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nautical engineer apprentice at the Fairey Aviation Company from 1940 to
1946, during which time he obtained the Ordinary and Higher National
Certificates in Mechanical and Aeronautical Engineering He was awarded
an S B A C scholarship to the College of Aeronautics in 1946 and obtained
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MR V A B ROGERS

SUMMARY

This paper outlines some of the overall problems associated with the
strength assessment of a Helicopter Rotor Blade

A picture of the dynamical behaviour of the aircraft and its rotor is
presented From this all the necessary data for the strength assessment can
be obtained (e g, Blade deflections, Shear Force and Bending moment
diagrams)

The different dynamical conditions associated with a complete " Ground
to Air " flight cycle are considered, and the problem of" Ground Resonance "
is shown to be only a particular case of the " lag plane " forced oscillation
problem

The calculation of the aerodynamic forcing loading, used in conjunction
with the dynamical equations, is discussed, and an estimate of the necessary
modification, to bring the calculated blade stress levels into line with those
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measured on the actual aircraft, is given
A brief outline of some typical fatigue problems is given and a comparison

made between the estimated and actual life of a typical blade component
It is concluded that a theoretical strength assessment will prevent many

a design pitfall, but that it is necessary to verify the results obtained by
adequate flight and structural testing m order to produce i safe aircraft

INTRODUCTION

A rotary wing aircraft, whether on the ground or in the air, is basically
a complex dynamical system, and consequently the behaviour of its rotor
blades is dependent upon the behaviour of the system as a whole Thus
the strength of a rotor blade can usually only be assessed in relation to a
given aircraft configuration

It is the object of this paper, therefore, to build up a picture of the
aircraft and blade motion for a typical" ground-flight " cycle, and to consider
the associated strength assessment problem

For completeness, mention will also be made of the British Civil Air-
worthiness Requirements (B C A R ) relevant to the cases considered

THE AIRCRAFT ON THE GROUND

Aircraft and Rotor Stationary
In this condition the rotor blade is usually only subjected to simple

static cases, the loading arising from handling and picketing considerations
Consequently, all the normal stressing methods applicable to static

aircraft structures will apply and need not be detailed here
The B C A R requirements relevant to this case specify arbitrary loads

and deflections at the blade tip (B C A R , Sec G3-13)

Aircraft Moving and Rotor Stationary
In this condition the rotor blade experiences pitching and vertical

acceleration due to " towing " considerations
Since the blade is an elastic body, a simple dynamical problem is

presented The equations of motion for a typical system (Fig 1) are given
in Appendix 1, and the solution obtained It is important to realise, however
that the solution is very dependent upon the " nature " and " time of applica-
tion " of the imposed accelerations, and it can be seen that the assumption
of a maximum acceleration of un-specified duration (typical of undercarriage
design cases) is unrealistic as it can give rise to an extremely large inertia
loading (especially in pitch) along the blade

The real problem in this case therefore, is that of specifying the type of
acceleration to be considered, and this is almost impossible to assess generally,
as much depends upon the type of surface over which the aircraft is towed
and the various towing technique employed

For practical purposes therefore, it is usually necessary to design the
blade for a simple ultimate case based on a factored static blade weight, and
then to investigate the towing accelerations that can be tolerated (For
large rotors even a quite moderate ultimate factor of 2 5 constitutes a design
case which is not easy to meet)

The B C A R requirements relevant to this case are given in B C A R
Sec G3-5, and are supposed to give blade loads arising from towing consider-
ations
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The requirements are rather vague in the specification of the design
loads since they are supposed to be determined from ultimate " maximum "
undercarriage reactions, which are quoted for each set of wheels independ-
ently (i e, main and nose) , thus no indication of the required pitching and
resultant vertical acceleration is given

If the pitching acceleration is ignored, a possible interpretation of the
requirement is a vertical acceleration of 1 25 g with an ultimate factor 2 0
giving a static design ultimate factor of 2 5 as previously mentioned

It should be realised therefore, that the specification of maximum
undercarriage acceleration in the present form does not define a design case
for the rotor blade at all

Fig 1 Co-ordinate
system for Appendix 1
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Thus there is a need to specify a realistic towing case, with its associated
acceleration (z e, type of acceleration and time of application) or alternatively
a purely arbitrary ultimate factor on static blade weight

Aircraft Stationary, Rotor Moving

This is the condition of the aircraft running-up on the ground prior
to take-off

We are now concerned with a more complicated dynamical system in
which we must consider the dynamical properties of both the aircraft and its
rotating rotor

The dynamical effects that usually give concern at this stage are those
described under the heading of "ground resonance," but it should be
realised that these effects are only part of a more general dynamical problem

It is necessary therefore to consider this more general problem before
proceeding further

The General Dynamical Problem

The problem to be solved at this stage is the determination of the motion
of the elements in a three dimensional elastic system with certain space
freedoms, rotating about an axis connected to a non-rotating " mass-spring "
system, the elements being subjected to external periodic forces

This represents the general case of a blade free to " flap " or " lag "
and bend elastically while rotating about an axis, elastically restrained m the
aircraft body, while the body is free in space, or elastically fixed to the ground

A completely general solution for the above problem has not yet been
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GENERAL THREE DIMENSIONAL BLADE DISPLACEMENT

Fig 2 Co-ordinate
system for Appendix 2
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attempted, but if the " flapping " and " lag " plane motions are assumed to
be independent (suitable allowance being made for the " cross terms " that
exist as a result of the combined motion, eg," inertia forces," etc) a com-
pletely general solution can be obtained for the simplified " two dimensional "
system (Fig 3)

An outline of the formal development of this two dimensional problem
is given in Appendix 3

De-Coupling the Flap and Lag Plane Motion

In most physical systems, the elastic displacements are usually small
enough to justify the assumption of rectilinear motion, but when an elastic
displacement is superimposed upon a free body motion (i e, blade freely
flapping and bending) the accelerations resulting from the assumptions must
be carefully considered

A system considering " three dimensional" displacement of a mass
rotating about a fixed axis (eg, free body motion with rectilinear elastic
displacements superimposed, see Fig 2) is considered in Appendix 2

The results obtained show the presence of a " Conohs " inertia term
in the lag plane equation resulting from the flapping plane free body motion,
and thus justifies (to the first order of small quantities) the introduction of
the " Conohs " inertia force as an external applied force together with the
aerodynamic applied load in a de-coupled two dimensional lag plane system

Radial accelerations associated with this three dimensional system are
also obtained, but generally these are small m magmtude when compared
with the centrifugal force

It is essential, however, to include these radial terms in any balance of
forces in " fixed directions "(eg, at the rotor head) as neglect of these radial
terms will produce constant forces which do not exist (It is neglect of
these terms which led to error in Mr Payne's lecture to this Association,
Ref 1, and in other of his published articles)

