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The CHAIRMAN, 1n introducing the Author, described the subject of his
paper as one of paramount importance to all who were concerned in the
design and operation of helicopters Mr ROGERs was an indentured aero-
nautical engineer apprentice at the Fairey Aviation Company from 1940 to
1946, during which time he obtamned the Ordinary and Higher National
Certaficates 1n Mechanical and Aeronautical Engineering  He was awarded
an S B A C scholarship to the College of Aeronautics mn 1946 and obtaned
a diploma with distinction 1n Aircraft Design

Returning to the Fairey Aviation Company 1n 1948 as a stressman, he
worked on fixed wing aircraft from 1948 to 1950 and on rotary wing aircraft
from 1950 onwards He was appomnted Assistant Chief Stressman (Rotary
Wing) 1n 1953 and was at present responsible for the strength assessment
and airworthmness of all the Fairey Awviation Company’s helicopter rotor
blades and heads

MR V A B ROGERS

SUMMARY

This paper outlines some of the overall problems associated with the
strength assessment of a Helicopter Rotor Blade

A picture of the dynamucal behaviour of the aircraft and its rotor 1s
presented From thss all the necessary data for the strength assessment can
be obtamned (e g, Blade deflections, Shear Force and Bending moment
diagrams)

The different dynamical conditions associated with a complete “ Ground
to Air ” flight cycle are considered, and the problem of * Ground Resonance *
1s shown to be only a particular case of the ““ lag plane  forced oscillation
problem

The calculation of the aerodynamic forcing loading, used in conjunction
with the dynamical equations, 1s discussed, and an estimate of the necessary
modification, to bring the calculated blade stress levels into line with those
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measured on the actual aircraft, 1s given

A brief outline of some typical fatigue problems 1s given and a comparison
made between the estimated and actual life of a typical blade component

It 1s concluded that a theoretical strength assessment will prevent many
a design pitfall, but that 1t 1s necessary to verify the results obtamed by
adequate flight and structural testing in order to produce ~ safe aircraft

INTRODUCTION

A rotary wing arrcraft, whether on the ground or 1n the arr, 1s basically
a complex dynamical system, and consequently the behaviour of 1ts rotor
blades 1s dependent upon the behaviour of the system as a whole Thus
the strength of a rotor blade can usually only be assessed 1n relation to a
given arrcraft configuration

It 1s the object of this paper, therefore, to build up a picture of the
arrcraft and blade motion for a typical ¢ ground-flight ” cycle, and to consider
the associated strength assessment problem

For completeness, mention will also be made of the British Civil Air-
worthiness Requirements (B C A R) relevant to the cases considered

THE AIRCRAFT ON THE GROUND

Arrcraft and Rotor Stationary

In this condition the rotor blade 1s usually only subjected to simple
static cases, the loading arising from handling and picketing considerations

Consequently, all the normal stressing methods applicable to static
arrcraft structures will apply and need not be detailed here

The B C AR requirements relevant to this case specify arbitrary loads
and deflections at the blade ttp (B CA R, Sec G3-13)

Arreraft Moving and Rotor Stationary

In this condition the rotor blade experiences pitching and vertical
acceleration due to “ towing > considerations

Since the blade 1s an elastic body, a simple dynamical problem 1s
presented The equations of motion for a typical system (Fig 1) are given
m Appendix 1, and the solution obtained It 1s important to realise, however
that the solution 1s very dependent upon the ““ nature * and * time of applica-
tion ” of the imposed accelerations, and 1t can be seen that the assumption
of a2 maximum acceleration of un-specified duration (typical of undercarriage
design cases) 1s unrealistic as 1t can give rise to an extremely large inertia
loading (especially 1n pitch) along the blade

The real problem 1n this case therefore, 15 that of specifying the type of
acceleration to be considered, and this 1s almost impossible to assess generally,
as much depends upon the type of surface over which the aircraft 1s towed
and the various towing techmque employed

For practical purposes therefore, 1t 1s usually necessary to design the
blade for a simple ultimate case based on a factored static blade weight, and
then to imvestigate the towing accelerations that can be tolerated (For
large rotors even a quite moderate ultimate factor of 2 5 constitutes a design
case which 1s not easy to meet)

The BC AR requirements relevant to this case are given in BC AR
Sec G3-5, and are supposed to give blade loads arising from towing consider-
ations
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The requirements are rather vague in the spectfication of the design
loads since they are supposed to be determined from ultimate  maximum
undercarriage reactions, which are quoted for each set of wheels mdepend-
ently (2 ¢ , main and nose) , thus no indication of the required pitching and
resultant vertical acceleration 1s given

If the priching acceleration 1s 1gnored, a possible nterpretation of the
requirement 1s a vertical acceleration of 1 25 g with an ultimate factor 2 0
gving a static design ultimate factor of 2 5 as previously mentioned

It should be realised therefore, that the specification of maximum
undercarriage acceleration 1n the present form does not define a design case
for the rotor blade at all

Fig 1 Co-ordinate
system for Appendix 1

ROTOR €

SPANWISE

¥

Thus there 15 a need to specify a realistic towing case, with 1its associated
acceleration (z e , type of acceleration and time of application) or alternatvely
a purely arbitrary ultimate factor on static blade weight

Awrcraft Stationary, Rotor Moving

This 15 the condition of the aircraft running-up on the ground prior
to take-off

We are now concerned with a more complicated dynamical system 1n
which we must consider the dynamical properties of both the aircraft and 1ts
rotating rotor

The dynamucal effects that usually give concern at this stage are those
described under the heading of “ground resonance,” but 1t should be
realised that these effects are only part of a more general dynamical problem

It 1s necessary therefore to consider this more general problem before
proceeding further

The General Dynamical Problem

The problem to be solved at this stage 1s the determination of the motion
of the elements 1n a three dimensional elastic system with certaimn space
freedoms, rotating about an axis connected to a non-rotating mass-spring >
system, the elements being subjected to external periodic forces

This represents the general case of a blade free to « flap” or “lag »
and bend elastically while rotating about an axis, elastically restrained n the
arrcraft body, while the body 1s free 1n space, or elastically fixed to the ground

A completely general solution for the above problem has not yet been
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atternpted, but if the “ flapping ” and “ lag ” plane motions are assumed to
be independent (surtable allowance being made for the “ cross terms * that
exist as a result of the combined motion, e g, ¢ 1nertia forces,” etc ) a com-
pletely general solution can be obtained for the simplified *“ two dimensional »
system (Fig 3)

An outline of the formal development of this two dimensional problem
18 given 1n Appendix 3

De-Couphing the Flap and Lag Plane Motion

In most physical systems, the elastic displacements are usually small
enough to justify the assumption of rectilinear motion, but when an elastic
displacement 1s supermposed upon a free body motion (z ¢, blade freely
flapping and bending) the accelerations resulting from the assumptions must
be carefully considered

A system considering ‘“ three dimensional ” displacement of a mass
rotating about a fixed axis (¢ g, free body motion with rectilinear elastic
displacements superimposed, see Fig 2) 1s considered in Appendix 2

The results obtained show the presence of a * Coriolis” inertia term
1n the lag plane equation resulting from the flapping plane free body motion,
and thus justifies (to the first order of small quantities) the introduction of
the “ Cortolis  1nertia force as an external applied force together with the
aerodynamic applied load in a de-coupled two dimensional lag plane system

