (Gatti
et al. 2020). The analysis of the rx /= 0 or ry /= 0 subspaces (not shown) does not provide
additional insight.

3. Flow topology

We start by labelling the main regions of the flow, through a combination of the topology
of the mean flow and of the curvature of the wall.

Figure 2(a) shows the evolution along the streamwise direction of the (absolute value
of the) local curvature radius R of the wall, computed analytically from (2.1). The two
vertical asymptotes, corresponding to infinite curvature at inflection points in the profile
of the bump, indicate that curvature changes sign twice: it is concave for x < 16.37 and x >
17.16, and convex for 16.37 < x < 17.16. As mentioned in § 1, a change of curvature may
originate internal layers near the wall. The top panel also plots the streamwise evolution
of the Görtler number G ≡ (Ubh/ν)

√
h/R.

Figure 2(b) plots Reτ over the two channel walls. To account for the negative wall
shear stress τw in the recirculation zone, here we define it as Reτ = sign(τw)

√|τw|/ρh/ν.
This plot can be used to convert lengths from outer to local viscous units, and vice
versa. Owing to the minimal blockage, the effect of the bump on the top flat wall
is minimal. On the bottom wall, instead, Reτ first decreases slightly before the bump,
reaching a local (positive) minimum at x = 16.1. Later downstream, Reτ quickly rises
to a positive maximum of Reτ = 368 (≈ 1.8 times the inlet value) at x = 16.55, slightly
before the bump tip. Despite the small height of the bump, a small recirculation bubble
is observed after the bump tip; its extension is quantified by the region with Reτ < 0,
i.e. 17.24 ≤ x ≤ 17.6. The minimum Reτ = −52 is found at x = 17.44. Later on, Reτ
progressively increases again, and eventually relaxes to the inlet value.
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Figure 3. Production of the streamwise Reynolds stresses 〈uu〉. The region of large production that appears
near the upstream curvature change is the trace of a new internal layer (Wu & Squires 1998). Red circles
indicate the two inflection points.

Baskaran et al. (1987) used the wall-curvature perturbation parameter �κ+ = (1/R2 −
1/R1)ν/uτ,1 to quantitatively estimate the influence of a curvature discontinuity across
two points on the flow, and observed that an internal layer after the discontinuity is formed
whenever�κ+ exceeds a threshold value of 0.373 × 10−4 (see also Webster et al. 1996b).
This definition of �κ+ does not immediately apply here, as our wall profile does not
have curvature discontinuities. Nonetheless, we compute the perturbation parameter using
the two local minima of R across the curvature changes, which are located at x ≈ 16.23
and x ≈ 16.60 over the upstream bump side, and at x ≈ 16.96 and x ≈ 17.39 over the
downstream side. By doing this, we obtain�κ+ = 0.090 for the upstream concave–convex
curvature change, and �κ+ = 0.025 for the downstream convex–concave change. This
suggests that the curvature change is not negligible, and that the upstream change is
expected to generate a stronger perturbation on the flow than the downstream one (this
will be in fact confirmed later on with the AGKE analysis). The internal layer that arises
from the upstream curvature change is visible in figure 3, where the production term of the
single-point streamwise Reynolds stresses 〈uu〉, i.e. Puu = −〈uu〉 ∂U/∂x − 〈uv〉 ∂U/∂y is
plotted. Indeed, near the upstream curvature change a new (intense) region of positive
production appears and develops downstream; see also figure 12 of Banchetti et al. (2020),
where the production of the complete turbulent kinetic energy is plotted.

Figure 4 plots the mean pressure gradient ∂P/∂x; the letters A, B and C label where
∂P/∂x at the bottom wall changes sign, while I and O are the inlet and outlet sections,
respectively. Depending on the sign of the pressure gradient at the wall, the flow over a
generic isolated bump can be divided into four regions, labelled in the figure as R1, R2,
R3 and R4. R1 goes from the inlet I to A (x = 16.17), and is characterised by a slightly
adverse pressure gradient ∂P/∂x > 0 in the near-wall region. R2 goes from A to B (x =
16.71); here, the mean flow accelerates, as the cross-section is diminishing and the pressure
gradient is negative (favourable). In R3, extending from B to C (x = 18.37), the pressure
gradient is positive (adverse), and the flow decelerates. Eventually, in R4, which extends
from C to the outlet O, the pressure gradient becomes favourable again. The upstream
concave–convex change of curvature occurs in R2, while the downstream convex–concave
one occurs in R3. When the flow separates, the recirculating bubble is in R3.

4. The upstream side of the bump: regions R1 and R2

4.1. Turbulent structures
The turbulent structures populating the flow upstream of the bump tip are observed via
the four non-zero components of the structure function tensor, plotted in figure 5 in the
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Figure 4. Mean streamwise pressure gradient ∂P/∂x. The contour line is for ∂P/∂x = 0. The barely visible
reverse flow region is shown via the U = 0 line in blue. Red circles indicate the two inflection points.

(X, rz, Y) space with rx = ry = 0. Figure 6 additionally shows the streamwise evolution
of the intensity of local maxima of the diagonal components,

〈
δuiδuj

〉
m with i = j, and of

their wall-normal position Ym and spanwise scale rz,m. In fact, in this rx = ry = 0 space a
positive/negative peak of the structure function

〈
δuiδuj

〉
corresponds to a negative/positive

peak of the correlation function Rij (see (2.3)), and provides structural information about
the flow (Jiménez 2018).