The General Two Dimensional Dynamical Problems

The equations of motion and methods of solution are outlined in
Appendix 3, but it is instructive to see how the different physically observed
phenomena (e g, ground resonance) are related to the analytical solution

The equations of motion for the system yield a set of simultaneous
differential equations, the solution of which is in the form of " a complemen-
tary function " (i e, solution for zero external applied force) and a " particular
integral" (i e, solution associated with the particular external applied force)

The complementary function gives information about the natural
vibration of the system (e g, modes and frequencies) whereas the particular
integral gives the amplification effects (e g, displacements) associated with
applied forcing loads (e g, oscillating blade loads)

It is the complementary function which tells us about " ground reson-
ance " since for a given combination of dynamical parameters a range of
rotor r p m exists over which the blade natural frequencies become complex
(see Fig 5a and Fig 5b) and this means that the displacements become
divergent over this range

The complementary function also defines the positions of the normal
blade resonance conditions (e g, forcing frequency coincident with natural
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frequency), but it should be noted that displacements associated with the
latter die down when the forcing load is removed whereas those associated
with the former do not

Once we are satisfied that the " complementary function " is not going
to give trouble (i e, aircraft operating away from resonance regions and
unstable ranges) we must then consider the " particular integral" which
assesses the effect of the forcing loads

During the " run up " of the rotor from zero to flight r p m , the
frequency of the forcing loads is continually changing but provided the run
up is sufficiently fast, the steady-state particular integral solution does not

Fig 4 Calculated and
Measured Impedance
Plots (App 3)
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have time to develop and thus it is only necessary to consider the particular
integral effects at take-off or other specified steady r p m This procedure
is justified since it is usually impossible to assess the blade loading during
this transitional period and experience has shown that provided the rotor
r p m does not dwell at resonant conditions, no undue amplification need
occur (This, however, should always be checked experimentally since the
actual loads resulting are very dependent upon the starting procedure)

Finally, as the problem of forced oscillation on the ground is only a
particular case of the general flight conditions, this condition will be covered
by the considerations of the next section

THE AIRCRAFT IN THE AIR

Dynamical Considerations in the Air
When airborne, the considerations of Appendix 3, still apply, but m

this case, however, emphasis is removed from the contribution of the under-
carriage to the dynamical characteristics and transferred to any other flexible
support for the rotor (e g, say flexibly mounted pylon) and also to the fact
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that the aircraft body is a mass which for small oscillations is unrestrained
in space

Thus the general problem remains but with a change of dynamical
constants It is therefore possible to have free air resonance (analogous to
ground resonance) as well as the usual problem of forced oscillation It
should also be noted that the amplification factors associated with the
forced-oscillation can be considerably modified by the inclusion of the body
effects (i e , the assumption of an axis of rotation rigidly fixed in space can
give misleading results)

Before discussing the forced oscillation problem in detail, however, it is
necessary to determine the stressing cases and then to assess the magnitude
of the forcing loads

PROVISIONAL DATA

Fig 5a Natural
Frequency Plot for a
Two Bladed Rotor
System
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Fig 5b Natural
Frequency Plot for a
Four Bladed Rotor
System
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The Flight Envelope
The flight envelope for a rotary wing aircraft is mentioned in B C A R

Sec G3-2, but it is not denned since its formulation is very dependent upon
the type of aircraft concerned

For fixed wing aircraft, a flight envelope is denned by the requirements,
and provided the strength is assessed at suitable points on it, the whole
envelope can then be considered as having been covered , also the aero-
dynamic loading is reasonably well defined and the calculated stresses are
usually quite representative of those actually encountered in practice

The specification of a helicopter flight envelope is, however, more
complex since there are more variables to consider than ' g ' and speed

It is useful, however, to consider a flight envelope of rectangular* form
with parameters similar to those used for " fixed wing " aircraft but with the
independent variables (e g, rotor speed, flap angle, cyclic pitch, etc) specified
at certain points on it (The type of rotor head decides which variables
are dependent and independent)

Having defined the flight envelope it is not always obvious which points
on it constitute design cases (e g, for the Rotodyne a high ' g ' hovering case
with rotor overspeed, can be just as critical as an off-loaded high speed case)
Thus it is necessary to perform some preliminary investigations before the
design cases can be specified, since these must be kept to a minimum if the
subsequent analysis is not to become prohibitive

The Aerodynamic Loading
The spanwise distribution of aerodynamic loading associated with a

given design case can be derived by the application of normal aerodynamic
theories and will not be detailed here However, it should be realised that
it is only possible to deal with a few of the lower order harmonics of forcing
load (i e, first and second order) if the resulting analysis is not to become
prohibitive, since the complexity of the loading equations increases consider-
ably as the harmonic order is increased Even then the estimation of the
lower order harmonics of forcing load usually involves much tedious
calculation, since the loading equations usually fill pages rather than lines

The loading resulting from such equations is then only approximate
since the induced velocity distribution, to which it partly owes its origin, is
not well defined by existing theories

It is true that theories exist which determine induced velocity distribu-
tions with sufficient accuracy for performance calculations, but there is no
manageable theory, to my knowledge, which accurately defines the magnitude
of the induced velocity at every point in the rotor disc

The presence of oscillating loads occurring during hovering flight, as
shown by strain gauge results from the Fairey Gyrodyne, Ultra Light and
Rotodyne wind tunnel model (Fig 6), indicates the presence of an induced
velocity distribution which is not even constant with time

It is obvious therefore, that the calculation of the lower orders of
harmonic load, assuming a constant uniform induced velocity distribution,
can only be approximate It would therefore be pointless to attempt to
calculate higher harmonic orders, where the accuracy of the result is very
dependent upon the accuracy of the induced velocity distribution

*A rectangular flight envelope is now denned for rotary wing aircraft in A P 970 Vol 3
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Although the magnitude of the higher harmonic of loading decreases
as the harmonic order increases, the effects of the higher harmonic loading
cannot be ignored, as certain of the harmonic orders of loading have their
effects amplified by the nearness of their frequencies to the overtones of the
blade natural frequency

It is true that the actual harmonic which is being amplified can be
altered by changing the blade's dynamical characteristics, but unless one of
the higher harmonics is almost coincident with a blade natural frequency
the overall effect is just to replace one amplified state by another

The effect of the higher harmonics of loading is generally to produce
an additional level of stress approximately equal to that calculated from the
first and second order of harmonic loading alone This indicates that an
empirical factor of two, at least, should be applied to the calculated first
and second harmonic orders of loading, if a realistic estimate of the flight
stress levels is to be made

11% RADIUS

Fig 6 Typical U / L H E U C OPTCR LAG PLANE BLADE BENDING STRESSES
Strain Gauge Results

for a Hovering Flight
Condition

10% RA[

6O7O RADIUS<l

GYRODYNE HELICOPTER LAG PLANE BLADE BENDING STRESSES

A factor of this magnitude is indicated by published flight test results
of American experiments (Ref 2), and is also confirmed by flight strain
gauge measurements on the Fairey Gyrodyne, Ultra Light and Rotodyne
wind tunnel model