Radial accelerations associated with this three dimensional system are
also obtamned, but generally these are small 1n magnitude when compared
with the centrifugal force

It 15 essential, however, to mclude these radial terms 1n any balance of
forces 1n * fixed directions ” (e g , at the rotor head) as neglect of these radial
terms will produce constant forces which do not exist (It 1s neglect of
these terms which led to error in Mr Payne’s lecture to this Association,
Ref 1, and 1n other of his published articles)

The General Two Dimensional Dynanucal Problems

The equations of motion and methods of solution are outlined 1n
Appendix 3, but 1t 1s instructive to see how the different physically observed
phenomena (e g , ground resonance) are related to the analytical solution

The equations of motion for the system yield a set of simultaneous
differential equations, the solution of which 1s 1n the form of * a complemen-
tary functton  (z ¢ , solutton for zero external applied force) and a ¢ particular
integral ” (z e , solution associated with the particular external applied force)

The complementary function gives information about the natural
vibration of the system (e g , modes and frequencies) whereas the particular
integral gives the amplification effects (e g, displacements) associated with
applied forcing loads (e g , oscillating blade loads)

It 1s the complementary function which tells us about “ ground reson-
ance ” since for a given combrnation of dynamical parameters a range of
rotor r p m exists over which the blade natural frequencies become complex
(see Fig 5a and Fig 5b) and this means that the displacements become
divergent over this range

The complementary function also defines the positions of the normal
blade resonance conditions (e g , forcing frequency comncident with natural
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frequency), but 1t should be noted that displacements associated with the
latter die down when the forcing load 1s removed whereas those associated
with the former do not

Once we are satisfied that the “ complementary function ” 1s not gomng
to give trouble (ze, aircraft operating away from resonance regions and
unstable ranges) we must then consider the ‘ particular integral ” which
assesses the effect of the forcing loads

During the “run up” of the rotor from zero to flight rpm, the
frequency of the forcing loads 15 continually changing but provided the run
up 1s suffictently fast, the steady-state particular integral solution does not
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have time to develop and thus 1t 1s only necessary to consider the particular
mtegral effects at take-off or other specified steady rpm  This procedure
1s justified since 1t 1s usually 1mpossible to assess the blade loading during
this transitional period and experience has shown that provided the rotor
rpm does not dwell at resonant conditions, no undue amplification need
occur (This, however, should always be checked experimentally since the
actual loads resulting are very dependent upon the starting procedure)

Finally, as the problem of forced oscillation on the ground is only a
particular case of the general flight conditions, this condition will be covered
by the considerations of the next section

THE AIRCRAFT IN THE AIR

Dynanucal Considerations wn the Awr

When airborne, the considerations of Appendix 3, sull apply, but 1n
this case, however, emphasis 1s removed from the contribution of the under-
carriage to the dynamucal characteristics and transferred to any other flexible
support for the rotor (e g, say flexibly mounted pylon) and also to the fact
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that the aircraft body 1s a mass which for small oscillations 1s unrestrained
1m space

Thus the general problem remamns but with a change of dynamical
constants It 1s therefore possible to have free air resonance (analogous to
ground resonance) as well as the usual problem of forced oscillation It
should also be noted that the amplification factors associated with the
forced-oscillation can be considerably modified by the inclusion of the body
effects (z e, the assumption of an axis of rotation rigidly fixed in space can
give musleading results)

Before discussing the forced oscillation problem 1n detail, however, it 1s
necessary to determuine the stressing cases and then to assess the magnitude
of the forcing loads

____/ PROVISIONAL DATA
a
e}
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The Fhight Envelope

The flight envelope for a rotary wing aircraft 1s mentioned in BC AR
Sec G3-2, but 1t 1s not defined since 1ts formulation 1s very dependent upon
the type of aircraft concerned

For fixed wing aircraft, a flight envelope 1s defined by the requirements,
and provided the strength 1s assessed at suitable pomts on 1t, the whole
envelope can then be considered as having been covered , also the aero-
dynamic loading 1s reasonably well defined and the calculated stresses are
usually quite representative of those actually encountered 1n practice

The specification of a helicopter flight envelope 1s, however, more
complex since there are more variables to consider than ‘ g’ and speed

It 15 useful, however, to consider a flight envelope of rectangular* form
with parameters similar to those used for ¢ fixed wing * aircraft but with the
independent variables (e g , rotor speed, flap angle, cyclic pitch, etc ) specified
at certan pomts on 1t (The type of rotor head decides which variables
are dependent and independent)

Having defined the flight envelope 1t 1s not always obvious which points
on 1t constitute design cases (e g , for the Rotodyne a high ¢ g’ hovering case
with rotor overspeed, can be just as critical as an off-loaded high speed case)
Thus 1t 15 necessary to perform some preliminary mvestigations before the
design cases can be specified, since these must be kept to a minimum 1f the
subsequent analysis 1s not to become prohibitive

The Aerodynanuc Loadmg

The spanwise distribution of aerodynamic loading associated with a
given design case can be derived by the applicauon of normal acrodynamic
theories and will not be detailled here However, 1t should be realised that
1t 15 only possible to deal with a few of the lower order harmonics of forcing
load (1 ¢, first and second order) if the resulting analysis 1s not to become
prohibitive, since the complexity of the loading equations imncreases consider-
ably as the harmonic order 1s increased Even then the estimation of the
lower order harmonics of forcing load usually mvolves much tedious
calculation, since the loading equations usually fill pages rather than lines

The loading resulting from such equations 1s then only approximate
since the induced velocity distribution, to which 1t partly owes 1ts ongin, 1s
not well defined by existing theories

It 1s true that theories exist which determine induced velocity distribu-
tions with sufficient accuracy for performance calculations, but there 1s no
manageable theory, to my knowledge, which accurately defines the magnitude
of the induced velocity at every point 1n the rotor disc

The presence of oscillating loads occurring during hovering fught, as
shown by strain gauge results trom the Fairey Gyrodyne, Ultra Light and
Rotodyne wind tunnel model (Fig 6), indicates the presence of an induced
velocity distribution which 1s not even constant with time

It 1s obvious therefore, that the calculation of the lower orders of
harmonic load, assuming a constant uniform induced velocity distribution,
can only be approximate It would therefore be pointless to attempt to
calculate lugher harmonic orders, where the accuracy of the result 1s very
dependent upon the accuracy of the imnduced velocity distribution

*A rectangular flight envelope 1s now defined for rotary wing arrcraftin AP 970 Vol 3
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Although the magnitude of the higher harmonic of loading decreases
as the harmonic order increases, the effects of the higher harmonic loading
cannot be ignored, as certain of the harmonic orders of loading have their
effects amplified by the nearness of their frequencies to the overtones of the
blade natural frequency

It 1s true that the actual harmonic which 1s being amplified can be
altered by changing the blade’s dynamical characteristics, but unless one of
the higher harmonics 1s almost coincident with a blade natural frequency
the overall effect 1s just to replace one amplified state by another

The effect of the higher harmonics of loading 1s generally to produce
an additional level of stress approximately equal to that calculated from the
first and second order of harmonic loading alone This indicates that an
emprrical factor of two, at least, should be applied to the calculated first
and second harmonic orders of loading, if a realistic esumate of the flight
stress levels 1s to be made
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Fig 6 Typical U/L HELICOPTER LAG PLANE BLLADE BENDING STRESSES