In the plane channel flow, streaks of HSS and LSS and QSVs are at the core of the
near-wall turbulence cycle. For rx = ry = 0, HSS/LSS and QSVs produce peaks of 〈δuδu〉
and 〈δvδv〉, respectively; the corresponding rz and Y indicate their characteristic spanwise
spacing/size, and wall-normal distance. The streaks, indeed, induce negative Ruu at their
characteristic rz spacing, and QSVs induce negative Rvv at their lateral sides. (We refer
the reader to figure 7 of Gatti et al. (2020), where the AGKE has been computed from
a velocity field induced by the ensemble-averaged quasi-streamwise vortex.) This is what
happens in the upstream periodic portion of the computational domain before the inlet
I, where peaks of 〈δuδu〉 and 〈δvδv〉 are found at (rz, Y) = (0.28, 0.07) and (rz, Y) =
(0.3, 0.21), or (r+

z , Y+) = (55, 14) and (r+
z , Y+) = (59, 42). The classical spacing r+

z ≈
100 between LSS (Kim, Moin & Moser 1987; Robinson 1991) is twice the r+

z ≈ 50
separation of maximum negative Ruu correlation between the low- and high-speed streaks.
In this region, 〈δuδu〉 is larger than 〈δvδv〉 and 〈δwδw〉, indicating that streamwise velocity
fluctuations are dominant over the cross-stream ones.

In region R1, the mild adverse pressure gradient determined by the bump curvature
intensifies the streamwise fluctuations, with 〈δuδu〉m increasing by 15 % from X = 15.5 to
X = 16. Wall-normal fluctuations are affected too, but only marginally, with 〈〉m increasing
by 3 %. Such intensification of turbulent fluctuations confirms the result of Wu & Squires
(1998), who found a local peak of the turbulent kinetic energy k just upstream of the
bump. In region R2, where the pressure gradient becomes favourable again, the streaks
weaken as the magnitude of 〈δuδu〉 decreases, and their spanwise spacing increases by
14 % from rz,m = 0.28 at X = 16.37 (at zero curvature) to rz,m = 0.32 at X = 16.7 (at
the bump tip). This differs from the results of Marquillie et al. (2008), who observed
for a higher bump a slight decrease of the spanwise spacing of the streaks, measured
in outer units. If the spacing is expressed in viscous units computed with the local uτ ,
its increase becomes even more evident: r+

z = 81 at X = 16.37 goes up to r+
z = 112 at

X = 16.55, the position of maximum Reτ , to decrease again to r+
z = 97 at the tip. The lack

of viscous scaling indicates that the streaks do not immediately respond to the changing
wall friction (Marquillie et al. 2008). Moreover, �Ym decreases along the bump, meaning
that the streaks are pushed towards the wall.
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Figure 5. Structure functions 〈δuδu〉, 〈δvδv〉, 〈δwδw〉 and 〈δuδv〉 (from a–d). Contour lines are drawn at 99 %,
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Figure 6. Streamwise evolution of the intensity and the (Y, rz) location of the maxima of the diagonal
components of the structure function tensor. The intensity of 〈δvδv〉 and 〈δwδw〉 in panel (a) is multiplied
by a factor of 10 for visualisation. The black line shows the bump (arbitrary vertical scale). Regions identified
by the dashed lines are defined in figure 4.

Unlike the streaks, QSVs are marginally affected by the bump, as seen from the map of
〈δvδv〉; only a small increase of 〈δvδv〉m and a decrease of rz,m close to the bump tip can
be noticed. This difference is explained by the different typical wall distance at which the
two types of structures reside. The bump height hb = 0.0837, or h+

b = 25 (h+
b = 17 when

computed with the friction velocity of the planar channel), is in fact comparable to the
average position of the streaks, but lower than that of the QSVs, which exist at Y ≈ 0.2 or
Y+ ≈ 40 in the planar channel region (Jeong et al. 1997).

In R2, the presence of the bump leads to a new statistical feature, related to a type of
turbulent structure which does not exist over a plane wall. Figure 7 shows a cross-section
at X = 16.44, i.e. near the end of the concave portion of the bump, and highlights how
structures of spanwise velocity are generated close to the bump surface. Here (and in the
whole range 16.28 ≤ X ≤ 16.7), the map of 〈δwδw〉 shows a distinct near-wall positive
peak at rz,m ≈ 0.3 − 0.4 and �Ym ≈ 0.03 − 0.04, indicating structures with negatively
correlated spanwise velocity for rz /= 0. The peak cannot derive from the QSVs, which
produce a negative Rww only when ry /= 0 (Schoppa & Hussain 2002; Gatti et al. 2020).
Instead, the observed maximum is consistent with the incipient development of TGVs.
They are pairs of near-wall mushroom-shaped counter-rotating vortices, which originate
from an inviscid instability mechanism over concave surfaces, because of the imbalance
between the centrifugal force and the radial pressure gradient (Görtler 1941; Floryan 1991;
Saric 1994; Xu et al. 2020). In laminar boundary layers, TGVs are known to advect
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Figure 7. Structure functions on a plane at X = 16.44. Contour lines as in figure 5.

upwards/downwards low/high momentum, and to induce streamwise velocity fluctuations
larger than spanwise ones (Xu, Zhang & Wu 2017; Xu et al. 2020). However, the
contribution of the TGVs to 〈δuδu〉 cannot be distinguished from that of the streaks as the
latter structures induce much larger fluctuations at a similar spanwise scale (see figure 7).