Even after introducing the above factor, there is still a tendency for the
calculated loading to produce stress levels which under-estimate the actual
measured stress levels at outboard spanwise blade stations

Thus without considering the dynamical effects which are to be covered
in a later section, much still remains to be done from the aerodynamic point
of view if a true picture of the blade loading is to be obtained by calculation

The " Free Body Motion " Inertia Loading
In the aerodynamic calculations of the previous section the rotor blade

is usually considered as a rigid body, and thus depending upon the flight
case and the independent variables considered (i e, flap angle of applied
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cyclic pitch) a condition of rigid body equilibrium is obtained The resulting
rigid body motion introduces various inertia forces, one of which, the
" Conohs Force," is well known It has been mentioned previously, and
verified in Appendix 2, that in the decoupled lag plane analysis of blade
motion, this inertia force can be added to the aerodynamic forces, obtained
in the previous section, to give resulting external applied load for the forced
oscillation problem

The Problem of Forced Oscillation

Having now defined the loading system, we can apply it directly to the
dynamical equations formulated m Appendix 3, and from them obtain
the bending moment, shear force, and deflection diagrams associated with the
different harmonics of loading (see Appendix 3, Section 4 8, 4 9)

With the above data available, the problem of strength assessment then
reverts to the normal stressing problems associated with any fixed wing
aircraft and consequently need not be dealt with here

It is necessary, however, to give special attention to the problems of
fatigue, and these will be considered in a later section

It should be realised, however, that other methods of solution exist for
determining blade bending moment diagrams, shear force, and deflection
diagrams, and many such methods are summarized by A Flax (Ref 3)

The advantage of the matrix approach outlined in this paper (Appendix
3), however, is that the solution to the forced oscillation problem has been
obtained as the particular integral of the equations formulated for the
" General Dynamical Problem," thus showing the true relationship that
exists between the forced oscillation problem, and that of " Ground " or
" Air " Resonance Also, it is possible to assess the effects of the aircraft
body characteristics on the blade bending moments, natural frequencies, etc

To investigate such an overall problem in detail (i e, the numerical
solution for a problem with a multi-mass distribution along the blade,
together with a set of body masses), it is necessary to enlist the aid of a
digital computer (Reference has already been made in Appendix 3 to a
digital computer programme for the simple natural frequency problem)

It is essential, however, to choose a digital computer capable of dealing
with at least twenty significant figures, since past experience has shown that
it is possible for a computer to lose so many of the significant figures during
the calculation, that it has actually ' lost' the problem being solved

Another important point on this aspect is, that although the physical
data, associated with the problem, can be as approximate as one wishes
(e g, choice of mass distribution, geometric characteristics, etc), it is essential
that all the derived data prepared for submission to the digital computer
(2 e, stiffness matrices, etc) is exact

Without the aid of a digital computer, however, much can be learned
of the blade behaviour by setting up simplified problems capable of solution
on desk calculating machines

It is possible to investigate the behaviour of a blade comprising a
multi-mass system with the rotor hub fixed against translation and rotation
(rotating axes), and then to modify the solution by considering the effects
of hub translation and rotation obtained from a single blade mass, and
multi-mass body system
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The results obtained by such a process, although not exact, give an
indication of the correctness or otherwise of the assumptions generally used
in assessing blade behaviour This is very necessary, since in all the reports
on this subject I have seen to date, no account has been taken of the effect
of body freedoms on blade bending moments, etc, and in the case of a
flexibly mounted rotor system this effect can be quite significant

It is possible to present the equations developed in Appendix 3, in many
ways in order to give the solutions of particular problems associated with
any given aircraft (e g, the effect of " Jet cut " on the Rotodyne blade and
variations of the problems indicated above), but it is not possible to enlarge
further on these points within the scope of this lecture

Other Dynamical Systems

The dynamical system described in Appendix 3, is usually sufficient to
deal with most rotor configurations, except for problems of dynamic stability,
etc, associated with a " See-Saw " two bladed, tilting head rotor assembly
In this case a straight forward application of " Euler's Dynamical Equations
of Motion " as developed in most standard dynamical text books can give
very interesting results

Whatever the rotor configuration being considered, however, it is
essential that its dynamical characteristics are understood Failure to assess
fundamental dynamical effects in the early stages of design, can seriously
affect the strength and performance of the resulting aircraft

Data for Blade Stressing

The information obtained from the foregoing considerations is usually
sufficient to enable a realistic strength assessment to be made, and finally a
provisional blade life to be assessed

Problems associated with the fatigue aspect in the calculation of blade
life, are described in the next section

BLADE LIFE

To enable a rotary wing aircraft to become an economical transport
vehicle, it is necessary to achieve a blade life of 1,000 hours at least For
most helicopters this implies over 107 cycles of stress reversals at first har-
monic (This is an optimistic assumption)

For steel rotor blades, therefore, if a life of 1,000 hours can be achieved,
an infinite fatigue life should be obtained Conversely, if a life of 1,000
hours is required the blade should be designed for infinite life

The Fatigue Problem

It is not possible within the scope of this lecture to give a detailed
description of all the problems that arise in connection with the fatigue life
assessment of a rotor blade as methods of " fatigue lite assessment " could
easily be the subject of a lecture in its own right

Mention Will be made, however, of some of the important factors which
influence the calculation of the fatigue life, but it should be realised that the
considerations which follow do not in any way constitute a complete analysis
of the problem
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Types of Fatigue Problem1;

Generally speaking fatigue problems fall into two categories (a) Those
associated with oscillating stresses occurring m the body of a component
{eg, normal fatigue) and (b) those associated with oscillating stresses, as
above, together with a relative movement between the two adjacent parts,
resulting in " fretting " (i e, fretting fatigue)

There are, of course, many other aspects of fatigue such as corrosion
fatigue, rate of crack propagation, etc, but since much has already been
written on the subject, they will not be considered here

Normal Fatigue Problems

The problems occurring in this category are usually those of determining
the fatigue concentration factor for a component, and the fatigue allowable
for the material

It is well known that the fatigue concentration factors are usually less
than the equivalent elastic stress concentration factors, and much useful data
on this subject is given in Ref 6

Care should always be taken, however, in applying fatigue concentration
factors to redundant structures, since often the " calculated " stress at a
given point results from assumptions which can usually be justified only on
arguments for " Ultimate Case " stressing (i e, considerations in which
plastic deformation is allowed to re-distribute some of the loading typical
of fixed wing stressing) This does not give a true indication of the actual
stress occurring at the point considered It usually results in the stress
being underestimated and premature failure occurring

