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Abstract

An investigation is made of a hybrid method inspired by Riccati transformations and
marching algorithms employing (parts of) orthogonal matrices, both being decoupling
algorithms. It is shown that this so-called continuous orthonormalisation is stable and
practical as well. Nevertheless, if the problem is stiff and many output points are required
the method does not give much gain over, say, multiple shooting.

1. Introduction

Consider the ordinary differential equation (ODE)

% = A(t)x+f(t), / e ( 0 , l ) , (1.1)

where /(<) is an n-vector function and A(t) an n X n matrix function, both

being at least continuous. Wherever it turns out to be more practical we shall

write x rather than — •
dt

We assume that we have boundary conditions (BCs)

B°x(0) + Blx{l) = b, (1.2)

(B°, B1 G R"x" and b e R"), by which the solution x of (1.1) is uniquely

determined.
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[21 Linear boundary value problems 283

There exists a host of methods for obtaining numerical approximations of x
satisfying (1.1) and (1.2). In this paper we are interested in two special ones, or
rather a hybrid version of them, viz. the Riccati method and the stabilised march.
The former method is attractive because it is able to split (1.1) into both a stable
initial value ODE and a stable terminal value ODE, by some appropriate
transformation, before discretisation.

This gives good hopes that one may handle stiffness, which occurs when (1.1)
has a large Lipschitz constant, like in initial-value problems after discretisation.
The big problem with the Riccati method lies in the fact that such a transforma-
tion may not exist on the entire interval (see however [7]). The stabilised march,
on the other hand, employs (parts of) orthogonal matrices, is indeed stable and
moreover can be performed straightforwardly, but for a discretised problem only
(cf. [12]). Since in that method the underlying discretisation has to be done before
transformation (or decoupling, cf. [9]), it is clear that it is unsuited for stiff
problems.

It is very natural then that various authors, notably Davey [3] and Meyer [11],
have tried to combine the virtues of both methods into a class of hybrid methods,
to be called continuous orthonormalisations.

The main incentive to write this note is that we believe that the properties of
continuous orthonormalisation methods (good and bad) become more transparent
when viewed as decoupling techniques. In particular this is useful to understand
their stability. Their efficiency turns out to be quite a delicate problem. The
crucial question here is of course to ask what we have gained compared to other
methods, in particular when stiffness problems occur. In principle, one might
hope to tackle stiffness problems successfully when the rotational activity of the
fundamental solutions belonging to (1.1) is not large with respect to other time
scales. Indeed, as was shown in e.g. [9], the activity of decoupling transformations
commensurates with rotational activity of these fundamental solutions.

Unfortunately, for the implementation suggested in [11], stiffness does cause
problems, in the sense that in the backward sweep the stepsize is dictated by the
Lipschitz constant in general. We shall give an explanation for this, and also
indicate how to improve the situation when classical invariant imbedding is
employed as well. But before that, we give an overview of decoupling transforma-
tions consisting of (parts of) orthogonal matrices, both continuous and discrete,
and their consequences for actual numerical algorithms. We remark here that
there exist other blends of the Riccati method and the stabilised march; in
particular we mention [8] and [13], where algorithms are given that have more
robustness and efficiency than either one of the two.

This paper is built up as follows. First we describe Lyapunov equations in
Section 2, showing that both Riccati transformations and orthogonal transforma-
tions may be used for appropriate decoupling; we also briefly discuss the choice
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for the initial values. Then in Section 3 we consider discrete analogues, notably
multiple shooting and marching techniques, as one might view the algorithm in
[11]. Finally we give an instructive numerical example in Section 4 to illustrate the
foregoing analysis.

2. Transformations of the ODE

As is well known, transformation of the dependent variable x in (1.1) by a
linear nonsingular (time-dependent) transformation T leads to a kinematically
similar system ([2], p. 38). For the variable y := T'lx we obtain ([9])

y = A(t)y+f~(t), * e ( 0 , l ) , (2.1)

subject to the BCs

B°y(0) + B'yil) = b, (2.2)

where

A(t) = T-\t)A{t)T{t) - T-\t)t{t), (2.3a)

/(/) = T-\t)f{t) (2.3b)

and

B° = B°T(0), B1 = fi^l). (2.3c)

Equation (2.3a) is often written in the form

t=A(t)T-TA(t). (2.4)

Hence, (1.1) is transformed into (2.1) by a so-called Lyapunov equation for T
((2.4)).

