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REGULAR ELLIPTIC CLASSES 
AND THE STABLE RELATIVE TRACE FORMULA 

K. F. LAI 

ABSTRACT. We study the relative trace formula of a reductive group over an alge­
braic number field. Following Langlands we stabilize the geometric side of the relative 
trace formula contributed by the elliptic regular double cosets. 

1. Introduction. The trace formula was first introduced by Selberg for the group 
SL(2, R ) and was established for any reductive group G over an algebraic number field 
F by Arthur in a long series of papers beginning with [1]. The phenomenon of stability 
of the trace formula was discovered by Langlands and it arises on the spectral side as 
L-indistinguishability while on the geometric side it reflects the "packetting" of the con-
jugacy classes over F into conjugacy classes over the algebraic closure F of F (see [10] 
to [13]). L-indistinguishability was first studied by Labesse and Langlands. Shelstad and 
Langlands introduced the concept of endoscopic groups. Langlands presented in [10] the 
regular elliptic part of the geometric side of the stable trace formula. 

In [4] Jacquet and Lai introduced the relative trace formula for GL(2)—there they took 
a finite Galois extension E of F and considered the problem of integrating the kernel 
K(x,y) of the regular representation of GL(2,£) over GL(2, F). In the situation of the 
relative trace formula one replaces the usual conjugacy classes by the double cosets of 
G(E) modulo G(F). Here one can again study the problems of stability. In this paper 
we give a "relative" version of Langlands [10], i.e. we stabilize the geometric side of the 
relative trace formula contributed by the regular elliptic double cosets. The author would 
like to thank Professor Langlands for a conversation on the geometry of double cosets 
and the referee for helpful comments. 

2. Notations, Let F be an algebraic number field and E be a finite Galois extension 
of F. We write A for the adeles of F and A# for the adeles of E. If we denote an algebraic 
group defined over F by G, we shall write G for its group G (F) of F rational points, G& 
for its group of F adelic points. To simplify notations we shall not distinguish G and G 
when it is clear from the context. 

Let G be a connected reductive algebraic group defined over F. Consider G as an 
algebraic group over E and apply to it the Weil restriction functor from £ to F to obtain 
G^. For each rational character \ of G& defined over F, we define the homomorphism 
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lx |by 
lx|M = IIIx(^)U * = Uxv € G. 

V V 

The intersection of the kernel of all the | \ | is denoted by °G\. The locally compact group 
°G\ contains G as a discrete subgroup. 

We denote the cardinality of a set S by 15|. 

3. Double cosets. Write the Galois group Gal(F/ F) of the extension Ej F as 
{a\,...an} with a i = identity. For any a in Gal(F/ F), if a at = <jj we write a(i) = j . 
The group G is characterised by having rational points G(F) = G(E) and action of 
Gal(E/F) on G(F) - G(E) x • • • x G(E) given by: (j((#)) = (<r (&,-.(,-))), for (#) in 
G (F). We embed G (F) diagonally in G (E) and consider the action of (h, g) in G (E) x G (F) 
taking (g;) in G(F) to (h~lgtg). Since the action is given by multiplication in G which 
is in turn given by polynomials in F, we get an action of G x G on G defined over F. 
Let V be the quotient variety for this action. Then V is defined over F and V(F) equals 
the double coset space G (F)\ G (£)/ G (F). If we choose double coset representative of 
a point in V(E) such that it can be written as x = G(E)(gi)G(E) with g\ — 1, then by 
looking at the first coordinate of the equation h~l(gi)g = (gi) we see that h — g and so 
the isotropy subgroup G x G(g[) of (gi) is the intersection of centralizers of the gi in G. 

Suppose now G* is a quasi-split form of G given by an isomorphism -0: G —+ G* 
defined over a finite Galois extension E. Let G * be RE/ FG * and V* be the quotient variety 
for the action ofG*xG*onG*. Then V and V* are isomorphic over F—the isomorphism 
*F being induced by xjj. If G is given by the inner twisting a *—> aa ?a~l with aa in G *(F), 
then the action of Galois on G is given by the following 

(gi)i-> (aa(r(ga-H0)a-1). 