Strain Gauge Results
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Condition
GYRODYNE HELICOPTER LAG PLANE BLADE BENDING STRESSES

A factor of this magnitude 1s indicated by published flight test results
of American experiments (Ref 2), and 1s also confirmed by flight stramn
gauge measurements on the Fairey Gyrodyne, Ultra Light and Rotodyne
wind tunnel model

Even after introducing the above factor, there 1s stll a tendency for the
calculated loading to produce stress levels which under-estumate the actual
measured stress levels at outboard spanwise blade stations

Thus without considering the dynamaical effects which are to be covered
1 a later section, much still remains to be done from the aerodynamic pomnt
of view 1if a true picture of the blade loading 1s to be obtained by calculation

The < Free Body Motion > Inertia Loading

In the aerodynamic calculations of the previous section the rotor blade
1s usually considered as a rigid body, and thus depending upon the flight
case and the independent variables considered (ze, flap angle of applied
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cyclic pitch) a condition of rigid body equilibrium 1s obtaned  The resulting
rigid body motion introduces various inertia forces, one of which, the
“ Coriolis Force,” 1s well known It has been mentioned previously, and
verified 1 Appendix 2, that in the decoupled lag plane analysts of blade
motion, this mertia force can be added to the aerodynamic forces, obtained
1n the previous section, to give resulting external applied load for the forced
oscillation problem

The Problem of Forced Oscillation

Having now defined the loading system, we can apply 1t directly to the
dynamical equations formulated in Appendix 3, and from them obtain
the bending moment, shear force, and deflection diagrams associated with the
different harmonics of loading (see Appendix 3, Section 4 8, 4 9)

With the above data available, the problem of strength assessment then
reverts to the normal stressing problems associated with any fixed wing
aircraft and consequently need not be dealt with here

It 1s necessary, however, to give special attention to the problems of
fatigue, and these will be considered 1n a later section

It should be realised, however, that other methods of solution exist for
determining blade bending moment diagrams, shear force, and deflection
diagrams, and many such methods are summarized by A Flax (Ref 3)

The advantage of the matrix approach outlined 1n this paper (Appendix
3), however, 1s that the solution to the forced oscillation problem has been
obtained as the particular integral of the equations formulated for the
“ General Dynamical Problem,” thus showing the true relationship that
exists between the forced oscillation problem, and that of ““ Ground ” or
“ Air ” Resonance Also, 1t 1s possible to assess the effects of the aircraft
body characterstics on the blade bending moments, natural frequencies, etc

To mvestigate such an overall problem in detail (z ¢, the numerical
solution for a problem with a multi-mass distribution along the blade,
together with a set of body masses), 1t 15 necessary to enlist the aid of a
digital computer (Reference has already been made in Appendix 3 to a
digital computer programme for the simple natural frequency problem)

It 15 essential, however, to choose a digital computer capable of dealing
with at least twenty significant figures, since past experience has shown that
1t 1s possible for a computer to lose so many of the significant figures during
the calculation, that 1t has actually ¢ lost ’ the problem being solved

Another important point on this aspect 1s, that although the physical
data, associated with the problem, can be as approximate as one wishes
(e g , choice of mass distribution, geometric characteristics, etc ), it 1s essential
that all the derived data prepared for submussion to the digital computer
(2 e, stffness matrices, etc) 1s exact

Without the ard of a digital computer, however, much can be learned
of the blade behaviour by setting up simplified problems capable of solution
on desk calculating machines

It 1s possible to investigate the behaviour of a blade comprsing a
multi-mass system with the rotor hub fixed against translation and rotation
(rotating axes), and then to modify the solution by considering the effects
of hub translation and rotation obtamned from a single blade mass, and
multi-mass body system
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The results obtained by such a process, although not exact, give an
indication of the correctness or otherwise of the assumptions generally used
1n assessing blade behaviour This 1s very necessary, since 1n all the reports
on this subject I have seen to date, no account has been taken of the effect
of body freedoms on blade bending moments, etc, and 1n the case of a
flexibly mounted rotor system this effect can be quite sigmificant

It 1s possible to present the equations developed 1n Appendix 3, 1n many
ways 1n order to give the solutions of particular problems associated with
any given aircraft (e g, the effect of “ Jet cut ” on the Rotodyne blade and
variations of the problems indicated above), but 1t 1s not possible to enlarge
further on these points within the scope of this lecture

Other Dynamcal Systems

The dynamical system described 1n Appendix 3, 1s usually sufficient to
deal with most rotor configurations, except for problems of dynamuc stability,
etc , assoctated with a ¢ See-Saw * two bladed, tillting head rotor assembly
In this case a straight forward application of ““ Euler’s Dynamical Equations
of Motion ” as developed 1n most standard dynamical text books can give
very interesting results

Whatever the rotor configuration bemng considered, however, 1t 1s
essential that its dynamical characteristics are understood  Failure to assess
fundamental dynamical effects in the early stages of design, can seriously
affect the strength and performance of the resulting aircraft

Data for Blade Stressing

The information obtamned from the foregoing considerations 1s usually
sufficient to enable a realistic strength assessment to be made, and finally a
provisional blade life to be assessed

Problems associated with the fatigue aspect 1n the calculation of blade
life, are described 1n the next section

Brape LIFE

To enable a rotary wing aircraft to become an economical transport
vehicle, 1t 1s necessary to achieve a blade life of 1,000 hours at least For
most helicopters this imphes over 107 cycles of stress reversals at first har-
monic  (This 1s an optimistic assumption)

For steel rotor blades, therefore, if a life of 1,000 hours can be achieved,
an infinite fatigue hfe should be obtained Conversely, i1f a hfe of 1,000
hours 1s required the blade should be designed for infimite life

The Fatigue Problem

It 1s not possible within the scope of this lecture to give a detailed
description of all the problems that arise 1n connection with the fatigue life
assessment of a rotor blade as methods of ¢ fatigue lite assessment ” could
easily be the subject of a lecture 1n 1ts own right

Mention will be made, however, of some of the important factors which
influence the calculation of the fatigue life, but 1t should be realised that the
considerations which follow do not 1n any way constitute a complete analysis
of the problem
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Types of Fatigue Problems

Generally speaking fatigue problems fall into two categories  (a) Those
associated with oscillating stresses occurring in the body of a component
(e g , normal fatigue) and (b) those associated with oscillating stresses, as
above, together with a relative movement between the two adjacent parts,
resultng 1n “ fretting ” (2 e , fretting fatigue)

There are, of course, many other aspects of fatigue such as corrosion
fatigue, rate of crack propagation, etc, but since much has already been
written on the subject, they will not be considered here

Normal Fatigue Problems

The problems occurring 1n this category are usually those of determining
the fatigue concentration factor for a component, and the fatigue allowable
for the materzal

It 1s well known that the fatigue concentration factors are usually less
than the equivalent elastic stress concentration factors, and much useful data
on this subject 1s given 1n Ref 6

Care should always be taken, however, 1n applying fatigue concentration
factors to redundant structures, since often the “ calculated » stress at a
given pont results from assumptions which can usually be justified only on
arguments for “ Ultimate Case” stressing (ze¢, considerations in which
plastic deformation 1s allowed to re-distribute some of the loading typical
of fixed wing stressing) This does not give a true indication of the actual
stress occurring at the point considered It usually results in the stress
being underestimated and premature failure occurring