It is also necessary to consider the material " fatigue allowable " very
carefully, since, although this is usually quite consistent for a given material
specification, the allowable achieved for a given component is usually very
dependent upon the state of its surface fibres

The fatigue allowable for T 60 Tube for example, is ±19 tons/sq in
(25 3% Ult) in the " as drawn heat-treated " condition, whereas the removal
of 0 015 ins of the internal and external " decarbunzed " fibres increases
the fatigue allowable to ±27 5 tons/sq in (36 7% Ult)

Tests have also shown that some pickhng techniques, used in conjunction
with cadmium plating, can reduce the fatigue allowable of D T D 331
(S99B) by 33% (although this is not true for some of the lower grade steels)

The above are examples of reductions in the fatigue strength due to
weak surface fibres On the other hand the fatigue allowable can be improved
by " fine " surface finishes or the more practical process of " Capri-honing "
or " Vapour blasting " For example, a specimen in D T D 331, with a
16 micro ins finish ( 000016 inches), has a fatigue allowable of ±22 3
tons/sq m (notched) and ±34 0 tons/sq m (unnotched), whereas a similar
specimen with a basic surface finish of 54 micro ins prior to " Capri-honing "
had in the final capn-honed condition a fatigue allowable of 27 5 tons/sq in
(notched) and 42 7 tons/sq in (unnotched)

Consequently, bearing all the above factors in mind it is then possible
to estimate the fatigue life for a given component

The " Fretting " Fatigue Problem

The most well known problem in this category is that of the normal lug
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There is considerable experimental evidence now available to show that
the infinite life allowable for steel lugs is only 4 5% of the ultimate tensile
stress A typical S/N curve for steel lugs is given in Fig 7

Similar effects are also obtained for sheet " lap joints," but these will be
discussed m detail in the next section

Another example of fretting fatigue, which is not so obvious, is shown
in Fig 8 In this case a simple oscillating tension stress was applied to the
bolt, and as a result of fretting on its shear face, failed across its maximum
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diameter (no geometric stress concentration factor) at approximately 3 5%
of its ultimate tensile stress after 106 cycles

The fretting failure of the tension bolt, referred to above, only occurred
after the design preload had been reduced to zero No fretting occurred
during the previous tests when preloads of 50% and 25% of its ultimate
tension strength were applied Also, the specimen was unbroken after
2 X 106 cycles, in each case, for an oscillating stress approximately equal to
the failing stress in the un-preloaded case above

Thus, much can be done to improve the fatigue life of such components
{e g, preloading or clamping, etc), but it should be noted that unless the
preloading is faithfully applied (either m the workshop or in the field)
premature fatigue failure can occur

The Problem of Loaded Holes in a Plain Sheet

The problem to be considered here is that of a plain sheet subjected to
an oscillating stress across its width, together with an additional local oscilla-
ting stress due to an oscillating load applied via a rivet or bolt hole (Fig 9)

' I//////J I//////////////////////////////77A

COMBINED SHEET LOADING
Fig 9 Load Diagram
for Appendix 4

o
LOADED HOLE UNLOADED HOLE

r= n LOADING SUB SYSTEMS ,, _
I<EEL (I) („ J^Eu Q,
Dt (W D)t

RESULTANT EQUIVALENT PLAIN SHEET STRESS - 3)

In order to obtain the life of a component loaded m this manner, it is
convenient to split the loading into two systems which can be called the
" loaded hole " system, and the " unloaded hole " system (see Fig 9) The
stresses resulting from the two systems are added together, after the applica-
tion of the respective fatigue concentration factors (KF) The life is then
estimated from an " unnotched " S/N curve

The normal definition of KF (equivalent plain sheet stress divided by
" notched " sheet stress) is quite satisfactory for the " unloaded hole "
system However, it is not really suitable for the " loaded hole " system,
since the local stress in the vicinity of the loaded hole is approximately
constant irrespective of sheet width (z e, width greater than five times hole
diameter) Thus, using the normal definition for KF results in a K F which
varies with sheet width

If, however, the " notched sheet stress " is replaced by P/Dt, P (applied
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load), D (hole dia ), and t (sheet thickness), a value for KF (say KF) will be
obtained, which is independent of sheet width

A provisional graph of KF (for " loaded holes "), obtained from coupon
specimens, is given in Fig 11 Also, an example of this procedure, applied
to actual components, is given in Appendix 4, and the results obtained are
compared with actual test data for the components analysed

It is not suggested that the above procedure is exact, but it does enable
an estimate to be obtained of the importance of the local stress occurring in
the vicinity of the loaded hole, since quite small oscillating rivet loads can
considerably reduce the life of a given sheet

Note Fig 11 is based on coupon test data in which D (hole dia)
was constant (t e, 0 125 ins ) Consequently the test data to date strictly
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only gives the variation of Kp with t for constant D
The curve has been plotted against t/D provisionally, as there is evidence

from other miscellaneous tests, that it is of this form (Tests are at present
proceeding to establish the final form of this curve)

Scatter

It is obvious from the example considered in Appendix 4, that the life
calculated for a given component is very dependent upon the magnitude of
the scatter factor applied to the test data

Since we are generally concerned with that part of the S/N curve where
N > 107, it is obvious that a factor on stress is much more important than a
factor on life For steel components a factor on life is generally meamngless
for N > 107, whereas a small percentage on stress would considerably reduce
calculated life

The choice of scatter factor (for use in deciding a safe life) is very depen-
dent upon the number of specimens tested and other general experience
with regard to similar components

The choice of an unreahstically large scatter factor involves a consider-
able weight penalty Alternatively, the reduction to the mm safe value,
involves considerable expense in testing Consequently the choice of a
scatter factor is a compromise, the actual value chosen being dependent on
the nature of the component considered

Fatigue Substantiation—Conclusion

The calculated blade life, based on calculated stress obtained by the
methods outlined m this paper, can only be considered as very preliminary
evidence in relation to fatigue substantiation

However, provided care has been taken during all of the stages m the
strength assessment, the blades and rotor system should be quite safe for
ground running and preliminary flying to a restricted flight envelope

It is essential, however, that all the calculated stresses are checked as
early as possible by flight strain gauging, and the calculated life by destruction
testing of respresentative components Only by these means is it possible
to obtain the actual data required for the fatigue substantiation

The virtue of the strength assessment calculations as outlined in this
paper, however, is that it has enabled many design pitfalls to be avoided
(e g , nearness to resonance, rotor operating m an unstable r p m range, etc),
and also that it has prepared a basis on which the flight test results can be
considered

Pure theory will not produce a safe aircraft, neither will flight test
results alone, but an intelligent combination of the two will bring out the
best of both worlds, and consequently, safe aircraft
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Appendix i