Let Y be a fundamental solution corresponding to (2.1), i.e.,

Y = A(t)Y, Y(0) = In. (2.5)

Then a fundamental solution of the original system (1.1) is obtained by

X= TY. (2.6)
As was shown in [9], many numerical methods for solving BVPs utilise such a

transformation T (or an analogue in the discrete case) that A has a decoupled
form, sayyl(/) is (block) upper triangular for all t e (0,1).

Under very general—and often prevailing—circumstances, this decoupling
naturally induces a splitting of the dynamics into a part that is stable for
increasing time and a complementary one that is stable for decreasing time. (For
the existence of such a dichotomy and its relation to well-conditioning we may
refer to [6]). More specifically, there then exists a partitioning of vectors and
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matrices

and A = A
U

such that (2.1) can be written as

h = AiO)yi + Al2{t)y2 + /i(0 (2-8a)
j>2 = A~22{t)y2+f2(t), r e (0,1). (2.8b)

If the system has been decoupled correctly, then (2.8b) will be stable in the
forward direction and (2.8a) in the backward direction. Using the invariant
imbedding technique, cf. [8], all integrations can even be performed stably in
forward direction.

Realising that (2.4) is actually not an ODE for T as such, but rather an
equation for both the unknowns T and A simultaneously, we see that we have n2

degrees of freedom for In1 variables. Hence, there is a trade-off between
requirements imposed on (the form of) A and T. Below we shall consider some
special choices for T (and A) (Sections 2.1 and 2.2). Moreover we discuss how to
find appropriate initial conditions for 7\0) (Section 2.3).

2.1. Riccati transformations
By prescribing A to be block upper triangular, i.e. setting A21 s 0, we may

hope that T can be prescribed to have the special form

(2.9)

Let us assume for the moment such a T exists, then this is the well-known Riccati
transformation (cf. [8], [9]). The matrix R satisfies

R = A21(t) + A22(t)R - RAu{t) - RAu(t)R, (2.10)

(being a Riccati equation for R). It can simply be checked that in this case we
have

,R A,-,

and that Y (see (2.5)) has such a block upper triangular form as well. Hence,
X:= TY is a fundamental solution of (1.1) with X(Q) = T(0).

From this relation we may conclude that
—By (2.9), (2.10) and (2.5) a block LU-decomposition of X is implicitly given.
—The first k columns of T(t) span the same subspace in R" as the first k

solumns of X(t). To obtain a correctly decoupled system (2.8), these columns
should represent (all) solutions of (1.1) which are not significantly growing for
decreasing t (see [9]).

https://doi.org/10.1017/S0334270000005816 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000005816


286 P. M. van Loon and R. M. M. Mattheij [s]

—R(t) = X2l(t)X{i(t). Hence, a solution of (2.10) exists as long as Xn, the
left k X k upper block of X, is invertible. One might therefore expect, from
analogy with matrix decomposition techniques, that some kind of permutation
may be necessary (cf. pivoting) when proceeding from 0 to 1; this question has
been investigated in [7].

2.2. Orthogonal transformations
A decomposition that does not need pivoting is the factorisation of a matrix

into an orthogonal and a (block) upper triangular matrix. If we would require
T(t) to be orthonormal, for all t, the process is called continuous orthonormalisa-
tion ([1]) and we trivially have

TJT+ TTf=0 (2.12)

(i.e. TTf is skewsymmetric). This reduces the number of degrees of freedom to
jn(n — 1), which is, as will be shown, just sufficient to make A an upper
triangular matrix. Hence, we have a unique solution of (2.4) (with respect to the
(orthogonal) initial value T(0)) subject to the conditions (2.12) and A upper
triangular.

A possible construction is as follows. Let C e R"x" be decomposed in

C = UJ + D + V, (2.13)

where U and V are strictly upper triangular matrices and D is a diagonal matrix.
Define the operator 0 by

$(C) = U + D + V. (2.14)

Note that $(C) is always an upper triangular matrix. We now have

PROPERTY 2.15.