The presence of these vortices is usually assessed using the Görtler number G, which
is very large in the concave portion of the bump; using h and Ub as reference length and
velocity scales, the Görtler number is approximately G = Reb(h/R)1/2 ≈ 3000 at x = 16.6
where R is minimum (see figure 2a). According to the linear stability theory, in a laminar
boundary layer the first onset of this instability is experienced at G = (U∞δ/ν)(δ/R)1/2 =
0.4638, where δ = (νx0/U∞)1/2 is the local boundary layer thickness at x = x0 (Floryan &
Saric 1982). Note that, in the turbulent regime, if present, TGVs are immersed in a random
background that makes their identification more difficult. Although their presence causes a
near-wall peak in the profile of the single-point spanwise Reynolds stress 〈ww〉 (result not
shown), the absence of the scale information prevents their certain identification. Hence,
the scale-space information of double-point statistics is crucial for their detection.

The peak of 〈δwδw〉 moves towards larger rz along the bump, while its wall distance
increases but only slightly; it is located at (rz,m,�Ym) = (0.29, 0.03) for X = 16.37, and
at (rz,m,�Ym) = (0.39, 0.04) for X = 16.7. This is again consistent with the evolution of
the TGVs, which progressively move apart in the spanwise direction and increase in size
(Xu et al. 2020).

As the streamwise evolution of the magnitude of 〈δwδw〉m confirms, these structures
are sustained only over the concave portion of the bump, whereas the convex wall inhibits
their growth (Benmalek & Saric 1994): here the TGVs are progressively damped by the
redistribution via pressure–strain (see § 4.3). When studying the nonlinear development of
TGVs over walls with variable curvature, indeed, Benmalek & Saric (1994) found that a
convex wall reduces their growth more than a flat wall (Peerhossaini & Wesfreid 1988),
and eliminates the three-dimensional structures of streamwise velocity.
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Figure 8. Production terms P11 (a) and P22 (b). See caption of figure 5 for contour lines and isosurfaces.

A detailed description of the sustaining mechanism of TGVs is provided later in § 4.3,
where the scale-space energy redistribution is addressed.

4.2. Production of turbulent kinetic energy
The components of the turbulent kinetic energy production tensor are shown in figure 8.
Due to the spanwise homogeneity, W and its derivatives are zero, so P33 = 0 everywhere.

In R1, production resembles that in a plane channel flow; P11 is positive at all scales and
positions and it is one order of magnitude larger than P22. Hence, energy is transferred
from the mean field mainly towards the streamwise fluctuating field, feeding the streaks.
In a plane channel, indeed, QSVs (responsible for cross-stream fluctuations) are known to
be energised by redistribution only (Gatti et al. 2020).

Over a curved wall, production is known to differ from the plane wall (Smits & Wood
1985). In R2 the amount of streamwise energy drained from the mean flow to feed the
streaks decreases, in agreement with their loss of coherency observed above in § 4.1.
The maximum production P11,m decreases along the streamwise coordinate; its evolution
resembles that of the scale shear stresses 〈δuδv〉 (−2 〈δuδv〉 ∂U/∂y is the dominant
contribution here), i.e. moves towards smaller rz and �Y .

Careful inspection of figure 8 reveals a second region of positive P11 close to the wall,
just after the concave–convex curvature change; see the peak of P11 at (X, rz,�Y) ≈
(16.5, 0.14, 0.016) (see also figure 3). This production sustains the streamwise fluctuations
in the upstream internal layer, and is responsible for the positive production of turbulent
kinetic energy downstream of the bump, shown for example in figure 12 of Banchetti
et al. (2020). Above this layer, P11 is negative for 16.4 ≤ X ≤ 16.6 and rz > 0.4, due to
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the positive ∂U/∂x (not shown), with a local minimum that identifies the spanwise scale
rz ≈ 0.42. For these scales and positions, the interaction between the near-wall cycle and
the changing mean velocity field leads to a sink for the streamwise fluctuations; here, the
turbulent activity is reduced as the mean flow accelerates. This is in agreement with the
relaminarisation of the boundary layer over a bump observed by other authors in the same
region (see for example Webster et al. 1996a).

The term P22, i.e. the production of 〈δvδv〉, is one order of magnitude smaller than P11
at all scales and positions; this is to be expected, owing to the small height of the bump
considered in this work. In fact, the velocity derivatives ∂V/∂x and ∂V/∂y, and thus P22,
are determined by the geometry of the bump, as already shown for example by Bradshaw
(1973), who used ∂V/∂x as a proxy for the curvature of the wall. In R1 and in the part of R2
upstream of the inflection point, the concave wall induces P22 > 0 for Y � 0.1, and P22 <
0 close to the wall. When P22 > 0, the mean flow feeds not only the streamwise velocity
streaks (as in the canonical channel flow) but the QSVs too. When P22 < 0, instead, energy
is drained from the v fluctuations to feed the mean field. After the concave–convex change
of curvature, the region with P22 < 0 shrinks and then grows again over the bump tip,
where it extends for all rz and �Y � 0.02, with a clear peak associated with the QSVs
at (rz,�Y) ≈ (0.22, 0.05), or Y ≈ 0.13. This negative P22 resembles what was observed
slightly upstream for P11, indicating a net sink for both the streamwise and vertical velocity
fluctuations, consistently with the above-mentioned tendency of the flow to laminarise near
the bump tip.

In the internal layer that originates at the inflection point (see § 3 and figure 3), a small
region of positive P22 arises close to the surface, and shrinks at the bump tip (it then
grows again in regions R3 and R4; see later § 5.2). In the internal layer, therefore, both
streamwise and vertical fluctuations are sustained by positive production. However, the
P22 > 0 region extends for a lower �Y range and is weaker compared with P11: overall,
the production of vertical fluctuations is less affected by the internal layer. This is again
consistent with the results of Wu & Squires (1998).