It 1s also necessary to consider the material ““ fatigue allowable ” very
carefully, since, although this 1s usually quite consistent for a given material
spectfication, the allowable achieved for a given component 1s usually very
dependent upon the state of its surface fibres

The faugue allowable for T 60 Tube for example, 1s +19 tons/sq 1n
(25 3%, Ult ) 1n the “ as drawn heat-treated > condition, whereas the removal
of 0 015 mns of the internal and external “ decarburized > fibres increases
the fatigue allowable to £27 5 tons/sq 1 (36 7%, Ult)

Tests have also shown that some pickling techniques, used 1n conjunction
with cadmmum plating, can reduce the fatigue allowable of DT D 331
(S99B) by 33%, (although this 1s not true for some of the lower grade steels)

The above are examples of reductions i the fatigue strength due to
weak surface fibres  On the other hand the fatigue allowable can be improved
by  fine * surface finishes or the more practical process of “ Capri-honing ”
or “ Vapour blasting ” For example, a specimen mm D T D 331, with a
16 micro ins fimish ( 000016 inches), has a fatigue allowable of 422 3
tons/sq 1 (notched) and +34 O tons/sq n (unnotched), whereas a similar
specimen with a basic surface finish of 54 micro 1ns prior to “ Capri-honing ”
had 1n the final capri-honed condition a fatigue allowable of 27 5 tons/sq 1
(notched) and 42 7 tons/sq in (unnotched)

Consequently, bearing all the above factors 1n mind 1t 1s then possible
to estimate the fatigue life for a given component

The * Fretting ” Fatigue Problem
The most well known problem 1n this category 1s that of the normal lug
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There 1s considerable experimental evidence now available to show that
the mfinite hife allowable for steel lugs 1s only 4 5%, of the ultimate tensile
stress A typical S/N curve for steel lugs 1s given 1 Fig 7

Simular effects are also obtained for sheet  lap joints,” but these will be
discussed 1n detail 1n the next section

Another example of fretting fatigue, which 1s not so obvious, 1s shown
in Fig 8 In this case a simple oscillating tension stress was applied to the
bolt, and as a result of fretting on 1ts shear face, failed across 1ts maximum
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diameter (no geometric stress concentration factor) at approximately 3 5%
of 1ts ultimate tensile stress after 108 cycles

The fretting failure of the tension bolt, referred to above, only occurred
after the design preload had been reduced to zero No fretting occurred
during the previous tests when preloads of 509, and 25%, of 1ts ultimate
tension strength were applied Also, the specimen was unbroken after
2 x 108 cycles, 1n each case, for an oscillating stress approximately equal to
the failing stress 1n the un-preloaded case above

Thus, much can be done to improve the fatigue hife of such components
(e g , preloading or clamping, etc ), but 1t should be noted that unless the
preloading 1s fathfully applied (either in the workshop or in the field)
premature fatigue failure can occur

The Problem of Loaded Holes 1 a Plan Sheet

The problem to be considered here 1s that of a plamn sheet subjected to
an oscillating stress across 1ts width, together with an additional local oscilla-
ting stress due to an oscillating load applied via a rivet or bolt hole (Fig 9)

— ! | —
P .
R, — O w g 2
——T— u
- =
v VA T LTI 77 A
COMBINED SHEET LOADING
Fig 9 Load Diagram
for Appendix 4
“— -
A+—0O P2 R O R
- |-—§
LOADED HOLE UNLOADED HOLE
R.p LOADING SUB SYSTEMS
i KB t, KePu o
Dt (WDt
RESULTANT EQUIVALENT PLAIN SHEET STRESS = 1, f) 3

In order to obtain the life of a component loaded i this manner, 1t 1s
conventent to spht the loading into two systems which can be called the
“ Joaded hole ” system, and the “ unloaded hole ” system (see Fig 9) The
stresses resulting from the two systems are added together, after the applica-
tion of the respective fatigue concentration factors (Kg) The life 1s then
estimated from an * unnotched ”” S/N curve

The normal defimtion of Kg (equvalent plamn sheet stress divided by
“ notched ” sheet stress) 1s quite satisfactory for the ¢ unloaded hole ”
system  However, 1t 1s not really suitable for the *“ loaded hole > system,
since the local stress n the vicinity of the loaded hole 1s approximately
constant 1rrespective of sheet width (2 e , width greater than five umes hole
diameter) Thus, using the normal definition for Ky results in a Ky which
varies with sheet width

If, however, the “ notched sheet stress  1s replaced by P/Dt, P (apphied
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load), D (hole dia ), and t (sheet thickness), a value for Kg (say Kg) will be
obtained, which 1s independent of sheet width

A provisional graph of Kg (for “ loaded holes ), obtained from coupon
specimens, 1s given 1n Fig 11 Also, an example of this procedure, apphed
to actual components, 1s given 1n Appendix 4, and the results obtained are
compared with actual test data for the components analysed

It 1s not suggested that the above procedure 1s exact, but it does enable
an estimate to be obtained of the importance of the local stress occurring 1n
the viciuty of the loaded hole, since quite small oscillating rivet loads can
considerably reduce the life of a given sheet

Note Fig 11 1s based on coupon test data imn which D (hole dia)
was constant (ze, 0 125 mns) Consequently the test data to date strictly

RESULTS OF FAC COUPON TESTS
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only gives the variation of Ky with t for constant D

The curve has been plotted against t/D provisionally, as there 1s evidence
from other muscellaneous tests, that it 1s of this form (Tests are at present
proceeding to establish the final form of this curve)

Scatter

It 15 obvious from the example considered in Appendix 4, that the Iife
calculated for a given component 1s very dependent upon the magmtude of
the scatter factor applied to the test data

Since we are generally concerned with that part of the S/N curve where
N > 107, 1t 1s obvious that a facter on stress 1s much more important than a
factor on life  For steel components a factor on hfe 1s generally meaningless
for N > 107, whereas a small percentage on stress would considerably reduce
calculated Iife

The choice of scatter factor (for use 1n deciding a safe life) 1s very depen-
dent upon the number of specimens tested and other general experience
with regard to simuilar components

The choice of an unrealistically large scatter factor involves a consider-~
able weight penalty Alternatively, the reduction to the min safe value,
mvolves considerable expense in testng Consequently the choice of a
scatter factor 1s a compromuse, the actual value chosen being dependent on
the nature of the component considered

Fatigue Substantiation—Conclusion

The calculated blade life, based on calculated stress obtained by the
methods outlined in this paper, can only be considered as very prelimunary
evidence 1n relation to fatigue substantiation

However, provided care has been taken during all of the stages in the
strength assessment, the blades and rotor system should be quite safe for
ground running and preliminary flying to a restricted flight envelope

It 1s essential, however, that all the calculated stresses are checked as
early as possible by flight strain gauging, and the calculated life by destruction
testing of respresentative components Only by these means 1s 1t possible
to obtain the actual data required for the fatigue substantiation

The virtue of the strength assessment calculations as outlined mn this
paper, however, 1s that 1t has enabled many design pitfalls to be avoided
(e g , nearness to resonance, rotor operating in an unstable r p m range, etc ),
and also that 1t has prepared a basis on which the flight test results can be
considered

Pure theory will not produce a safe aircraft, neither will flight test
results alone, but an ntelligent combination of the two will bring out the
best of both worlds, and consequently, safe aircraft
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Appendix 1