Transformation of the system (1.1) by T, with T(t) orthonor-
mal, for all t, leads to an upper triangular system if and only if
A, defined by (2.3a), satisfies A = $(TTAT) ($ as defined by
(2.13) and (2.14)). (2.15)

PROOF. By (2.3a) and (2.12) we have $(A) = <b(T-lAT - T~lt) =
f) = $(TJAT). Moreover, A is upper triangular if and only if A =

Let

T=[T1 T2]n.

k n- k
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To make A only a block upper triangular matrix we need the relation (see 2.3a)

Note that this implies

(2.16)

where C u e Rkxk (note that C u depends on the choice of 7\). Furthermore, by
the orthonormalfty condition for Tlt

0 = t?Tx + T?tx.

So

Cn + Cl = T?{A + A^T, (2.17)

(cf. [4]). In a similar way we deduce from (2.12)

t2 = -AJT2 + T2C2\, (2.18)

where C22 e R("-*)x(«-*) (depending on 72) must satisfy

C22 + C 2
T

2 =T 2
T (^+> l T ) r 2 . (2.19)

For A we thus obtain the matrix

, = |c,, r ^ ^ (220)

Any choice for C u and C22 satisfying (2.17) and (2.19), respectively, is possible.
For instance:

(i)

(cf. [3], [11]) and

(ii) Cn and C22

(iii) Cu and C22

Cn = T?ATX

C22=T2
JAT2

symmetric (cf. [2]):

Cn = K
C22 = \T2

upper triangular:

Cu = <

C22 = <

(i.e. Tx\

(i.e. T2
Tt

T(A+AT]

\>{T?ATX)

1>(T2
yAT2)

K = o) (2.21a)

(2.21b)

(2.22a)

(2.22b)

(2.23a)

(2.23b)
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(see Property 2.15). We do not have a preference for any choice, although the first
one may be slightly more efficient for computational purposes, as can be seen
from

PROPERTY 2.24.

By the choice Cn = Tl
JATl the quantity ||7\(/)|| is minimal for

each t (where we assume jj • || to be the Ffobenius-norm or the
2-norm. (2.24)

The equivalent is true for C22 = T2
JAT2 and ||t2(0||.

PROOF. This property directly follows from Theorem 8.1-10 of [5], which is
also valid for the 2-norm and for nonsymmetric A.

The following result, that justifies the use of initial value integration techniques,
applies to any of the choices (i), (ii) or (iii).

PROPERTY 2.25.

Let f= [fj^] satisfy (2.16)-(2.19) with Tf.= t}(j = 1,2). Assume that along f
as a function oft there exist positive constants ax and a2 such that, for all t,

Amin(Cu + C î) = Xmia(f^(A + y4T)7'1) 3s 2ax (2.25a)

and

Xmax(C22 + C2\) = Xmas(f2
r(A + AT)f2) < -2<x2. (2.25b)

Then
(i) l im,^^ f(t)Tf(t) = In (i.e. f(oo) is orthonormal).

If, moreover, T(0) is orthonormal, then

(ii)
span (?\(0)) defines an unstable solution subspace. (2-26)

PROOF, (i) Observe that by (2.25) the differential equation

0 1
(2.27)Z =

0 C22
z + z 0 C22

has Z s 0 as an asymptotically stable solution. Since Z:= /„ — fyf, considered
as a function of /, is a solution of (2.27) the required result follows in a
straightforward manner,

(ii) Let
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(cf. (2.5), (2.6)). For every q e R* it follows from (2.25a) that ||yu(Ocill >
HcJI • exp(a1t), / > 0. Similarly from (2.25b) we see that, for every c2 e R""*,
ll̂ 22C')c2il < llc2ll " exP(-«2')> t > 0- Hence, 7\(0) induces a £>dimensional
manifold of unstable solutions (Tx{t)Yn{t)).

REMARK. Observe that the conditions (2.25) imply stability of the transformed
system (2.8) in the indicated directions. Moreover, orthonormality of the transfor-
mation matrix T can be seen as a stable property. In general, however, (2.25) may
not be satisfied. For numerical purposes therefore it seems worthwhile to change
the righthand side of (2.16) into ATX - T^T^T^C^, since then the relation

-j-(7\Tr1) = 0 is implied by (2.17), even if 7\ is not exactly orthonormal. A
similar update for C22 can be given. In [3] and [11] it is suggested that we may
restrict ourselves to the update (diag (T^T^}'1^, where diag(ri