4.3. Redistribution of turbulent kinetic energy
Lastly, we consider the energy redistribution with figure 9, which shows the
pressure–strain terms for the three normal components over the upstream half of the bump.

In the plane channel and in R1, two redistribution mechanisms take place (Gatti
et al. 2020). For �Y � 0.1, part of the energy drained by the mean flow to feed the
streamwise fluctuations is redistributed towards the cross-stream components to feed
the QSVs. This is seen here in the X = 15.9 plane, via the negative peak of Π11 at
(rz,�Y) ≈ (0.23, 0.09) and the positive peaks of Π22 and Π33 at (rz,�Y) = (0.17, 0.13)
and (rz,�Y) = (0.23, 0.07). Close to the wall, however, the vertical fluctuations are
redistributed towards the in-plane ones owing to the so-called splatting (Mansour, Kim
& Moin 1988); here, Π11 > 0, Π22 < 0 and Π33 > 0 (see the colour maps in the Y → 0
plane in figure 9).

In R2, an additional and intense redistribution takes place close to the wall. In
the concave part, streamwise and vertical contributions to the fluctuating energy are
redistributed towards the spanwise one; this is shown at X = 16.3 by the negative peaks
of Π11 and Π22 very near the wall at rz ≈ 0.3 and rz ≈ 0.2, respectively, accompanied
by the positive peak of Π33 at (rz,�Y) ≈ (0.24, 0.02). The scale rz ≈ 0.2 − 0.3 and the
wall distance �Y ≈ 0.02 are consistent with the position of local maximum of 〈δwδw〉
discussed above in § 4.1 and associated with the TGVs. Hence, the generation of TGVs
in the concave part of the bump is accompanied, in the vicinity of the wall, by an intense
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Figure 9. Pressure strain terms Π11 (a), Π22 (b) and Π33 (c). See caption of figure 5 for contour lines and
isosurfaces.

reorientation of both streamwise and vertical fluctuations into spanwise ones. In particular,
the main contribution derives from the streamwise fluctuations, since |Π11| > |Π22| there.
This is consistent with the decrease of 〈δuδu〉m and the increase of 〈δwδw〉m observed in
figure 6 at these streamwise coordinates.

After the inflection point, the redistribution changes nature; near the bump tip
streamwise and spanwise fluctuations are reoriented into vertical ones. Indeed, Π11 < 0,
Π22 > 0 and Π33 < 0 for 0.1 ≤ Y ≤ 0.15; at X = 16.6 for example, their peak is found at
(rz,�Y) ≈ (0.3, 0.02 − 0.08). This is consistent with the observation that here 〈δwδw〉m
decreases with X, while 〈δvδv〉m increases (see figure 5). Therefore, along the convex
portion of the bump the TGVs progressively vanish; they are not sustained anymore, and
their energy feeds mostly the vertical fluctuations.
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Figure 10. Structure functions 〈δuδu〉, 〈δvδv〉, 〈δwδw〉 and 〈δuδv〉 (from a–d). Contour lines are drawn at
99 %, 95 %, 90 %, 75 %, 50 %, 20 % of the maximum in each plane, and isosurfaces correspond to 85 % of the
maximum in the volume.

5. The downstream side of the bump: regions R3 and R4

5.1. Turbulent structures
In analogy with figure 5, which dealt with the upstream part of the bump, figure 10 plots
the components of the structure function tensor for the downstream part, which includes
regions R3 and R4.

The upstream internal layer, generated upstream in R2, grows rapidly in R3, owing
to the adverse pressure gradient, and influences the spatial organisation of the turbulent
fluctuations (Webster et al. 1996b; Wu & Squires 1998). The velocity streaks become
more vigorous and tend to decrease their characteristic spanwise spacing. In fact, the
maximum 〈δuδu〉m increases with X, and its spanwise scale rz,m shrinks, especially if
quantified in local viscous units (see also figure 6). This should be contrasted with the
opposite behaviour observed in R2, where the pressure gradient is favourable.
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The QSVs are weakly affected in R3 (like in R2): 〈δvδv〉m and its scale rz,m and wall
distance Ym remain almost constant with X. The map of 〈δwδw〉, moreover, shows that
the TGVs generated upstream quickly vanish after the bump tip; the local maximum of
〈δwδw〉 close to the wall at rz ≈ 0.2, indeed, disappears for X ≥ 16.9.

Close to the downstream convex–concave change of curvature at X ≈ 17.1, a second
internal layer is formed, in agreement with previous observations (see for example Webster
et al. 1996b). Unlike the first internal layer, however, this one has a minor effect on the
velocity fluctuations, because it develops across a smaller pressure gradient and for a
shorter spatial extent. This is consistent with the wall-curvature parameter �κ+ being
smaller here than upstream (see § 3).

Further downstream, in the (small) recirculating region for 16.3 ≤ X ≤ 17.6 the
near-wall contribution of 〈δwδw〉 to the turbulent kinetic energy increases. This is
due to the impinging flow upon reattachment, which reorients vertical and streamwise
fluctuations into spanwise ones (see for example Chiarini et al. 2022a, and section § 5.3).
The recirculation affects streaks and QSVs only marginally. Figures 10 and 6 confirm that
there is no downstream evolution of the maxima

〈
δuiδuj

〉
m for 16.3 ≤ X ≤ 17.6. Clearly,

this is due to the marginal recirculation created by the tiny bump. Mollicone et al. (2018),
for example, found that a higher bump with a larger recirculation leads to a streamwise and
wall-normal stretching of the flow structures.