The Problem of a Stationary Rotor Blade Subjected to an Apphed Acceleration

A solution 1s given for two different types of pitching acceleration applhed
to a blade 1dealised to a * one mass spring ” system

Notation

applied pitching displacement
total displacement (p = z -}- 10)
elastic displacement

spanwise position of blade mass
blade mass

blade spring stiffness

(K /m)?

tme

magnitude of applied acceleration
time of applied acceleraucn
rA/w?

amplification factor

ZO® P g REBUNT 2

Basic equation of motion
With reference to fig 1, basic equation of motion becomes
m(z + r0) = — Kz (D
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Applied Acceleration
Condition 1 (Rectangular distribution)

0=o0 tgo
0=A ogtge 1e 0=3At®
0=o0 t>e
Condition 2 (Triangular distribution)

0=o0 tgo

t I &
= 1—- tge = —_———
0 A( e) 0gtg 1e 0 A(2 6e)
6=o0 txe

Solution

Solving equation (1) in the normal way and applying the above boundary
conditions gives the following solution

Condition 1

p =2z -+ irAt? ) . 2
z = C(cos wt—1) Ostse 3)
p=z+rAc(t—§) 4
tre
we e
z=—2Csm Esmw(t—~§) 5)
Condition 2
t
p=z—}—32LrAt2(1—3—e) 6
ogtge
2= C [cos wr— W (1—5 )] ™)
we e
p=2z-+ %rAe(t—%) ®)
Z
sin wt sin we
z= C[(cos we—1) W_'_(l_ e ) cos wt] 9

Note The displacement associated with the inertia force resultng from an
instantaneous acceleration (1 e , neglecting dynamical effects) 1s

2 (say) = 2 = _ ¢

Dascussion of Solution

The overall solution obtained 1s in the form of a rigid body displacement
with an elastic displacement superimposed The stresses mnduced in the
blade however are only a function of the elastic displacement, and thus only
thus part of the displacement need be considered

The dynamucal effects can then easily be seen by introducing an amplifica-
tion factor N defined as | z/z |
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Amplification factors

Condition 1
we e
N; = 2 smn (7) sin w (t — Q)

From Equation (5)
This 1s a maximum when t = g + g(l +- 4n) [n = mteger]

1€, Nymax)=2 smv;—e for any e
Condition 2
From Equation (9)

s wt sin we
N, = (cos we — 1) e + (1 ~ e ) cos wt
For certain tand small e, N, (max ) —— we/2
N » t, some e, N, (max ) —— 126 approx
B EH) t o, large 6 N2 (max) —1

Thus condition 1 gives a maximum amplification factor of 2 0 and condition 2
gives a maximum amplification factor of 1 26 but 1t should be noted that in
each case the actual amplification factor 1s very dependent on e (the time of
application of the acceleration) and the resulung amplification can be made as
small as we please by suitable choice of e (1 ¢, a small amplification only will
be obtained 1f the acceleration 1s removed after a very short time)

Appendix 2

The Equations of Motion for a “ Three Dimensional” Mass-Spring System
with Elastic and Space Freedoms
1 Introduction

The equations of motion are obtamed for the above system to provide
data for the discussion on the de-coupling of the flap and lag plane motion

A “ one ” mass-spring system 1s considered 1n detail (for simplicity) but
the more general solution 1s stated

2 Notation
r spanwise reference position of blade mass
m blade mass
X, ¥, Z co-ords of blade mass (rotating ref frame)
e q g elastic displacement along x, y, z
d fore-shortening of blade along x
K., Ky, K, blade “ elastic ” stiffness coeffs along %, y, z
a, b, c blade « effective  stiffness coeffs along %, y, z
Fy, Fy, F,  applied external forces
¢} blade root slope (== rigid blade flap angle)
¢ blade azimuth angle
Q blade angular velocity
Assoctation of Gt Britain 207
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3 Derwation of “ effective stiffness coefficrents

The physical elastic displacements are radial (== spainwise) and spanwise
bending (see fig 2b)
ThsF=K!  F="2 = 5
Since we are considering small displacements and large radial force (1e
ae == mrQ? to be shown later) we have

Fx=ae = F,cos 0 —Fysm 0 == F;

Fy=by = F, cos 0 + Fr sin 0 == Fa—[—Fx}—;

_F,  Fx K, ae
Henceb—“? —,—T == F +—;
Now Ky = K,/r? (equivalent linear bending stiffness)
Thus b:Kv-f—ar—e eg Ky -+ ma?)

Simularly for flapping plane, allowing for flapping freedom
mQ?z>
g

Z

c=Kz+a—re z (eg K, +

4 Dervation of blade fore-shortemng “d”

From fig 2¢ (two dimensional example)
=r(l— cos 0) — I cos 0
=10%2 — e
=y¥2r—e

Thus generally d = 51; *4+2H)—e

5 Derwation of equations of motion
Co-ordinates of mass pomnt m
With reference to fig 2a, we have
x=r—d,y,z=rsmp-+g
Velocity components of m with respect to x, ¥, &
Velocity components are
K=Yy, Y+ X, 2
Thus kinetic energy
=2 e 2y oyt v 2y

Potential energy
Ve=1 {ae2 -+ by? 4 cg‘-’}
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Sub wn Lagrange’s Equations
d(oT\y 6T oV
i) RO
Where q =x,yorz Q = F,,or, (Note F, = 0)
Equations of motion become
xdirm m(x—2y)—yy—x¢?) +ae=F, =0
ydirn m(y+2xy + x¢ —y¢?) + by=F, )
z dirn mz4cg=F,
If we assume
(a) psmall 1e smp=p cosp=1

(b) vy=0 1e ¢=Q (constant angular velocity)
{c¢) x— 2y¢ small compared with x¢?

(@) d=1Qy+m)—ec=

since the elastic displacements and their derivatives are small compared with
the free body displacement,
then equation (1) becomes

x dirn —mxQ2+ac=0
ae = mx0? == mrQ? (2)
Y dr® m (y — 2dQ — yQ*) + (Ky + m0%)y =Fy
my -+ [Ky + (m—m) @°]y = Fy + 2mrQpp 3
my + Kyy = Fy + 2mrQgg
mO?
2 dirm mz—}—(Kz—{— gz)g=Fz
mz + (K. g/z + mQ%z =F, (4)

Note When more than one mass 15 considered the term (m—m) above,
equation 3, 1s not zero (see below)

6 Statement of General Solution

The general solution for equations 2, 3 and 4 for “ N ” mass points on one
blade defined by the co-ords (r;, , ry) become
x dir® Normal centrifugal force equations

Yy dw™ and z dw™ Wrtten 1n formal matrix notation (considering the
Coriolis acceleration 2 mrQpg as an external applied force 1n conjunction with

F,) equations become
ml {a} + 181+ (C12*) {a} = (Q] )
or less formally, matrix notation implied
mq + (S+ CQ%Hq=Q (6)
Assocation of Gt DBritan 200
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where