The Problem of a Stationary Rotor Blade Subjected to an Applied Acceleration
A solution is given for two different types of pitching acceleration applied

to a blade idealised to a " one mass spring " system
Notation

0 applied pitching displacement
p total displacement (p = z + rO)
z elastic displacement
r spanwise position of blade mass
m blade mass
K blade spring stiffness
w (K/m)4

i t time
i A magnitude of applied acceleration
| e time of applied acceleration
\ C rA/w2

N amplification factor

Basic equation of motion

With reference to fig 1, basic equation of motion becomes
m(z + rO) = - Kz (1)
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Applied Acceleration
Condition 1 (Rectangular distribution)

0 = o t < o
0 = A o ^ t ^ e i e O =
0 = o t >e

Condition 2 (Triangular distribution)

0 = o t < o

O = A | 1 - - | o < t < e i e o = A | ^ - --*H)
0 = o t >e

Solution
Solving equation (1) in the normal way and applying the above boundary
conditions gives the following solution
Condition 1

p = z + |rAt2 \ (2)
z = C(cos wt— 1) j ° ^ ^ C (3)

p = z + rAeH
*r^ we / ez = —2C sin -y sin w 11— -^

Condition 2

z = C cos wt—sm wt
we -H)]

_, f, ,. sin wt . / . sin we\ ]
= C (cos we—1) Ml cos wt[v ' we \ we / J

(4)

(5)

(6)

(7)

(8)

(9)

Note The displacement associated with the inertia force resulting from an
instantaneous acceleration (l e , neglecting dynamical effects) is

. . — mAr
zs (say) = R = - C

Discussion of Solution
The overall solution obtained is in the form of a rigid body displacement

with an elastic displacement superimposed The stresses induced in the
blade however are only a function of the elastic displacement, and thus only
this part of the displacement need be considered

The dynamical effects can then easily be seen by introducing an amplifica-
tion factor N denned as | z/zs |
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Amplification factors
Condition 1
From Equation (5)

N1 = 2s in l —I sin w i t — -

This is a maximum when t = - + - (1 -f 4n) [n = integer]

. . „ we _
i e , N1(max) = 2 sin — for any e

Condition 2
From Equation (9)

XT / ,s sin wt , / , sin we\
No = (cos we — 1) M l cos wt

" ^ ' we ' \ we /
For certain t and small e, N2 (max) > we/2
„ „ t „ some e, N2 (max) > 1 26 approx
„ „ t „ large e, N2 (max) > 1

Thus condition 1 gives a maximum amplification factor of 2 0 and condition 2
gives a maximum amplification factor of 1 26 but it should be noted that in
each case the actual amplification factor is very dependent on e (the time of
application of the acceleration) and the resulting amplification can be made as
small as we please by suitable choice of e (I e , a small amplification only will
be obtained if the acceleration is removed after a very short time)

Appendix 2

The Equations of Motion for a " Three Dimensional" Mass-Spring System
with Elastic and Space Freedoms

1 Introduction
The equations of motion are obtained for the above system to provide

data for the discussion on the de-coupling of the flap and lag plane motion
A " one " mass-spring system is considered in detail (for simplicity) but

the more general solution is stated

2 Notation
r spanwise reference position of blade mass
m blade mass
x, y, z co-ords of blade mass (rotating ref frame)
e, q, g elastic displacement along x, y, z
d fore-shortening of blade along x
Kx, Ky, Kz blade " elastic " stiffness coeffs along x, y, z
a, b, c blade " effective " stiffness coeffs along x, y, z
Fx, Fy, Fz applied external forces
p blade root slope (==s rigid blade flap angle)
4* blade azimuth angle
Q. blade angular velocity
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3 Derivation of " effective " stiffness coefficients

The physical elastic displacements are radial (̂ = spinwise) and spanvvise
bending (see fig 2b)

ThusFr = Kr/ F, = ^-0^^f

Since we are considering small displacements and large radial force (1 e
ae ̂  mrfl2 to be shown later) we have

Fx = ae = Fr cos 0 — Fe sin 0 =̂= Fr

Fy = by = ¥g cos 0 + Fr sin 0 ^ Fo + Fx -

y r i* i

Now Ky = Ke/r
2 (equivalent linear bending stiffness)

Thus b = Kv H (eg Ky + mfl2)

Similarly for flapping plane, allowing for flapping freedom
_ , ae z / T. , m!)!z\

r g \ g

4 Derivation of blade fore-shortening " d "

From fig 2c (two dimensional example)
d = r(l— cos 0) — / cos 0

= r02/2 - e

= >2/2r - e

Thus generally d = ^- (y2 + z2) — e

5 Derivation of equations of motion

Co-ordinates of mass point m

With reference to fig 2a, we have
x = r — d, y, z = r sin (3 + g

Velocity components of m with respect to x, y, z

Velocity components are

x - y<]>, y + xtj,, z

Thus kinetic energy

T = j (x2 - 2yxty + yV + y3 + 2xŷ  + z2 + xV

Potential energy
V = \ jae2 + by2 + eg2}
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Sub in Lagrange's Equations

Where q = x, y or z Q = Fx, y or z (Note Fx = o)

Equations of motion become

x dirn m(x — 2y^ — y<j, — x^2) + ae = Fx = 0

y dirn m (y + 2x4, + x^ - y^2) + by = Fy (.1)

z dirn mz + eg = Fz

If we assume
(a) p small 1 e sinfj = p cosp = 1
(b) ^ = 0 l e <\i = Q. (constant angular velocity)
(c) x — 2y<jj small compared with x^2

(d) d = - (yy + zz) — e =2= rpfi

since the elastic displacements and their derivatives are small compared with
the free body displacement,
then equation (1) becomes

x dirn — mxn2 + ae = 0
ae = mxn2 ^= mrn2 (2)

y dirn m (y — 2dn — yQ2) + (Ky + ml>2) y = Fy

my + [Ky + ( m - m ) a2] y = Fy + 2mrnpp )
my + Kyy = Fy + 2 n p p i j

z dir- mz + (KZ + 221*) g =

/
(KZ

\
= Fz (4)

Note When more than one mass is considered the term (m—m) above,
equation 3, is not zero (see below)

6 Statement of General Solution

The general solution for equations 2, 3 and 4 for " N " mass points on one
blade denned by the co-ords (r15 , rN) become

x dirn Normal centrifugal force equations
y dirn and z dirn Written in formal matrix notation (considering the

Coriohs acceleration 2 mrflpp as an external applied force in conjunction with
Fy) equations become

[m]{q} + ([S] + [C]a2){q) = {QJ (5)

or less formally, matrix notation implied
mq + (S + Cn2)q = Q (6)
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where

q2
Q = S = a-1 (y dirm lag)

ON

C = R-JF — m (y dirn lag)
C = R-!F (z dirn Flap)

'a~ry (z dirn flap)

F =
F2 , F

1=2

n N -p -p

, FN

R =

0 , 0 , 0 , F N _

r U r 2 J 3 rN

FN = mNrN

rN—r

a =
Flexibility matrix
for blade with
"built-in" root

m =
mi, o , o ,
o , m2, o ,

mass matrix

r —
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Appendix 3
The General " Two Dimensional" Dynamical Problem