Lastly, in R4 the flow is attached again, and gradually recovers towards the canonical
plane channel flow. However, as visible in figure 6, during the recovery 〈δuδu〉, 〈δvδv〉
and 〈δwδw〉 peak at different streamwise positions, i.e. X = 17.8, X = 21 and X = 20
respectively. The energy associated with the streamwise velocity streaks is maximum just
after the reattachment, where streaks have been intensified by the adverse pressure gradient
in R3. The peak position of 〈δvδv〉m and 〈δwδw〉m, instead, are found more downstream.
This is consistent with the results of Marquillie et al. (2011). They observed that, near the
peak of the turbulent kinetic energy k just downstream the bump, which coincides with the
peak of its largest contributor 〈δuδu〉, the streaks become unstable and break down into
smaller structures, which further downstream evolve into hairpin-like streamwise vortices,
so that the reorganisation of the fluctuations in the vertical and spanwise components
occurs later than the streamwise one.

5.2. Production of turbulent kinetic energy
Figure 11 plots the production terms for 〈δuδu〉 and 〈δvδv〉 in regions R3 and R4. The
map of P11 shows that streamwise energy is drained from the mean flow to feed the
streamwise fluctuating field almost everywhere, except in a thin near-wall region close to
the mean-flow reattachment point (see figure 12). The scales and wall-normal distances
identified by the positive local maxima of P11, i.e. rz ≈ 0.2 and �Y ≈ 0.02, indicate
that the streamwise velocity fluctuations are again mainly sustained by the interaction of
the wall cycle with the mean flow. In R3, P11 increases with X, consistently with the
strengthening of the streaks observed above in § 5.1; this is also shown by the downstream
evolution of the local maximum of P11, which is P11,m = 0.096 at X = 17 and increases
to P11,m = 0.12 at X = 17.5. The global maximum of P11 is found close to the maximum
of 〈δuδu〉, just after the flow reattachment at (X, rz, Y) = (17.68, 0.2, 0.09), in agreement
with the results of Marquillie et al. (2011).

In the near-wall region close to the flow reattachment point, i.e. in the range 17.45 ≤
X ≤ 18 at �Y ≤ 0.02, streamwise energy is drained from the fluctuating field to feed
the mean flow at all scales: figure 11 shows a very thin region with slightly negative
P11 (see also the near-wall zoom of figure 12). This negative region results from the
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Figure 11. Production terms P11 (a) and P22 (b). See caption of figure 10 for contour lines and isosurfaces.
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Figure 12. Zoom of the production term P11 in the recirculating bubble at X = 17.75. The black thick line is
for P11 = 0. The black thin lines indicate isovalues of P11, with an increase of 0.0002.

positive ∂U/∂x, which corresponds to an acceleration of the reverse/forward near-wall
mean flow in the region downstream/upstream of the reattachment point. Interestingly,
the same negative production due to the mean-flow acceleration has been observed in
the separating and reattaching flow past an elongated rectangular cylinder (Chiarini et al.
2022a); this suggests that a near-wall region with negative production is a general feature
of reattaching flows.

The production term for 〈δvδv〉 is almost two orders of magnitude smaller than P11. In
R3, P22 is negative, with its local minima related to QSVs. Hence, QSVs are energised by
the mean flow in the upstream side of the bump, but release energy back to the mean flow
in the downstream side. The negative peak of P22 moves away from the wall as X increases.
At the same time, a positive P22 appears near the wall, close to the convex–concave change
of curvature. This layer with P22 > 0 thickens, and its intensity increases, until in R4
(for X � 18) it extends for all Y . The maximum intensity of P22 occurs at (X, rz, Y) ≈
(18, 0.18, 0.07). Further downstream, it gradually decreases to become eventually zero as
for the plane channel flow.
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Figure 13. Pressure–strain terms Π11 (a), Π22 (b) and Π33 (c). See caption of figure 10 for contour lines and
isosurfaces.

5.3. Redistribution of turbulent kinetic energy
Figure 13 plots the pressure–strain terms for the three normal components of the structure
function tensor. Four different redistribution mechanisms take place in regions R3 and R4;
two are localised near the wall, and the other two exist at larger Y .

Along the convex portion of the bump, the TGVs progressively vanish under the
action of the pressure strain, which, close to the wall, reorients the spanwise fluctuations
into vertical fluctuations. This explains the negative peak of Π33 at (X, rz,�Y) =
(16.7, 0.37, 0.02), and the positive peak of Π22 at the same scales and positions. Moving
downstream, this redistribution mechanism is absent already at X ≈ 17, as the TGVs do
not survive for long (see § 5.1).

The second redistribution mechanism occurs at larger wall distances (Y ≈ 0.2) and can
only be seen for X ≤ 17.2. Here, the energy of the streaks advected from the bump tip is
partially redistributed towards the cross-stream components and feeds the QSVs. The local
negative minimum of Π11 at (rz,�Y) ≈ (0.24, 0.1) and the local positive maximum of
Π22 and Π33 at (rz,�Y) ≈ (0.62, 0.07) and (rz,�Y) ≈ (0.32, 0.13) at X = 16.9 support
this scenario. For all the diagonal components, the quantity Πij + Pij is positive at these
scales and positions, implying that the interaction of the wall cycle with the mean flow is
a net source for the velocity fluctuations in the three directions, with the streamwise ones
being sustained by production, and the cross-stream ones by redistribution.