L Q ,
a=|q| @=|o | S—a'Gdm ng
rr'a~l
S=a!|l—5—
r'ar’)] (zdir, flap)
an Qu
C=RF—m (ydir, lag)
C=R-F (zdir, Flap)
i F, F,, F s Pn]
F = n FN = MiNI'n
—ZFI ] Fz > Fs ] FN
1=2
n
o :“‘sz F, s Fn
1=3
L (o] F) o E] o] 3 FN_
', Iy, ) In
R=1o, Ta—Iy,s s> In—Iy
_ 0, [} s In—In—
[ 2515 2155 s A |
aq =
Flexibility matrix
for blade with
“bult-in root
| Ay » s 2N
' my, 0, o, s 0]
m = 0,my, O,
mass matrix
. 0, s My |
C 1
r = T,
| I'n
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Appendix 3
The General * Two Dimensional > Dynamical Problem
1 Introduction

The “ Two dimenstonal ” dynamical problem considered 1n this appendix
1s that associated with “ in-plane * oscillations (e g , oscillations 1n the plane
perpendicular to the axis of rotation) as this has a direct bearing on the problem
of Ground Resonance and general lag plane motion Smmular results can also
be obtained for flapping plane motion

In order to simplify the analysis of thus problem it 1s convenient to break
the basic system into two sub-systems, and to replace the internal forces
occuring 1n the basic system at the break, by external forces in the two sub-
systems

Each sub-system 1s then analysed separately and a relationshup obtarned
between the external forces acting at the break and the associated displace-
ment (such a relationship defines the ““ Impedance > of the sub-systems)

The solution of the overall problem 1s then obtamned by considering
compatibility relationships between the forces and displacements at the break
1n the basic system

The sub-systems considered 1n this appendix are, (a) The aircraft body
(b) The rotor, the basic system being broken into two sub-systems at the

rotor centre line
2 Notation
r Spanwise ref position of blade mass
ms Blade mass on Sth Blade
XY, 2 Co-ordinates of blade mass (rotating ref frame)
q Elastic displacement of blade
d Fore-shortening of the blade along x
H; Xps + 1¥gs, Hub displacement with respect to Sth axis

Suffix S Denotes Sth Blade

0 Body rotation of complete system

Blade azimuth angle

Blade angular velocity

Body impedance K¢/, (Operator)

Fy, Fy Force applied by body to Rotor 1n direction X, Y

Hb.c_.

Q Force applied to blade 1n direction q
S Elastic stiffness matrix

C Centrifugal stiffness matrix for unit Q
N Number of masses per blade

J Number of blades

D Operator d/dt

u Product

NOTE Other notation 1s defined as requured
3 The awcraft Body Impedance

The equations of motion for the body can be obtamned by the usual
Lagrangian method, and the impedance at the junction of the rotor head to the
arrcraft body subsequently derived

It 1s not practical to develop a general solution for the body impedance,
smce the specification of the dynamucal characteristics for a “ general aircraft
body ” would be extremely complex

The final form of the body impedance however 1s stated, and a method of
obtaining the impedance parameters from a vibration test 18 given
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NOTE In deriving the body impedance 1t 1s convenient to assume that a
mass equal to the total rotor mass 1s situated at the rotor centre line (See
section 4 below) This mass should be included in all body impedance
calculations or tests

31 General Form of Body Impedance

The equations of motion for the body (at the break) yield the following
F=1IH
Where H = displacement

I = impedance = Ké/q

P
£ =TT (624 D?), Polynomial 1n D2 (£2 root of £ = 0)
1=1

p-1

7 =[] (m*+ D), Polynomial n D2 (4,2 root of 4 = 0)
1=1

K = constant

p = number of degrees of body freedom

32 Impedance Parameters Obtamned from Vibration Tests
F (apphed forcing load) = F, cos wt
H (resulting displacement) = H, cos wt

P
Then %q - K TTE2—w
0 1=1

=t
10— w9

Thus if ’% 1s plotted against w (see Fig 4) the values of £ and »,
can be obtamed °
p-1
NOTE K= [[=»2
1=1 .Iio‘_
Hy| w=0

P

e

1=1
40 Eguations of Motwn for the Rotor

41 Co-ords of Mass Pownt ms (1 ¢ , mass on Sth Blade)

Zs = Hs + ele (lrs - lds - qs) (1)
NOTE

(a) For simplicity only one mass point on each blade will be considered
(General solution for “ N » mass poimnts however will be stated)

(b) The suffix “ s > will be dropped while considering one blade only, but
will be re-introduced when combined blade effects are considered

(c) We assume H, 0, q, are first order terms and d second order All
terms above second order 1n the subsequent analysis will be neglected

4 2 Kinetic Energy of Mass Pomnt m
T = %m{iz 410z —7z) + Q‘-’iz} )
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Substituting for z from (1) gives
T=(4)+ @B+ )
Where (A) = 3m {fH + 10 (HH — HH) + 0°HH]

(B) = 4m(q®+ 02 (1* + q* — 2td) + 20rq)
(C) =4im [{"(M-Fq) (1 + B) + (or)* + 20rq) +
‘Q{_ (or+q) @—1) — (r+ @ @—H)+u(H+n) —210r2} +

02— (or + q) (H+H) + 1 (H — H) + (or +q)’]

NOTE

Bracket (A) 1s the Kinetic energy of a mass “ m * situated at the rotor
hub expressed 1n co-ords defined with respect to the rotating ref frame
Bracket (B) 1s the Kunetic energy of the mass “m” situated at pomt r
for a blade whose root 1s fixed agamnst translation and rotation (1 e it can
be shown to be 1dentical with the K E 1n Appendix 2 when z = 0)
Bracket (C) 1s the Kinetic energy of the mass pomnt “m” due to the
translation and rotation of the blade root

4 3 Total Kanetsc Energy of Complete System

We must now re-introduce suffix “s ” m order to differentiate between
the different blades
=1 1—1
Thus T = Z T, = z [+ ®) + (©)] (4)
=0 s=0
Since we have j blades (s = o, 1 ,]—1) each separated from 1ts neighbour
by the angle 2r/j, H; and H, are related by the equation

H=Hge= (s =0, s 1—1) (5)
Where ¢ = 27s

For convenience in representing products of the form H.q, we define

1—1
ER= z gse™

$=0

(6)
— l—l
M R=> ge™
s=0
1—1 1—1

NOTE H; =) H,, smce e == ]
Substituting the terms (5) and (6) 1n (4) we have
T = —m()} {RH-+ RH+ 02(AR -+ HR) +10(HR— HR—HR+HE)]
Association of Ct Britamn 213
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+iM {ﬁH + 0HH -+ 10 (HH — ﬁH)}*
M
i =1
+SZO mrs 6q, + $m SZO {q2 + Q2 (12 + g2 — 2rd) + 2qu}s

02
+7J (QO + 5)
Where we have denoted,

H, by H
ym by M (Total blade mass)

1—1
E:mrs2 by ] (Moment of inertia of complete rotor about the axis
s=0 of rotation)

* With ref to § 4 2 bracket (A), this 1s the total K E of a mass equal to
the rotor mass situated at the hub This term can be omutted from this
equation 1f we include 1t 1n the body impedance

Thus we define T' =T — { }* (8)

4 4 Total Potential Energy V
With ref to Appendix 2, this becomes
1—1
V=1 bg ©)
s=0
4 5 Lagrange’s Equations
We define L (Lagrangian function) = T/—V
a

dfa
We define % (Lagrangian operator) = g { 7q aq

d UT'} oT! oV

Thus Lagranges equations HE{ 7] g -+ i =Q

become %L =Q . o« (10)

4 6 TheDetermunation of the Generahsed Forces
The independent variables in L are —