TT1) stands for
the diagonal matrix containing the diagonal elements of T^TV

2.3. Initial values
So far we have not discussed how to find a suitable initial value 7(0) for (2.4).

There are some fairly generally applicable technbiques for this (cf. [8], [10], [12]).
If the BCs are separated (for instance occurring in Dirichlet problems) there is a
natural choice for T(0), which moreover economises on computational labour (see
next section). Assume the BCs are given by

n-k [B^ B^]x(0) = b2 (2.28a)

k [B\1B\1]x(l) = b1. (2.28b)

For a well-conditioned problem it is known (cf. [9]) that a continuous transforma-
tion T for which ||r|| ||y ~1|| is not large and

[52
0

1B2
0

2]r(0)=[OK2
0

2], (2.29)
(where K22 e R(«-*)x(n-t) j s non-singular by the well-posedness), implies stabil-
ity of (2.8) in the indicated directions.

The importance of the boundedness condition on ||7'||||7'~1|| is illustrated by
the next

EXAMPLE: consider the BVP

20 i o r '
subject to the BCs

x2(0) = 0 and x^l) + x2{l) = 1.

This is, as one may easily show, a well-conditioned BVP. The Riccati transforma-
tion corresponding to (2.29) is
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and

A(t)=[ -10 0
0 10]

Hence the system has not been decoupled correctly. (In fact there is no decou-
pling of increasing and decreasing solutions since both columns of T describe
directions of growing solutions.)

This example also illusiiates thai the stability of (2.8) should be global, not
local. Let z(t) = (e"10', e10' - e"10')7. Then for an orthogonal T we have

Tx(t) = z/\\z\\2 and Cn(t) = (lOe20' - 20e-20')/\U\\l
which moves rapidly from -10 to +10 as t goes from 0 to 1. This shows moreover
that the differential equation for 7\ (and T2) may be stiff. By Theorem 3.14 of [9]
we see that the choice (2.29), with T orthonormal, gives a correct decoupling of
the increasing and decreasing modes.

For more general BCs, (2.29) is not useful. However, theoretically we know that
for any dichotomic system separated BCs exist such that the resulting BVP is
well-conditioned ([6]). The construction of such separated BCs implicitly employs
a fundamental solution, which is yet to be computed. Hence, this result is not
directly applicable. However, in general, we may still find a reasonable starting
guess using the Schur factorisation: if Q is an orthogonal matrix, such that
QJA(0)Q is (quasi) upper triangular with ordered eigenvalues (cf. [8]), then
arguments related to the ones used in subspace iteration (including the QR
algorithm), make it very likely that this choice for Q induces the appropriate
decoupling.

3. Discrete analogues

In Section 2 we have indicated ways to transform the system (1.1) into a special
form. Typically such transformation methods may be seen as continuous ana-
logues of multiple shooting methods (cf. [1], [10]), to be discussed next.

3.1. Multiple shooting
Suppose (0,1) is divided into subintervals (t,,tl+l), i = 0 , . . . , m — 1, where

t0 = 0 and tm = 1. On each such subinterval let F'{t) indicate a fundamental
solution and p'(t) a particular solution of (1.1). Then we have a sequence of
vectors v' for which

F-\t,)&-x + p--l(t,) = x(ti) = F'{t,)o' + p'it,), (3.1)
(/ = 1, . . . , m). This leads to the one-step recursion (n.b. det F'{t,) + 0)

»' = (F'(0)~V'~1('>/-1+/>I-1(0 -/>'(',)}, (3-2)
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which is, together with the BCs,

B°F°(to)v
0 + BlF"{tm)v» = b - B°p°(to) - Blpm(tm)

a discrete analogue of (1.1), (1.2) respectively.
By introducing a sequence of (time-independent) discrete Lyapunov transforma-

tions {T'}™=Q we can transform (3.2) into a one-step recursion with incremental
matrices of a special form. Defining

* ' : = [Fi+1{ti+1))-
lF-{t,+l)

this leads via

y<:= (T'+l)'lX'T',

0':= (7")~V
to the recursion

For every kind of transformation discussed in Section 2 there is a discrete
counterpart {T'}?_0.

For instance: if all T' are orthogonal and such that Y' is upper triangular, then
T' = T(t,), where T is the solution of (2.4) with A = $(TTAT) (cf. Property
2.15), subject to T(0) = T°. Moreover, Y' is equal to Y{ti+l)Y-\tt) (see (2.5)).