1 Introduction
The " Two dimensional" dynamical problem considered in this appendix

is that associated with " in-plane " oscillations (e g , oscillations in the plane
perpendicular to the axis of rotation) as this has a direct bearing on the problem
of Ground Resonance and general lag plane motion Similar results can also
be obtained for flapping plane motion

In order to simplify the analysis of this problem it is convenient to break
the basic system into two sub-systems, and to replace the internal forces
occuring in the basic system at the break, by external forces in the two sub-
systems

Each sub-system is then analysed separately and a relationship obtamed
between the external forces acting at the break and the associated displace-
ment (such a relationship defines the " Impedance " of the sub-systems)

The solution of the overall problem is then obtamed by considering
compatibility relationships between the forces and displacements at the break
in the basic system

The sub-systems considered in this appendix are, (a) The aircraft body
(b) The rotor, the basic system being broken into two sub-systems at the
rotor centre line
2 Notation

r Spanwise ref position of blade mass
ms Blade mass on Sth Blade
x, y, z Co-ordinates of blade mass (rotating ref frame)
q Elastic displacement of blade
d Fore-shortening of the blade along x
H5 xos + iyos, Hub displacement with respect to Sth axis
Suffix S Denotes Sth Blade
6 Body rotation of complete system
^ Blade azimuth angle
n Blade angular velocity
I Body impedance K^//) (Operator)
Fx, Fy Force applied by body to Rotor in direction X, Y
Q Force applied to blade in direction q
S Elastic stiffness matrix
C Centrifugal stiffness matrix for unit O.
N Number of masses per blade
j Number of blades
D Operator d/dt
II Product
NOTE Other notation is defined as required

3 The aircraft Body Impedance
The equations of motion for the body can be obtained by the usual

Lagrangian method, and the impedance at the junction of the rotor head to the
aircraft body subsequently derived

It is not practical to develop a general solution for the body impedance,
since the specification of the dynamical characteristics for a " general aircraft
body " would be extremely complex

The final form of the body impedance however is stated, and a method of
obtaining the impedance parameters from a vibration test is given
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NOTE In deriving the body impedance it is convenient to assume that a
mass equal to the total rotor mass is situated at the rotor centre line (See
section 4 below) This mass should be included in all body impedance
calculations or tests

3 1 General Form of Body Impedance
The equations of motion for the body (at the break) yield the following

F = IH
Where H = displacement

I = impedance — K^/rj

5 = f f & 2 + D2)» Polynomial in D2 (£,2 root of 5 = 0)
1=1
p-i

Y) = y\ ( V + D2), Polynomial in D2 (r/ root of q = 0)

K = constant
p = number of degrees of body freedom

3 2 Impedance Parameters Obtained from Vibration Tests
F (applied forcing load) = Fo cos wt
H (resulting displacement) = Ho cos wt

T h e n | = K

r - i

Thus if
Ho

is plotted against w (see Fig 4) the values of E, and r,

can be obtained

NOTE K = J]h,5

p

1

Si
Ho

4 0 Equations of Motion for the Rotor

4 1 Co-ords of Mass Point m% (i e, mass on Sth Blade)
zs = Hs + e l 9 ( i r s - i d s - q s ) (1)

NOTE
(a) For simplicity only one mass point on each blade will be considered

(General solution for " N " mass points however will be stated)
(b) The suffix " s " will be dropped while considering one blade only, but

will be re-introduced when combined blade effects are considered
(c) We assume H, 0, q, are first order terms and d second order All

terms above second order in the subsequent analysis will be neglected
4 2 Kinetic Energy of Mass Point m

T = £m {zz + in (zz — zz) + n2zz} (2)

212 rlie Joirnal of the Helicopter

https://doi.org/10.1017/S2753447200003425 Published online by Cambridge University Press

https://doi.org/10.1017/S2753447200003425


Substituting for z from (1) gives

T = (A) + (B) + (C)
Where (A) = *m (HH + in (HH -

(B) = im

(C) = |m

n2HH}
q2 + n2 (r2 + q 2 _ 2 rd) + 2flrq}

(-(or+q) (H + H) + (or)2 + 2orq) +

i n {- (or + q) (H - H) - (or 4 q) (H - H) + i r (H +

fi2(-(or + q) (H + H) +ir(H-H) + (0r +

~ 2l0r2} +

NOTE
Bracket (A) is the Kinetic energy of a mass " m " situated at the rotor
hub expressed in co-ords defined with respect to the rotating ref frame
Bracket (B) is the Kinetic energy of the mass "m" situated at point r
for a blade whose root is fixed against translation and rotation (1 e it can
be shown to be identical with the K E in Appendix 2 when z = 0)
Bracket (C) is the Kinetic energy of the mass point " m " due to the
translation and rotation of the blade root

4 3 Total Kinetic Energy of Complete System
We must now re-mtroduce suffix " s " in order to differentiate between

the different blades
j-i i-i

Thus T = ̂  T* = 2 {(A)s + (B)S + (C)s} ^
s=0 s=0

Since we have j blades (s = o, 1 , j — 1) each separated from its neighbour
by the angle 2rl), Hs and Ho are related by the equation

Hs=Hoe— (s = o , , ,—1) (5)

Where a = *Z1

For convenience in representing products of the form Hsqs we define
i-i

(6)
S - 0

s=0

j-i J-I

NOTE V Hs = ] Ho, since V e-°" = 1
s-0 s=0

Substituting the terms (5) and (6) in (4) we have
T = -!m(j)& (RH+RH+f i 2 (HR+HR)+ in (HR-HR-HR+HR)}
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HH + n2HH + in (HH - HH)}*

(7)
J - l J - l

2 ^Jmrs Oq, + | m ^ (q2 + n2 (r2 + q2 - 2rd) + 2nrqJ
s=0 s=0

+ J (no + |2j
Where we have denoted,

Ho by H
jm by M (Total blade mass)

mrs
2 by J (Moment of inertia of complete rotor about the axis

of rotation)
* With ref to § 4 2 bracket (A), this is the total K E of a mass equal to
the rotor mass situated at the hub This term can be omitted from this
equation if we include it in the body impedance

Thus we define T' = T - [ }* (8)

4 4 Total Potential Energy V
With ref to Appendix 2, this becomes

2qs
2 (9)

s=0

4 5 Lagrange's Equations
We define L (Lagrangian function) = T ' — V

d {o\ o
l5j

a? d {o
We define -Zq (Lagrangian operator) = d t l 5 q

_ _ d (oT'\ <>T' , OV
Thus Lagranges equations -r- { ——} • \- — = Q

dt \ dq j Oq Oq ^

become J^qL = Q . . . (10)