H, = Xg9 + 1¥005 45> ds, 0
The external forces are —F, Qs (s =0  ,)—1)seeFig 3

Now z, = H; + ¢¥ (1(r—d)—q)s ey
Also  zg =%, -+ 1ys
H, = Xgs + 1¥gs
Xs = Xgs+(d—r)s s1n 6 — g, cos 0 (11
Vs = Yos — (d—1)s cos 6 — g5 s1n1 0
Xos = Xgp COS o - Yoo SN o
Yos = — Koo SN & + Yy COS &
214 The Journal of the Helwcopter
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and X = Xg cos Qt — yos 511 Ot (12)
Y = x4 sin Qt 4y cos Ot

The virtual work during the elemental displacement becomes therefore,
1—1

W = —FXSX—FySY—i—Z — (Qsco, 0 3% + Qs sin 0 3ys) (13)
s=0
Using expressions (11) and (12) we have
8W =Qu00 %99 + Qoo 8¥00 + Qgs 3qs + Qp 30 (14)
Where T
1—1
Qxgo = — Fxcos (Ot — ) — Fy sin (Ot — o) — Z Qs cos (x } 6)
a
Qoo = + Fx s (Ot — o) — Fy cos (Ot — o) — z Q; sin (« | 6) (15)
s=0
Qqs = Qs
Q =rQ
Q =o -

Thus equation (15) define the generalised forces associated with the
independent co-ordinates

47 The Equation of Motion

Zaw L= Quyo

“%0 L = Qyeo
Thus Qe + 1Qua0 = (Zae +1-Fad) L (16)
Now 1t can be shown that 1

Quo + 1Qyge = — Fe1 (el — lz: Qe 0+ (17
Also that 0

(Zoo + 1%00) L= 2%{014 (18)
Thus from (16), (17) and (18) we have

31
%—{OL - %{_ Fe—l(m—a)_z Q.e (0+u)}
s=0

(19)
also f/m L=qQ,
Z L =Qr,
4ssociation of Gt Britun 215
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Thus

-1

—F — el(Qt—a)zQS eild+a) — -—m(])ia (20)
§=0
where o =D? {Re+"ﬂt-a’} (20a)

Also

Qsz{mro +mq+ (mQ24+-b)gq—im()? [(D —10)*H,+ (D +1Q)2H0] }5 21)
1—1

QSr =]Jo +Zmrs Qs (22)

s=0

THE ABOVE EQUATIONS (20, 21 AND 22) ARE THE BASIC EQUATIONS OF MOTION
FOR A ROTOR WITH “‘ ]’ BLADES AND ‘‘ ONE > MASS POINT PER BLADE

4 8 Basic Rotor Equation of Motion for a Rotor with ‘7 Blades and *“ N
Mass Pomnts Per Blade

Writing equations 1n formal matrix notation we have
N j—1 ,
—F— el<e+m—a)zz Qsee = —()  [[][o] (23)
1=1s=0

[Q] = Del o + fm] {q] + (is] + [c] 09 [q] (24)
— JO)E(D — 102 H, + (D +10)* H,)

1—1

T (Total External Torque) = [r] [Qs] = Jo +Z[xsj [qs] (25)
s=0

Where

[m], [C], [S] are square matrices as defined 1n appendix 2

[QS]: le ’[rs]: Is ,[Qs]= qis 3[5]: o1 s[ﬁi]: mys

QNS I'ns Qns oN Mys
[7‘3] = [m] [rs]

Equations (23), (24) and (25) have been given 1n terms of the physical co-ords
(Rotating) associated with the system (e g H, q) and for certain special cases
of the general solution this 1s the most convenient form

The general expanston however of the matrix equation (1¢, expanding
the square matrices) yields a set of simultaneous equations 1n which each
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equation contamns all the N co-ords q,s (1=1 N) and therr differential
coefficients

To simplify the general solution therefore we apply the following
transformation to q

Transformation of Co-ordinates

1
= ~Tlq 26
P= 7 (26)
Where
P=[Po] @=[ae] T=[1,1 ,1, ,1 ]
Loy 5y syt
2_1:’
, |y=¢c ]
1,y 3‘{2" P s Y™
|_Dij 1] . Qij1 ] [ 1,1 420D 5O DY

Modified equations of motion

If we now apply this transformation to the co-ords 1 L (equations (8)
and (9) ) we have

L L= L=qQ, (26)
NOTE L s afunction of R, and R,and if 1% 2, R, and R, are independent,
but when j = 2, R, = R, 1¢, not independent This results in two

different equations for %ﬂ depending upon whether j » 2

The resultant matrix equation thus become —

Equation 23 remains unaltered () 3 2)
Equation 24 becomes

OHQUGI=m)D—12)[o]+ (153+ [e]o) [o] - OHRIDW, G >2) @n

and

()} [Q1 [G] = [m] (D —10)? [s] + is1 + [e1 2%} ]

~JOMEI{D*W + (D — 20 Hy -0} = 2) 28)
Where
W =X +41Y,

1 7] 2m (Qlo > Q i

[Gl=| g [,8=¢7 , [Ql=
g Qs

_g"_ ..Qno >Qn11_
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49 Special Cases of the General Rotor Equations

4 91 Blade whose root 1s fixed aganst translation and rotation (with respect to
rotating axis)
Hy=0=0

Thus equation 24 becomes

[Q. = [m] as) + (Is] + [c] %) [qs] (see also appendix 2)
From this equation values of blade deflection, shear and bending moment can
be obtamed by suitable application of matrix algebra
Frequency equarnion (Characteristic Equation)

The complimentary function solution for the above differential equation
(1 e , solution for [Qs] = 0) yields the frequency equation
(is1+ [c]1©) — [m]»2

A= =0

Where A denotes determinant
» denotes the blade natural frequencies associated with a given value of Q

NOTE
A standard S B A C digital computer programme has been prepared for
obtaining the values of » from the above equation by an 1terative process

Thus result 1n a shightly modified form was also obtained by the Bristol
Aircraft Co

4 92 Frequency Equation for the Complete system (Blades and Body)

Section 4 91 above considered the natural frequencies of the blade alone,
and assumed an infinite rigid body If we now consider the system as a whole,
we then obtain a frequency equation and the associated natural frequencies
for the complete system

In this case however, some of the frequencies obtained are complex for a
range of rotational speed and this implies divergent oscillations over this range

This problem 1s usually discussed under the heading of ““ Ground » or
““ Air ” resonance

The equations for the complementary function solution then reduce to —
From equations (23), (27) and (28)

F =+ () [m]’ [o] (29
[m] (D —102)* [o] + ([s]+ [c] ©3) [] — } ()* [@])' D*W = 0,(;>2) (30)

[m] (D —10)2[6] + (1] + [e103) lo] — 30 1) [D*W+ (D — 21) Hoe =0,

0=2) Gn
Also F =Fy+1F,
(32)
Fr=IL X, F,=I, Y (See Sec 31)
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Thus
For a rotor with more than two blades (J>2) we have two equations (29) and
(30) and two unknowns (W, ¢), hence we can solve equations for the variables
(fixed co-ords ) W and ¢

For a rotor with two blades (j = 2) we have two equations (29) and (31)
and three unknowns (W, o, Hy), hence we cannot solve the equations 1n their
present form, and 1t 1s necessary to re-state them in rotating co-ords