3.2. Marching techniques
The above remarks are also true when the BCs are separated. Assume the BCs

are given by

n-k [52° B$2]x(0) = b2 (3.3a)

k [B\lB\7\x{l) = bl. (3.3b)

Then we need to compute just a part of a fundamental solution (marching
technique, cf. [12]). Let p be a particular solution of (1.1) satisfying

and X a fundamental solution with

Any solution of (1.1) can now be written as

*(') =

By the special choice of p(0) and A"(0) we obtain c2 = 0. Hence

*(<)-K)
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and only X1 (the first k columns of X) has to be computed. If the continuous
transformation T is such that A21 = 0 (cf. (2.3a)) and 7\(0) = ^(0), then
Xx = TjYn, where Yn is the solution of

5 n = 4 i ( 0 r u . Yn(0) = Ik

(see (2.5)). Observe that the computation of a particular solution still includes the
original stability problem. The transformation y:— T~lx will not help us much
since the coefficients in the ODE

are depending on T2 which is unknown, except for the Riccati case.
One possibility to solve this problem is to define z:= (I — TxT^)p and X by

x = 7\A + z (cf. [4], [11]). One can show that z is the solution of

(0,1), subject to

(3.4b)

and X the solution of

X = Cn(t)X + ri
T(/)((^JT(O + >4(0)*(0 + / ( 0 ) . (3.5a)

t e (0,1), where the value of X(l) is determined by the relation

[B\1B\2](Tl(l)X(l) + z(l)) = bv (3.5b)

As one can see, solving (3.5) will be a tedious matter, since X has to be computed
in a backward sweep. For this reason Meyer ([11]) suggests to solve (3.4) and to
determine x(l) as in (3.5b). Hereafter the solution is computed by solving the
terminal value problem

x = A(t)x+f(t), * e ( 0 , l )

JC(1) known. { }

To control the inherent error, the solution is projected into the solution
manifold spanned by z and the columns of Tv at a priori determined points. By
this projection the error is not directly damped out, but its direction is such that
by further integration it initially will decrease.

Since most of the stability problems are still present in (3.6) (which may lead to
a very large number of projections) it seems better to use an invariant imbedding
formulation. Let {/,} be the points where output is required and define R'n and
g'(/ = 0 , . . . , WJ) by the relation

\(tl) = R[1(t)\(t) + g'(t), te(t.,t,+i).
Then for t e (/,., tl+l) we obtain the ODEs

b' — i>< r 11\ J)' (t \ — I (1 i\

Kn A n C n ( f J , Jt-nVi) — 1k K51)
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(3.8)
l&'--R[l(t)Tl\t){(X

r(t)+A(t))z(t)+f(t))

U'(0-o.
Now all ODEs are stable and can be solved from the left to right. Especially for
stiff problems with just a few output points, this formulation may be useful.

4. Example

The following example is very simple, but illustrates quite nicely the features of
the previously discussed methods. Let x satisfy

subject to
x2(0) = 0 and + x2(l) = 1. (4.1b)

(exact solution: x(t) = (<,-<•>('+!), e«o-i) _ <r"('+1>)T). Observe that in this ex-
ample Tx is one-dimensional, so C n of (2.16) is unique.

The performance of continuous orthonormalisation combined with the back-
ward sweep (3.6) is hard to check, since there is no adaptive strategy for choosing
the projection points. In this example, solutions are in both directions growing
like exp(«/). Assume 7\ is determined with an accuracy 8, and x is to be
determined within a prescribed tolerance e. To control the error, the distance A?
between two projection points must then satisfy the relation

S • e • exp(wA/) < E, (4.2)

so A/ < In8/w. Although this restriction looks quite disastrous, it is less dramatic
in practice since the error in 7\ will mainly be in the direction of 7\ itself. Not
counting the attempts with too many and/or too few projection points, we
obtained the following results (see Table 1):

TABLE 1. Results on the Burroughs B79O0 of the Eindhoven University of Technology for solving
(4.1) with (2.16) and (3.6). As integrator the Algol-procedure MULTISTEP is used, which is a
GEAR-like code. Accuracy: 10"6.

10
103

105

execution
time in sec.