In R3 a third redistribution mechanism originates near the wall at X ≈ 16.9, and acts
again to partially reorient streamwise fluctuations into cross-stream ones; see the negative
and positive peaks of Π11 and Π33 at X ≈ 16.9, �Y ≈ 0 and rz ≈ 0.2 in figure 13(a,c).
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Figure 14. Pressure strain termΠ33 is the Y–rz plane with minimum Cf . Panel (a) is for the bump that induces
separation after the tip (considered in this work). Panel (b) is for the bump G2 of Banchetti et al. (2020) that
does not induce flow separation. The cross in panel (a) highlights the near-wall local peak of Π33. See caption
of figure 10 for contour lines.

It is associated with the inner layer generated after the convex–concave change of
curvature; its intensity and vertical extent grow with the streamwise coordinate (note the
streamwise evolution of the corresponding peaks of Πij), and at X � 17.4 becomes the
main redistribution process active in R4.

Lastly, the fourth redistribution mechanism is at work close to the mean-flow
reattachment point and inside the recirculating region. Here, Π11 and Π33 are positive,
with Π22 < 0: this is the statistical signature of the flow impinging (see the figure 14(a)
for a zoom ofΠ33 at X = 17.42). In this region,Π33 > Π11, and the local peaks ofΠ22 and
Π33 identify a small spanwise scale of rz ≈ 0.22. Hence, the pressure–strain preferentially
organises the velocity fluctuations in small-scale w-structures, similarly to the findings of
Chiarini et al. (2022a). This mechanism is expected to become more significant when the
recirculation is larger and more intense. To prove that these w-structures are associated
with the recirculating bubble, we consider an additional bump that does not induce
separation after the bump tip. This second bump has the same upstream part, but an
horizontal expansion factor of 2.5 is applied to the rear part; for further details see bump
G2 in Banchetti et al. (2020). Figure 14(b), plots Π33 for this bump, at the position of
minimum Cf (that in this case is positive as there is no separation). The absence of a local
peak ofΠ33 for�Y → 0, confirms that when the flow remains fully attached and does not
impinge on the wall, this redistribution mechanism does not occur, and the fluctuations do
not organise in w-structures.

6. Scale-space energy transport

In this section, the effects of wall curvature on the energy transfers are studied by means of
the fluxes of the scale energy

〈
δq2〉 = 〈δuiδui〉 (repeated indices imply summation), i.e. the

sum of the diagonal components of the structure function tensor (Marati, Casciola & Piva
2004; Cimarelli, De Angelis & Casciola 2013; Cimarelli et al. 2016). Differences from the
plane channel flow are highlighted.

The AGKE enables a precise description of the energy transfer through the field lines
of the fluxes and their divergence. In fact, the fluxes link scales and positions where
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production and dissipation are not balanced. Therefore, although energy is not bound to
be actually transported along these lines, and there is no causal relation between sources
and fluxes, the fluxes explain the different scales and positions where the sources peak,
and their field lines help to understand their spatial arrangement. This is not different from
other common definitions of fluxes or interscale transfer, which are adopted for example
with spectrally decomposed Reynolds stresses budget (Kawata & Alfredsson 2018; Lee &
Moser 2019).

Since the flow is dominated by convection, the mean transport ψmean
X,ii = 〈

U∗δq2〉 in the
X direction overwhelms the other contributions to the vector of fluxes, whose residual
scale dependence is minimal. For conciseness, hereafter the repeated indices are omitted
and the compact notationΦ = (ψX, ψY , φz) is used to signifyΦ ii = (ψ1,ii, ψ2,ii, φ3,ii). To
appreciate the inter-scale transfers, the mean convection can be removed by considering
the two-dimensional flux vector Φ ′ = (ψY , φz) in the (Y, rz) subspace with rx = ry = 0,
evaluated at different X positions. In this subspace, the budget equation for

〈
δq2〉 is written

by moving ∂ψX/∂X, ∂φx/∂rx and ∂φy/∂ry to the right-hand side to form an extended
source ξ ′

∂ψY

∂Y
+ ∂φz

∂rz︸ ︷︷ ︸
∇·Φ ′

= P − D − ∂ψX

∂X
− ∂φx

∂rx
− ∂φy

∂ry︸ ︷︷ ︸
ξ ′

. (6.1)

The flux vector Φ ′ describes how
〈
δq2〉 is transferred in the Y direction and across

spanwise scales. Its field lines convey directional information, whereas its divergence
∇ ·Φ ′ provides quantitative information about the energetic relevance of the fluxes. When
∇ ·Φ ′ > 0, the fluxes are energised by local mechanisms, whereas ∇ ·Φ ′ < 0 indicates
fluxes releasing energy to locally sustain

〈
δq2〉.

Figure 15 shows with colour maps the complete source term ξ defined in (2.8), together
with the field lines of the vectorΦ ′ coloured with its divergence. A large source is found at
�Y ≈ 0.1, due to the production mechanisms discussed in § 4.2 and § 5.2; it shrinks and
weakens before the bump tip at the end of R2, but enlarges and strengthens after the tip in
R3 and R4. Sinks, instead, are found in the near-wall region �Y → 0, at the channel
centre Y → h and at the smallest scales rz → 0, where viscous dissipation dominates
and destroys the fluctuating energy. The field lines of the flux vector originate from the
so-called driving scale range (DSR), i.e. a singularity point of the flux vector generally
placed in a source region (Cimarelli et al. 2013). Here, fluxes are locally energised, i.e.
∇ ·Φ ′ > 0. The field lines are then attracted to the sinks, where they release energy to
locally sustain the fluctuations, and ∇ ·Φ ′ < 0.