A point v* in V*(F) is a double coset G(F)(gj)G(F) and cr(v*) is the double coset 
G(F)(a(ga-Hi)))G(F). For v = G(F)(gi)G(F) in V(F) we get *F(v) is G(F)(gi)G(F) and 
we deduce from the equality 

G(^aa(a(ga-Hi)))a-l)G(F) - G(F)(a(ga-Hi)))G(F) 

the equation 

Thus V and V* are isomorphic over F. 

4. Elliptic part. We say that an element 7 of G is relatively regular if a(l)l~l is 
a regular element of G for all a in Gal(E/ F)„ 

For a smooth compactly supported function/ on G&, an element 7 in G and a maximal 
torus T of G defined over F, we put 

QT('y,f) = fff(x-l'yy)dxdy 
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where the variables x ranges over G& and y over T&\G&. Let 31 be a set of represen­
tatives of equivalence classes of anisotropic maximal torii T of G defined over F with 
respect to conjugation over F by elements of G. We write %^{f) for the regular elliptic 
part of the geometric side of the relative trace formula for/: 

**V)= E~E'<^(7,/), 

where £ ' denotes the summation over all relatively regular elements; r{T) is the Tama-
gawa number of T and UJ(T) is the order of the Weyl group QF(F , G). (Here in the sum 
Y,z we abused notation and wrote F for T.) 

5. Stabilisation. The process of stabilizing the trace formula involves two ingredi­
ents, namely the stable conjugacy of torii (Langlands [9]) and the local-global hypothesis 
(Langlands [10]: VI§ 4, VII§ 7). The part concerning the stable conjugacy classes of torii 
applies directly to the relative trace formula and will be considered first. 

Let F be the separable closure of F. For a maximal F-torus T of G, the groups 51, 
"S, G, K are defined as in Langlands [10] II§ 3. We recall their definitions for the con­
venience of the readers. Let Gsc be the simply connected covering of the derived group 
Gder of G and Fsc be the inverse image of F in Gsc. The group of coweights of a torus 
? is denoted by X*(?). Then St (F'/ F) is defined to be the group of complex characters 
on X*(FSC) which are trivial on the intersection of X*(FSC) with the lattice generated by 
{ a\x — \x | a G Gal(Fv/ Fv), /i G X*(T)} for any place v of F and any extension of v to 
F. Let K be a splitting field of F, Y be the group consisting of elements in X*(FSC) whose 
norm from K to F is zero, Z be the subgroup of X*(F) generated by the elements o\i—[i, 
a G Gal(tf/ F), /i G X*(T). Then G (7 / F) is the quotient group Y/ YH Z. Each element of 
® (T/ F) defines a character of G (F/ F). If g is in G (F), write F* for g -17g. Let 11 (T/f) 
be the set of all elements g in G (F) such that both T8 and isomorphism T -^>T8:t\-^ g~ltg 
are defined over F. Let S (F/ F) be the quotient 7(F)\ 51 (F/ F)/ G(F). Two F-torii F, F' 
are said to be stably conjugated over F if there exists a g in 51 (F/ F) such that T' = F*. 
Let îls t be a set of representatives of stable conjugacy classes of all the anisotropic max­
imal torii F of G defined over F. 

If 6 eT)(T/ F) is represented by a G 51 (F) we put O^ (7*,/) = Or*(7 V ) . Replac­
ing SI in %z(f) by £.st we get 

^(0= E ^ r E «v(7V). 
re£st ^W; r\fèe^(T/F) 

6. Second reduction. Before we go on to the second reduction to K -orbital integrals 
we introduce the diagrams of Langlands in three steps. The classes of L-indistinguishable 
representations are to be analyzed with the help of endoscopic groups H of G. The har­
monic analysis on G is related to that on H by means of the transfer of orbital integrals. 
The diagrams are introduced to relate the tori in H to those in G. 
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STEP ONE. We choose a quasi-split form G* of G, i.e. G* is a connected reductive 
group over F with a Borel subgroup B * defined over F, we fix an isomorphism x/j : G —> 
G * defined over F such that \p~la(x/j):G —-» G is inner for all a in Gal(F/ f). We fix a 
maximal F-torus T* in B* ([10] pp. 33, 38). 