4 6 The Determination of the Generalised Forces
The independent variables in L are —
Ho = x00 + iy005 qS5 ds, 0

The external forces are —F, Qs (s = o , j — 1) see Fig 3

Now zs = Hs + e'9 (i(r—d)—q)s (1)

(11)

Also zs = xs + iys

Hs = xos + iyos

xs = xos+(d—r)s sin 0 — qs cos 0
Ys = Yos — (d—r)s cos 0 — qs sin 0

Xos = XQO COS a + y00 Sin a
yos = — x00 sin a + y00 cos a
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s=0

and X = xos cos nt — yos sin nt 1 . ^
Y = xOs sin nt + yos cos nt J { }

The virtual work durmg the elemental displacement becomes therefore,

J-I

8W = - Fx 8X - Fy 8Y + V — (Qs co, 0 8xs + Qs sin 0 8ys) (13)
s=0

Using expressions (11) and (12) we have
8W=QXOO Sx00 + Qyoo 8y00 + Qqs 8qs + Q9 80 (14)

Where
J-I

Qxoo = — F x COS (nt — a) — Fy Sin (nt — a) — V Qs COS (a t 6)
s=O

Qyoo = + Fx Sin (nt — a) — Fy COS (nt — a) - V Qs Sin (a \- 0)

Qqs = Q s

Q9 = rQs

Qd = o

Thus equation (15) define the generalised forces associated with the
independent co-ordinates

4 7 The Equation of Motion

• L = Qxoo

I L = Qyoo

Thus Qxoo + JQyoo = (-^oo + :

Now it can be shown that

Qxoo + iQyoo = - F e - (JJ«-a:

Also that

(15)

J
s=0

(16)

(17)

(18)

Thus from (16), (17) and (18) we have
l 1

)> e '

s=0

also

Association of Gt Bnlnn
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Thus
j - i

+a> = - m ( O J < j2
s=0

where a = D2 JRe+'<nt-a'J

(20)

(20a)

Also

Qs={mro+mq+(mn2+b)q-|m())l| (D-in)2H0+(D+iO.)2H0| L (21)

Qsr = JO (22)2
s=O

THE ABOVE EQUATIONS (20, 21 AND 22) ARE THE BASIC EQUATIONS OF MOTION
FOR A ROTOR WITH " J " BLADES AND " ONE " MASS POINT PER BLADE

4 8 Basic Rotor Equation of Motion for a Rotor with "j " Blades and " N "
Mass Points Per Blade
Writing equations in formal matrix notation we have

N j - 1

— r — eiv T Z-iZ^^s ~ ~~w LmJL°J
1=1 s=0

[Qs] = [Xs] 0 + [m] [qs] + ([s] + [c] n2) [qs]

' - i n ) 2 H 0 + (D+iO)2H0}

J-I

T (Total External Torque) = [r] [Qs] = Jo + > M [qs]
s=0

Where
[m], [C], [S] are square matrices as denned in appendix 2

[Qs]= [Qis 1, [rs]= [ r i s ] , [qs]= f q i s ] , [a]= f o i ] , [m]= [ mi

(23)

(24)

(25)

. Q N S . . Q N S .

[Xs] = [m] [rj

Equations (23), (24) and (25) have been given in terms of the physical co-ords
(Rotating) associated with the system (e g H, q) and for certain special cases
of the general solution this is the most convenient form

The general expansion however of the matrix equation (l e , expanding
the square matrices) yields a set of simultaneous equations in which each
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equation contains all the N co-ords q[S (1 = 1 N) and their differential
coefficients

To simplify the general solution therefore we apply the following
transformation to q
Transformation of Co-ordinates

1

*=V7rq'
Where

PlO r = 1 ,
Y J Y"

Yn >Y2n

, 1

, Y n °
Y = e

Lp.jiJ

Modified equations of motion
If we now apply this transformation to the co-ords in L (equations (8)

and (9) ) we have

j ^ L = Jz^ L = QR (26)

NOTE L is a function of R, and R, and if j ̂  2, R, and R, are independent,
but when j = 2, R, = R\ I e , not independent This results in two

different equations for J z ^ depending upon whether j > 2
The resultant matrix equaaon thus become —

Equation 23 remains unaltered (j > 2)
Equation 24 becomes

(27)

(28)

and

0)» [Q] [G] = [m] (D - iQ)» [a] + {[s] + [c] Q*} [a]

I -iO)l[m](D»W + (D - 2in)2 Hoe'««->) (j = 2)

Where
W = X + lY,

1
g >g = e

gn

Lg'»J

, Q u i

LQn
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4 9 Special Cases of the General Rotor Equations

4 91 Blade whose root is fixed against translation and rotation (with respect to
rotating axis)
Ho = 0 = 0

Thus equation 24 becomes

[Qs] = [m] [q,] + ([s] + [c] a2) [q,] (see also appendix 2)
From this equation values of blade deflection, shear and bending moment can
be obtained by suitable application of matrix algebra
Frequency equation (Characteristic Equation)

The complimentary function solution for the above differential equation
(I e , solution for [Qs] = 0) yields the frequency equation

A = = 0

Where A denotes determinant
X denotes the blade natural frequencies associated with a given value of ii

NOTE
A standard S B A C digital computer programme has been prepared for

obtaining the values of X from the above equation by an iterative process

This result in a slightly modified form was also obtained by the Bristol

Aircraft Co

4 92 Frequency Equation for the Complete system (Blades and Body)
Section 4 91 above considered the natural frequencies of the blade alone,

and assumed an infinite rigid body If we now consider the system as a whole,
we then obtain a frequency equation and the associated natural frequencies
for the complete system

In this case however, some of the frequencies obtained are complex for a
range of rotational speed and this implies divergent oscillations over this range

This problem is usually discussed under the heading of " Ground " or
" Air " resonance

The equations for the complementary function solution then reduce to —
From equations (23), (27) and (28)

F = + (j)J [in]' [a] (29)

[m] (D - m)2 H + ([s] + [c] U2) [r] - \ (,)t [m]' D^W = 0, Q>2) (30)

[m] (D - in)2 [a] + ([-]+ [c] n2) [a] - i(])s [m]'(D*W+ (D - 2ui)Hfle"»} = 0,

(, = 2) (31)

Also F = Fx + iFy
(32)

Fx = Ix X, Fy = Iy Y (See Sec 3 1)
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Thus
For a rotor with more than two blades (j>2) we have two equations (29) and
(30) and two unknowns (W, a), hence we can solve equations for the variables
(fixed co-ords) W and a

For a rotor with two blades (j = 2) we have two equations (29) and (31)
and three unknowns (W, a, Ho), hence we cannot solve the equations in their
present form, and it is necessary to re-state them in rotating co-ords

