ANOTHER PROOF OF THE CONTRACTION MAPPING PRINCIPLE

D. W. Boyd and J. S. W. Wong

In a recent note of Kolodner [2], the Cantor Intersection Theorem is used to give an alternative proof of the well known Contraction Mapping Principle. Kolodner applied Cantor's theorem first to a bounded metric space and then reduced the general case to this special case. Sometime ago, we found a somewhat different proof of the Contraction Mapping Principle using Cantor's theorem. Since our proof seems somewhat more direct we propose to present it here.

THEOREM. (Banach) Let T be a mapping of a complete metric space (X,ρ) into itself which satisfies ρ $(Tx, Ty) \le k\rho$ (x,y) for some constant k < 1 and all $x, y \in X$. Then T has a unique fixed point ξ , and $\rho(T^n x, \xi) \to 0$ as $n \to \infty$ for each $x \in X$.

<u>Proof.</u> For $x \in X$, define $\varphi(x) = \rho(x, Tx)$.

Since T is a contraction, it easily follows that φ is a continuous function on X and $\varphi(T^n x) \to 0$ as $n \to \infty$, for each $x \in X$.

Define
$$C_m = \{x \in X \mid \varphi(x) \leq 1/m\}$$
.

From the above observation, we see that C_{m} is closed and non-empty for each $m=1,\,2,\,\ldots$

$$\rho\left(\mathbf{x},\ \mathbf{y}\right) \leq \ \rho\left(\mathbf{x},\ \mathbf{T}\mathbf{x}\right) + \rho\left(\mathbf{T}\mathbf{x},\ \mathbf{T}\mathbf{y}\right) + \rho\left(\mathbf{T}\mathbf{y},\ \mathbf{y}\right) \leq \ 2/m + kp(\mathbf{x},\ \mathbf{y}) \ .$$

Hence, diam $C_{m} \le 2/m(1-k)$. Thus, the family of sets $\{C_{m}\}_{m=1}^{\infty}$ is a nested family of closed sets for which diam $C_{m} \to 0$ as $m \to \infty$. By Cantor's theorem the intersection of these sets contains a single point ξ .

Since $T(C_m) \subseteq C_m$ for all m, ξ is a fixed point of T and clearly unique.

For each $x \in X$, observe that

$$\rho(T^n x, \xi) = \rho(T^n x, T^n \xi) \le k^n \rho(x, \xi) \to 0, \text{ as } n \to \infty.$$

In fact, since $\rho(x, \xi) \le \rho(x, Tx) / (1-k)$, we have the following estimate for the rate of convergence: (cf [2]),

$$\rho(T^{n}x, \xi) \leq k^{n} \rho(x, Tx) / (1 - k).$$

Remark. With little modification, the proof given above may be used to give an alternative proof of a theorem of Edelstein [1] concerning contraction mappings on \in -chainable spaces.

REFERENCES

- 1. M. Edelstein, An extension of Banach's Contraction Principle. Proc. Amer. Math. Soc., 12 (1961) 7-10.
- 2. I.I. Kolodner, On the proof of the Contraction Mapping Theorem. Amer. Math. Monthly, 74 (1967) 1212-1213.

California Institute of Technology

University of Wisconsin