STEP TWO. Take a maximal F-torus T * of G *. Then a /c in ® (T */ F) defines a quasi-
split group D-fl over F (an endoscopic group of G, [10], pp. 33, 21). We fix a maximal 
F-torus J_H in the Borel subgroup over F in IH and an isomorphism 1_H —> T_* over F. 
The data { T *, K} defines an isomorphism over F from T * onto a maximal F-torus J H 
of D-D via a diagram 

^*:T//-^I / /^L*^-T*, 

in which every arrow is an isomorphism over F ([10], pp. 147). 

STEP THREE. We say that a maximal F-torus T * of G * lifts to G globally if there is 
a maximal F-torus T of G and a g G G*(F) such that the restriction ij)Tj* of ad(g) o ip 
to T maps onto T* and is defined over F ([10], pp. 140). In this case we have a global 
diagram 

D: J H -+ LH - • L* <- T * ^ T. 

We say that T * of G * lifts to G locally if for every completion Fv of F there is a maximal 
Fv-torus Tv of G and agGG *(FV) such that the restriction iprv,T* of ad(g) o ip to Tv maps 
onto T * and is defined over Fv ([10], pp. 140, 38, 159,161). In this case we have a set of 
local diagrams: 

D(v): JH -> LH - + 1 * <- T* ^ Tv. 

([10] pp. 135). The set D — {D(v)} is referred to as a pseudoglobal diagram; we also 
say that D* lifts to a pseudoglobal diagram D = {D(v)}. Two diagrams are said to be 
congruent if they have the same endoscopic data ([10] Lemma 7.10). Langlands ([10] 
pp. 135,137) defined an invariant n (&(Z))) whenever D is congruent to a global diagram 
and in this case for 7* = (7V*) in T*(A), 7V* = ^rv,p(7v), 7V in TV(FV), 6* = (S*) in 
e(T*/ A), «v* = fe,p(^(v)), «(v) in 6(TV/FV) and/ = nv/v, where, for almost all v, 
fv is the quotient of the characteristic function of a hyperspecial compact subgroup Uv 

divided by its measure, we put 

<*>ï*(7*,/) = n(e(D)) E ^^U^j^i^Jvl 
^*(î(T*/A) v 

if <5 (v) G £)(TV/FV) for all v and set it to be zero otherwise. And if D* does not lift to 
a diagram D which is congruent to a global diagram we set Of* to be equal to zero. For 
the purpose of making this definition we want to show that for a given relatively regular 
7 * there is only finite number of 6 * such that the corresponding integral 

<V^v(Vv) * o, 

for all v. Suppose G splits over an unramified extension Lv of Fv, and Uv is the isotropy 
subgroup of the vertex p in the apartment A of the Bruhat-Tits building X of G(Ly). 
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Assume that 7 lies in f(Fv) Pi Uv and a (7) is congruent to 1 modulo pv for no root a . 
Then the fixed-point set of 7 in X is contained in A. Let a represent è(v). For x,y in 
G(FV) we get/v(jc

-l7fl;y) is 1 or 0 according as y - 1 ((0"(7-17)fl);y lies in Uv or not; this in 
turn depends on whether ay • p lies in A or not. If A contains ay • p then 6 (v) is trivial in 
6 (Tv/ Fv); otherwise the function (jt,y) H-->/(;c~17ay) is identically zero. 

LEMMA, (i) The value o/Of*(7*,/) is independent of the choice of^\)jvj*. 
(ii) If a G 2I(T*/F), 'T* = (T*)fl, '7* = (7*)a, and if'*, is obtained from K by 

transport of structures then 

0^( ' 7* , / ) = 0**(7V). 