In the turbulent plane channel flow, the singularity point is found at (rz,�Y) ≈
(0.27, 0.06), or (r+

z ,�Y+) ≈ (52, 12), close to the maximum of ξ (see the plane at
X = 15.8). Some field lines vanish at rz → 0, with a classic direct energy transfer from
larger to smaller scales. Others, instead, are attracted by the wall and by the channel
centre, and release energy at both larger and smaller scales, with the coexistence of
ascending/descending and direct/inverse energy transfers (Cimarelli et al. 2013; Chiarini
et al. 2022b).

In R1 the fluxes resemble those of the plane channel. From a quantitative viewpoint,
however, the mild adverse pressure gradient in R1 moves the DSR towards the wall and
towards smaller scales; for X = 15.8 the DSR is at (rz,�Y) = (0.23, 0.05), while for X =
16.3 it moves to (rz,�Y) = (0.15, 0.01). In R2, instead, the DSR moves towards larger
scales, in agreement with the downstream evolution of the near-wall structures discussed
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Figure 15. Colour map of the complete source term ξ on selected planes (where the black contour line
indicates the level ξ = 0), and field lines of the flux vector Φ ′, coloured by the flux divergence.

in § 4; for example the singularity point moves from rz = 0.15 at X = 16.3 to rz = 0.26 at
X = 16.6.

Immediately after the bump tip, the adverse pressure gradient in R3 moves the DSR
further from the wall and towards larger rz; at X = 17, the singularity point is at (rz,�Y) ≈
(0.6, 0.13) or (r+

z ,�Y+) ≈ (76, 18). This is, once again, consistent with the streamwise
evolution of the structures advected from the bump tip. Note that, at these X, before
releasing energy at �Y → 0, the lines directed towards the wall are further energised by
the positive production of the internal layer (see the map of P11,b in § 5.2) at �Y ≈ 0.1.

Further downstream in R4, the source related to the internal layer strengthens, and a new
DSR appears close to the wall. At X = 18.8 the previous DSR is at (rz, Y) ≈ (1.5, 0.2),
while the new DSR is at (rz, Y) ≈ (0.28, 0.1). Here, the field lines indicate for Y ≥ 0.2
an ascending transfer of energy towards the channel centre, and a descending transfer for
Y ≤ 0.1. For intermediate positions, i.e. 0.1 ≤ Y ≤ 0.2, the field lines connect the top
and bottom singularity points. The colour of the field lines confirms that the fluxes are
mainly energised by the new DSR, in agreement with the larger intensity of the associated
production mechanism (see § 5.2).

Later downstream, the intensity of the new DSR increases, while the previous DSR at
larger Y progressively weakens and eventually vanishes. At X = 22, the effect of the bump
disappears: the fluxes recover those on the plane wall, and are fully sustained by the new
DSR.

The above description may be useful for its modelling implications in large eddy
simulations (LES). In LES, scales larger than the filter length scale (or local grid size) Δ
are resolved, while those smaller thanΔ (subgrid motions) are modelled. Before selecting
the model and Δ, one may want to identify the cross-over scale 
cross that separates the
smaller scales dominated by forward energy transfer from the larger scales dominated by
reverse energy transfer. When Δ < 
cross, the subgrid motions are dissipative and models
based on the eddy-viscosity assumption can be employed. WhenΔ > 
cross, instead, more
sophisticated modelling approaches are needed, as the energy of the subgrid motions is
fed into larger scales. A good estimate of the cross-over scale in the spanwise direction,

cross,z, is the smallest scale rz at which ξ = 0. For smaller rz, indeed, ξ < 0 for all
Y , which implies a net energy sink and therefore dissipative motions. As the near-wall
turbulence evolves along the bump, 
cross,z is affected by the wall shape and leads to
a more strict requirement for spanwise grid resolution, or modelling approach, in the
downstream side of the bump. According to our data, the evolution of 
cross,z with X
resembles that of the characteristic spacing of the streaks; the value of 
cross,z increases
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over the upstream side of the bump, being 
cross,z = 0.062 or 
+cross,z = 11 at X = 15.8
(region R1) and 
cross,z = 0.073 or 
+cross,z = 26 at X = 16.6 (region R2), and decreases
over the downstream side of the bump to 
cross,z = 0.053 or 
+cross,z = 7 at X = 17 (region
R3), progressively recovering the channel flow value in R4.

Phenomena such as flow separation, flow recirculation and flow impinging also set
strong grid resolution requirements, particularly in the streamwise direction (Kuban et al.
2012; Mollicone et al. 2018).

7. Concluding discussion

In this work the effect of a localised mild curvature of the wall on the structure of
near-wall turbulence and its sustaining mechanism is described. The study builds upon
a DNS database produced by Banchetti et al. (2020) for a turbulent channel flow where
a small-height bump on one wall introduces a sequence of concave–convex–concave
changes of curvature. The two-point statistical analysis employs the AGKE (Gatti et al.
2020), i.e. a set of budget equations for each component of the structure function tensor,
considering simultaneously the space of scales and the physical space. Besides a detailed
scale-space characterisation of near-wall turbulence in the different regions of the flow, in
this work we provide, for the first time in such configuration, statistical evidence of TGVs
over the upstream concave portion of the bump.