Thus for a rotor with more than two blades, a solution can be obtained 1n
fixed co-ordinates, and consequently a body impedance with directional
properties (1 e, Fx 7 F,) may be introduced For a rotor with two blades
however 1t 1s necessary to consider a body impedance with non-directional
properties (1e, Fx = F,) in order to obtain a transformation into rotating
co-ordinates that does not include cyclic coefficients

If Fy 5= Fy cyclic coefficients will occur for the two bladed rotor and the
resulting equations then become msoluble (by normal methods at least)

4921 The Frequency Equanon for a Rotor with more than Two Blades
(Ground or Aw Resonance Equations )
For simplicity we will consider a rotor with ““ one ”> mass “m > per
blade, * Coleman’s > equation will be derived as a particular case (¢ g , Body
with one degree of freedom)

We define (0)ie = qx + 1qy
F =Fx +1F,
Where
=1 )—1
qx = cos {Qt — a)szoqs cose, — sin (Qt — o'.);qs sinx (33)

1—1 1—1
qy = cos (Qt — a)qu siny + sm (Qt — a)qu COS4
s=0 s=0

Fr=(Kg/m)x X
Fy = (KE/ ’l)y Y

NOTE [m]'=[m]=m
for N =1 (one mass per blade)
Qis =0s

The equations (29) and (30) thus become (dropping formal matrix notation,
but matrix terms implied where relevant)

— Fx+ mD?%qx =0

— Fy + mD?*gy =0 —l (34)
m (D*qx + 20Dgqy — Q%qx) + (S 4+ COY) qx — ymDX =0
m (g, — 20Dgx — 9%,) + (S + CO%) g, — hmD?*Y — 0 j
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Elimmatng Fy, Fy using equ (33) and expressing in matrix form we have

— $m2 D44 mKEy (D% — Q%) + Kty (S 4 CQ?), 20mKED | | gx
=0
—20mKE,D, —3m%n,D* 4+ mK £ (D*— Q%) 4+ K, (S+CQ?) | | qy

Dividing throughout by m and collecting terms 1n Q2 and simphfying by
introducing the parameters

)\ = c/m, Xy = §/m, )3 =)m
Ay = (D% 4 29) Kx £x — $2gnsD? (35)
Ay = (D? + ) Ky &y — PrgnyD*
We have,
Ax— (1 —2) Q*KyEx, 2DKEQ dx
— 2DK5,Q , Ay — (1 — ) Q2K %, =0

qy

Thus since qx, qy are of the form gy €, qyee™t, then for D? we can wnte
—v2 and the characteristic equation then becomes

4,2
(@32 — (Bx + By + m) Q%)+ BB, =0 (36)
which 1s a quadraticin (Q2)
where
1 Ay
By=+——
(1 - 7\1) Kx Ex
@37
_ 1A
By = I-x) K
NOTE

The substitution of the following parameters 1n equations (29) and (30)
yield ¢ Coleman’s ” basic equations (Ref 5equ 26)

Present Notation Coleman’s Notation
S Kg/b?
1w Z¢
ym n nip
1) Xqse“ 6,
NOL ¢
Fx Fy; = {my-+nmp)D*+ Ky} yr
‘_‘Fy FXf = {(mx+nmb)D2_KXf}xf

4 922 The Frequency Equation for a Rotor with Two Blades
Introducing the following notation —
D* =D 410
D* =D —1Q
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and if & (D) 1s a polynomialin D = @
then ® (D + 1Q), ® (D—10) = @*, O
Then from equation (29) we have

Fe~tat—o) — f — /5 mD*?P (38)
and from equation (31) after simphfication
mD?P + (s + cQ®) P — } 4/2m(D** H, + D *2 H,) (39

It can be shown that if

I =1, = I (say)
Then f=I%H,=Kg*/* (40)
Eliminating Hy, f between equations (38), (39) and (40) we have

*(*) * *(*) (*) (%)*
[Ka Plmps + (54 can) — mefDe 4 B a}]l’ =0 (41)

If we now write P = Pget™, the above equation yields the frequency equation
for the two bladed rotor

cg

() ’a *() O

Kia(lz—{—)\]Qz—vz)—? v+ Qe+ v—QtqE [ =0 (42)

NOTE

In a body/blade system as defined by ¢ Feingold ” (Ref 4) equation (42)
becomes

*(*) 7 (*) *

II(xz+x192-—v2)——73 (v QAT+ (v—)I| =0 (43)

Substitute the “ Coleman notation > as given in Section 4 921 and noting
that

f:{(m+2mb)D*2 + K}

W— ((m + 2my) D2 K)

equation (43) gives ‘‘ Feingold’s ” frequency equation for a two bladed rotor
(Ref 4 equ 7)

Appendix 4
The hfe esnmation of a component subject to a combined sheet and rivet load as
shown in Fig 9

Two examples of the method outlined 1 Section 4 221 are given,
Example 1 Typical Skin|Spar Foint
(High sheet stress—Low rvet load)

Data
Sheet 20G
Sheet Stress 4+ 17,400 Ib /sq 1n
Ruvet Load 4+ 16 1b
t/D 0 288
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Thus Kp (Unloaded Hole) = 155 (Standard Data)

Kg (Loaded Hole) = 1 05 (From Fig 11)

f, = 27,0001b /sq 1n

fi = 3,720 1b /sq 1

f, + fi = 30,720 1b /sq 1n
Thus from Fig (10)

N = 15 x 108 cycles mean curve

= 035 X 108 cycles —5 9} scatter curve
Actual failure of specimen 2 58 x 10® cycles
Example 2 Typical Skin|Stringer Foint

(Low sheet stress—High rivet load)

Data
Sheet 20G
Sheet Stress 4 11,200 1b /sq 1n
Rivet Load + 801b
t/D 0288

Thus (as example 1)
f, = 17,300 Ib [sq 1n
fi = 18,700 1b sq 1n
f, + fi = 36,000 1b /sq 1n
Thus from Fig 10 N = 0 17 x 10° cycles mean line
=012 x 108 cycles —5 9 scatter line
Actual farlure of specimen 021 x 108 cycles

NOTE

In example 2, the value of f; 1s of the same order as f,,, consequently any
increase 1n the rivet load would substantially reduce the general stress
level allowable for a given life

Discussion

Mr P E Q Shunker (Westland Awrcraft Ltd), who opened the discussion,
congratulated the Author on a most interesting paper on the very difficult subject of
rotor blade design and stressing Like any other structure, the rotor blade must be
analysed 1n two parts

(1) the critical external loading which must be derived, and

(u) the strength assessment of the blade under that loading
Since the blades were part of a dynamical system, the external load analysis was
concerned not only with the air loads themselves, but also with their associated nertia
loads

The paper demonstrated a method for the solution of the dynamic problem,
usig the elegant devices of the matrix algebra The Author had made a valuable
contribution on this particular aspect For example, he had placed the so-called
“ ground resonance >’ phenomenon 1 1ts correct perspective as being part, albeit
extremely important, of the general dynamic picture In discussing the effects of
dynamic phenomena he had pointed out the pitfalls to which the unwary were prone
and in his analysis he had demonstrated the importance of the * body freedoms >
One would mmagine that this was more important in the case of the ultra-light than
1n heavier aircraft

The first difficulty with which one was faced, however, 1n blade analysts was the
question of the aerodynamic loading While the Author acknowledged that much
remamed to be done on this point, the paper could have been considerably enhanced
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