PROOF, (i) We can change $Tvj* by ad(Av) with /iv in ÎI(T*/FV). With respect to 
Vyv r , we consider the sum 

V ( T v » 

which is equal to 

riMAv-') E «(«*)n*T""a4(v)./v)-
v 6 ' £ g ( T ' / A ) v 

And for the diagram £>' associated to t/yv P we have 

K(e(D')) = K(e(D))n«v(fcv). 
V 

(ii) Suppose the diagram 

'D(v): T̂  -> L// - • L* <- 'T * ^ Tv. 

is obtained from D(v) by using '-0 which is the restriction of 0 o ad(g) o adfar1). Since 
for the give a we have Ilv «v(fl) — 1, the invariance follows. 

Let 4>T' © (T / F) —* G (T / A ) be the natural homomorphism. Write t(F, T *) for the 
number|ker</>7>| • \®(f*/F)\~l. 

LEMMA. Suppose!* G T* is relatively regular. Let e(T*) be 1 ifT* lifts to Tglobally 
and zero otherwise. Then 

L(F,T) £ 4>Kp(7V) = e(V) £ <t>P& J), 
Ke&(r/F) <5eX)(r/F) 

withl* = 0r,7>(7). 

PROOF, (i) Suppose e(T* ) = 1. Then K defines a global diagram D and n(e(Dfj = 1. 
Also G (T/A ) = C (7*/ A ). By the Tate-Nakayama theorem 6 is in the kernel of all K 
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in ® (T*/ F) if and only if S is in the image of cj)T and this is equivalent to ë lies in the 
image of T) (T/ F) under §j. Therefore 

£* rCY*, / ) = | k e r ^ r 1 • |R(T*/F)| • £ * « ( 7 * , / ) . 

(ii) Suppose e(7*) = 0. It suffices to show that for any given K we have 

J2 O^°(7*,/) = 0 

(here ®° is defined in [10] p. 135). Furthermore we can assume that the pseudodia-
gram D — D(KK°) defined by KK°, T and tpTv,T* is congruent to a global diagram. Since 
K°(6 *) = 1 for 6 * in © (7*/ A ), the sum is equal to 

E««°(e(D(ic«0)))X;«(«*)II*7«v)(7v*
(v),/) 

«° <5* v 

and the result follows from the fact that e(T*) = 0 implies that 

At this point the second reduction step is immediate; namely, we get 

^ ( 0 = E ^ E ' ^ > n £ *?-(7*,/). 

7. Third reduction. After the second reduction we are in the diagram D*. The ques­
tions are (1) the transfer of integrals to the endoscopic group H and (2) the grouping of 
the data { F \7* , ft} according to the endoscopic data. 

When K is identity we write O^ for the «-integral <ï>£. To deal with (1) we combine 
the global hypothesis ([10] p. 49) with the relative analogue of the fundamental lemma 
into the following 

TRANSFER HYPOTHESIS. Given a diagram D* defined by a couple T*, K, and a smooth 
compactly supported function/ = fl/v on G&, there is a smooth compactly supported 
function/77 = n/v

H on H& such that/77 is equal to zero if D* is not congruent to a global 
diagram and if D* is congruent to a global diagram we have 

V 

To simplify notation we write (s,H) for the class ê = (s,LH°,...) of endoscopic 
data ([10] p. 19); A(H) for the automorphism group A of è ([10] p. 164) and *£ for 
the set of equivalence classes of elliptic endoscopic data. Roughly speaking Langlands 
([10] VIII § 3) showed that there is a m to « correspondence between averaged sums over 
{(7^,7*,ft)} andthoseover{((j,^),r//,7)};withm = o;(r)andn = a;(r//)-|A(H)|. 
The arguments do not involve integrals. The same arguments apply here to give the third 
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reduction to stable integrals, namely %&(/) is the sum over the classes ( s, H) of elliptic 
endoscopic data of the sum over the set %^(H) of H of 

v T(TH).L(F,T*) 

T%fHLj(TH).\MH)\ r T:::\ z,J- *tH«f) 
We substitute the invariant i(G, H) = t(F, r ){j,(F, 7>/)|A(//)|} " [ and write 

sïrc(fff) = E E' ^ T ^ • *<F'r") • ^ c ^ / * ) ; 

then we obtain the required formula 

<L 
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