Thus for a rotor with more than two blades, a solution can be obtained in
fixed co-ordinates, and consequently a body impedance with directional
properties (l e , Fx =£ Fy) may be introduced For a rotor with two blades
however it is necessary to consider a body impedance with non-directional
properties (l e , Fx = Fy) in order to obtain a transformation into rotating
co-ordinates that does not include cyclic coefficients

If Fx 9̂  Fy cyclic coefficients will occur for the two bladed rotor and the
resulting equations then become insoluble (by normal methods at least)

4 921 The Frequency Equation for a Rotor with more than Two Blades
(Ground or Air Resonance Equations )
For simplicity we will consider a rotor with " one " mass " m " per

blade, " Coleman's " equation will be derived as a particular case (e g , Body
with one degree of freedom)

We define 0)*« = q* + iqy

F = Fx + iFy

Where

qs cost* — sin (lit — a)/>qs sin*

qy = cos (fit — i

s=0
J-I

=o

J-I
s m (P-t ~~

s=0 s=0

X

(33)

NOTE [m]' = [m]=m

qis = qs

for N = 1 (one mass per blade)

The equations (29) and (30) thus become (dropping formal matrix notation,
but matrix terms implied where relevant)

- F x + m D 2 q x = 0

m (D2qx + 2nDqy - fi2qx) + (S + CO2) qx - ijmD2X = 0

m (D2qy - 2fiDqx - fi2qy) + (S + CO2) qy - |jmD2Y = 0
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Eliminating Fx, Fy using equ (33) and expressing in matrix form we have

|)m2
OxD4 + mKx!;x (D2 - a2) + KX5U (S + Cft2), 2ftmKxi;xD

- 2ftmKy5yD, - E,(D2-fl2) + Ky£y(S + CQ2)
= 0

Dividing throughout by m and collecting terms in ft2, and simplifying by
introducing the parameters

Xj = c/m, x2 = s/m, >3 = ) m

Ax = (D2 + x2) Kx 5x - ^ x D 4

Ay = (D2 + X2) Ky Zy - |X3

We have,

•x — (1 — Xj) !

(35)

— 2DKyEyft , Ay — (1 — Xj)

qx

= 0

Thus since qx, qy are of the form qxo ein, qyoe
lVtj then for D2 we can write

—v2 and the characteristic equation then becomes

( a 2 ) 2 -
4v2

(36)

which is a quadratic in (ft2)
where

Bx =

By =
Ky?y

(37)

NOTE
The substitution of the following parameters in equations (29) and (30)

yield " Coleman's " basic equations (Ref 5 equ 26 )
Present Notation Coleman's Notation

S
lW zf
jm

VJ.

Fyf = {my+nmb)D2+Kyf}yf

—Fy FXf = {(mx+nmb)D2-Kxf}xf

4 922 The Frequency Equation for a Rotor with Two Blades
Introducing the following notation —
D* = D + lft
D( # ) = D — lft
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and if $ (D) is a polynomial in D = O
then <D (D + iH), d> (D—in) = <D*, d>(*>
Then from equation (29) we have

Fe-.<flt-a) = f = ^/jm D*2 P (38)

and from equation (31) after simplification

m D2P + (s + en2) P - \ V2~m (D*2 Ho + D (*»2 Hu) (39)

It can be shown that if
Ix = I, = I (say)

Then f = I(*»H0 = K*;*A)* (40)
Eliminating Ho, f between equations (38), (39) and (40) we have

[K 5 I (mD2 + (S + Cn2)) - m2(D4 TJ 5 + D 4 TJ l)J v ~ ° (-41-)

If we now write P = Poe'n, the above equation yields the frequency equation
for the two bladed rotor
eg

#(*) 2 2 XA 4*(#) U)*l

NOTE
In a body/blade system as defined by " Feingold " (Ref 4) equation (42)

becomes

" - ' - ' - • • - ' - - - ^ o ( 4 3 )

Substitute the " Coleman notauon " as given in Section 4 921 and noting
that

n + 2mb)D*2 + :

n + 2mb)D'*)2+K)

equation (43) gives " Feingold's " frequency equation for a two bladed rotor
(Ref 4 equ 7)

Appendix 4
The life estimation of a component subject to a combined sheet and rivet load as
shown in Fig 9

Two examples of the method outlined in Section 4 221 are given,
Example 1 Typical Skinj Spar Joint

(High sheet stress—Low rivet load)
Data

Sheet 20G
Sheet Stress ± 17,400 lb /sq in
Rivet Load ± 16 lb
t/D 0 288
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Thus KF (Unloaded Hole) = 1 55 (Standard Data)
KF (Loaded Hole) = 1 05 (From Fig 11)
fu = 27,000 lb /sq in
fi = 3,720 lb /sq in
fu + f, = 30,720 lb /sq in

Thus from Fig (10)
N = 1 5 X 106 cycles mean curve

= 0 35 X 106 cycles —5 % scatter curve

Actual failure of specimen 2 58 X 106 cycles

Example 2 Typical Skin/Stringer Joint
(Low sheet stress—High rivet load)

Data
Sheet 20G
Sheet Stress ± 11,200 lb /sq in
Rivet Load ± 80 lb
t/D 0 288

Thus (as example 1)
fu = 17,300 lb /sq m
fi = 18,700 lb sq in
fu + f, = 36,000 lb /sq in

Thus from Fig 10 N = 0 17 X 10b cycles mean line
= 0 12 x 106 cycles —5% scatter line

Actual failure of specimen 0 21 X 10° cycles

NOTE

In example 2, the value of fi is of the same order as fu, consequently any
increase in the rivet load would substantially reduce the general stress
level allowable for a given life

Discussion

Mr P E Q Shunker (Westland Aircraft Ltd), who opened the discussion,
congratulated the Author on a most interesting paper on the very difficult subject of
rotor blade design and stressing Like any other structure, the rotor blade must be
analysed in two parts

(I) the critical external loading which must be derived, and
(u) the strength assessment of the blade under that loading

Since the blades were part of a dynamical system, the external load analysis was
concerned not only with the air loads themselves, but also with their associated inertia
loads

The paper demonstrated a method for the solution of the dynamic problem,
using the elegant devices of the matrix algebra The Author had made a valuable
contribution on this particular aspect For example, he had placed the so-called
" ground resonance " phenomenon in its correct perspective as being part, albeit
extremely important, of the general dynamic picture In discussing the effects of
dynamic phenomena he had pointed out the pitfalls to which the unwary were prone
and in his analysis he had demonstrated the importance of the " body freedoms "
One would imagine that this was more important in the case of the ultra-light than
in heavier aircraft

The first difficulty with which one was faced, however, in blade analysis was the
question of the aerodynamic loading While the Author acknowledged that much
remained to be done on this point, the paper could have been considerably enhanced

222 The Journal of the Helicopter

https://doi.org/10.1017/S2753447200003425 Published online by Cambridge University Press

https://doi.org/10.1017/S2753447200003425