The Reynolds number considered in this work, albeit rather low, is representative
of interesting applications. For example, the flow in human arteries can reach similar
values of Re, especially in the presence of severe stenoses in the internal carotid artery
(Berger & Jou 2000), and poses interesting questions regarding turbulence modelling (Lui
et al. 2019). The global scenario is expected to be qualitatively unchanged at higher Re.
Although the size of the recirculation region, the intensity of the production of turbulent
fluctuations over the bump tip, the size of the flow structures and the reattachment point
of the separating shear layer depend on the Reynolds number based on the bump height
(Kähler, Scharnowski & Cierpka 2016), the single- and two-point statistical features of the
flow remain qualitatively similar. This was recently confirmed by Mollicone et al. (2017,
2018); they studied by DNS the turbulent flow past a (larger) bump and found that the main
flow features are indeed substantially unaltered for 2500 ≤ Reb ≤ 10 000.

Changes of curvature and the ensuing local modifications of the streamwise pressure
gradients have been linked to changes of the turbulent near-wall cycle, its typical
structures (namely the low-speed streaks and the quasi-streamwise vortices) and the related
mechanisms of energy production, dissipation and redistribution. It should be noted that
the bump considered here protrudes from the wall only slightly: its height is comparable to
the average wall-normal position of the streaks, and lower than that of the quasi-streamwise
vortices. Hence, the bump directly interacts with the streaks, but its effects on the QSVs
are indirect. The whole near-wall turbulence cycle is affected, together with its statistical
description, which includes energy production and redistribution.

A primary effect of the small bump is to create a streamwise modulation of the pressure
gradient, which alternates between favourable and adverse. Based on its sign, and in
combination with the wall curvature, four regions can be defined in the flow; they are
shown schematically in figure 16. The upstream side of the bump is divided into regions
R1 and R2, with adverse and favourable pressure gradient, respectively. Depending on the
wall curvature, R2 is further divided into two subregions: R2.1 with concave curvature and
R2.2 with convex curvature. Regions R3 and R4 include the downstream side of the bump,
with adverse and favourable pressure gradients. R3 can be split into R3.1 and R3.2, with
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∂x  < 0∂P
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Figure 16. Sketch of the different regions in the flow over a bump. The oblique lines identify regions with mean
pressure gradient of alternate sign. The vertical dashed lines locate the streamwise position where curvature
changes sign. The thick blue line delimits the possible recirculating region.

convex and concave curvature. In R3 a recirculation may take place, depending on the size
and shape of the bump; the recirculation area is referred to as R3.3.

In R1 the adverse pressure gradient enhances the streamwise and vertical fluctuations,
yielding a local peak of the turbulent kinetic energy. In R2, instead, the mean flow
accelerates, and the turbulent activity decreases, until, close to the bump tip, the energy
flow reverses, i.e. from the fluctuating to the mean field. As a result, the streaks of
streamwise velocity weaken, their characteristic spanwise spacing increases and their
distance from the wall decreases. Moreover, the non-uniform V component enables the
mean field to sustain vertical fluctuations directly, feeding the quasi-streamwise vortices.
However, since QSVs are typically higher than the bump, the production of vertical
fluctuations is weak. In R2.1, where the curvature is concave, the near-wall velocity
fluctuations show a tendency to produce spanwise structures with a characteristic spanwise
scale of rz ≈ 0.3, which are interpreted as the initial stage of developing TGVs. As far as
we are aware, this is the first time that such structures are detected in the turbulent flow
over a bump. The limited streamwise extent of the upstream concave portion of a bump
prevents their complete development, and the noisy turbulent background makes them
hardly visible in an instantaneous snapshot. The dynamics of these structures is dominated
by pressure–strain, and their generation is accompanied by an intense redistribution of
energy; close to the wall streamwise and (to a lesser extent) vertical fluctuations are
reoriented into spanwise ones. As expected by stability arguments, the TGVs grow under
the influence of the concave wall, but are annihilated as soon as the wall turns convex in
R2.2. Here the main actor is again the redistribution operated by pressure–strain, which
reorients their near-wall spanwise fluctuations into vertical ones.

In R3, after the bump tip, the velocity streaks strengthen again, and progressively recover
their unperturbed characteristic spanwise spacing. Here, a new production mechanism is
at work, draining energy from the mean flow to feed streamwise fluctuations, at all scales
and positions, while vertical energy goes from the fluctuating to the mean field. Unlike
upstream, in R3.2 the concave curvature induces only a small perturbation to the flow,
and new TGVs are not observed. The recirculation in R3.3 is rather limited, owing to
the small height of the bump. Its dynamics is driven again by pressure–strain, which acts
near the impingement area to organise the near-wall fluctuations into small-scale spanwise
structures. Eventually, in R4 the near-wall cycle slowly recovers its canonical state over a
plane wall.

The analysis of the energy production and of the scale-space energy transfers may be
useful from a modelling perspective. In some regions of the flow, the production terms P11
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and P22 for streamwise and vertical fluctuations are negative. This is a serious challenge
for turbulence closures, as, for example, RANS models based on the classic mixing length
approach would be unable to represent it (Cimarelli et al. 2019). Moreover, based on the
scale-space energy transfers and on the energy source term, we have shown the influence
of the localised change of curvature on the spanwise cross-over scale 
cross,z, that is needed
for selecting the proper filter scale in LES simulations. A good candidate for 
cross,z is the
smallest spanwise scale for which the source term ξ is zero. By examining the streamwise
evolution of 
cross,z, our data show that the requirements for the spanwise grid resolution
and/or subgrid modelling approach are more strict over the downstream side of the bump.

Statistical quantities presented in this paper are available online at the following DOI:
https://doi.org/10.5281/zenodo.7879911.
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