0.49
1.35

22.39

number of
projection points

10
50

100

by (4.2) expected
number of projection

points

1
75

7250
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The results of continuous orthonormalisation combined with invariant imbed-
ding are more transparent. In Table 2 the execution times are shown for various
values of w. With 114 the output points were chosen as tt = i/4 (i = 0, . . . , 4) and
with 1110 as t, = i/10 (J = 0,... , 10), see Table 2.

These numbers show that the stiffness of the problem has only a minor
influence on the performance of the code (the results became even more accurate
as w increased). This is jusi what one should expect since, after an initial layer,
the stepsize is mainly determined by the smoothness of the outer solution.

TABLE 2. Execution times in sec. on the Burroughs B7900 of the Eindhoven University of
Technology for solving (4.1) with (2.16) and (3.7). Integrator: MULTISTEP. Accuracy: 10~6.

114

mo

u = 10

0.39
0.56

u = 103

1.18
3.05

<o = 105

1.35
3.34

<o = 107

1.30
3.83

5. Conclusion

From the foregoing analysis, we believe that we have demonstrated that
continuous transformations may be an alternative for multiple shooting methods.
Especially when in both directions the solutions are growing very fast, the merits
of an adaptive stiff integrator may be used to gain a lot of computational time.
How much can be gained, strongly depends on the rotational activity of the
dominant solutions. If this activity is mainly within the dominant solution space a
Riccati transformation or formulation (2.21) may be used. The resulting ODEs
will then be stiff. If, however, the dominant solution space itself is rapidly
rotating, then the Riccati transformation will need too many restarts, and hence is
not advisable. The solution of (2.16) will be a rapidly oscillating function and
therefore (2.16) is hard to solve. However, for these kinds of problems any
solution method will meet difficulties.

The backward sweep (3.6) is not recommendable, since in the nonstiff case
multiple shooting will do, and in the stiff case it is much more expensive than the
invariant imbedding formulation, since too many projections will be necessary.
Moreover, the projection points cannot be determined adaptively.

References

[1] I. Babuska, "The connection between the finite difference like methods and the methods based
on initial value problems for ODE", in Numerical Solutions of Boundary Value Problems for
Ordinary Differential Equations (ed. A K. Aziz), (Academic Press, New York, 1975).

https://doi.org/10.1017/S0334270000005816 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000005816


[14] Linear boundary value problems 295

[2] W. A. Coppel, "Dichotomies in Stability Theory", Lecture Notes in Mathematics 629 (Springer-
Verlag, Berlin, 1978).

[3] A. Davey, "An automatic orthonormalization method for solving stiff BVPs", J. Comput. Phys.
51 (1983) 343-356.

[4] T. Eirola, "A study of the Back-and-Forth shooting method", Ph.D. Thesis, Helsinki University
of Technology, Finland, 1985.

[5] G. H. Golub and C. F. van Loan, Matrix computations (North Oxford Academic, Oxford,
1983).

[6] F. De Hoog and R. M. M. Mattheij, "On dichotomy and well-conditioning in boundary value
problems", SIAM J. Numer. Anal. 24 (1987) 89-105.

[7] H. B. Keller and M. Lentini, "Invariant Imbedding, the Box Scheme and an Equivalence
between them", SIAMJ. Numer. Anal. 19(1982)942-962.

[8] P. M. Van Loon, "Riccati transformations: when and how to use?", in Numerical Boundary
Value ODEs (eds. U. M. Ascher and R. D. Russell), Progress in Scientific Computing 5
(Birkhauser, Boston, 1985).

[9] R. M. M. Mattheij, "Decoupling and Stability of Algorithms for Boundary Value Problems",
SIAM Rev. 27(1985)1-44.

[10] R. M. M. Mattheij and G. W. M. Staannk, "An Efficient Algorithm for solving general linear
two point BVP", SIAMJ. Sci. Statist. Comput. 5 (1984) 745-763.

[11] G. H. Meyer, "Continuous Orthonormalization for Boundary Value Problems", J. Comput.
Phys. 62 (1986) 248-262.

[12] M. R. Osborne, "The stabilized march is stable", SIAMJ. Numer. Anal. 16 (1979) 923-933.
[13] M. R. Osborne and R. D. Russell, "The Riccati Transformation in the Solution of Boundary

Value Problems", Univ of New Mexico Dept. Maths. Rep., Albuquerque, 1985.

https://doi.org/10.1017/S0334270000005816 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000005816

