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Waves on a shear flow

K.K. Puri

The propogation of disturbance when a shear flow with a free

surface, in a channel of infinite horizontal extent and finite

depth, is disturbed by the application of time-oscillatory

pressure, is studied. The init ial value problem is solved by

using transform techniques and the steady state solution is

obtained therefrom in the limit t -*•<*>. The effect of the

init ial shear on the development of the wave system is

investigated.

We consider an inviscid, incompressible fluid of constant density p

moving in a uniform channel of constant depth h and infinite horizontal

extent. The ini t ial flow is horizontal and has a positive vertical

gradient. The object of the present analysis is to study the generation of

waves on the free surface when i t is disturbed by the application of a

time-periodic pressure of frequency w' .

The principal interest in such studies emanates from some consider-

ations pertaining to the formulation of steady state surface flow problems

in the framework of linearized theory. The imposition of a free surface

pressure in such a formulation leads to a non-homogeneous problem. Under

certain circumstances, discussed in the sequel, the corresponding

homogeneous problem has a non-trivial solution, thus leading, in general,

to a non-unique solution of the complete problem. For a unique solution,

one requires some extra conditions at ±°° , called the radiation

conditions. In the absence of a systematic way of finding these, the

nature of these conditions i s , at most, the result of an intelligent guess

[4], Aside from this , there is also the basic question as to whether or
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not a steady state problem posed in the linearized theory has a solution.

Indeed, it is shown below that under certain conditions such a solution is

not possible.

A systematic way to resolve both these questions lies in first solving

the initial value problem and then obtaining the steady state solution in

the limit t -*• <*> . The radiation conditions are then found by studying the

behaviour of this solution for large |x| . It is rather a fortuitous

circumstance that such a program can be carried out for problems in the

theory of water waves. Attempts along these lines have been made before by

Debnath and Rosenblat [/], Puri [5], and Stoker [6] under various

assumptions. One common assumption is that the basic undisturbed flow has

a constant velocity. In a physically realistic model, however, this is not

true. We therefore study the problem when the undisturbed flow is

characterized by a vertical gradient in the velocity. It turns out that

the generation of waves is significantly affected by the presence of this

shear in the initial flow.

1. Formulation of the problem

We consider a two dimensional flow of liquid in a uniform channel of

infinite horizontal extent and finite depth h . The liquid is assumed to

be inviscid and incompressible having a constant density p . We take the

origin of the reference system (a;1, y') at the undisturbed free surface,

the y' axis is directed vertically upward, and the x' axis is taken in

the direction of the i n i t i a l , horizontal flow U' = b'y' + UQ . Here b',

U' are constants. We would like to study the linearized wave motion

consequent upon the application of a pressure pl[x')e at the free

surface.

The equations of motion together with the attendant boundary and

i n i t i a l conditions are linearized about the velocity components (y1, 0)

and the pressure -pgy' • Denoting by u'(x', y ' , £ ' ) , u ' ( x ' , y', t') and

p ' ( x ' , y', t') the corresponding flow parameters of the disturbance, we

solve the linearized Euler's equations:

(I1) u', + U'u', + U',v' = - — p' , ,
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and the equation of continuity

(3') u'x, + v'y; = 0 ,

subject to the appropriate boundary and the initial conditions. Keeping in

mind that in this theory the boundary conditions at the free surface may

be applied at the equilibrium position [6], we have:

the kinematic condition:

(If) v' = U'V, + £}. at y' = 0 ;

the continuity of the pressure at the free surface:

(51) p' = PgV + p^x')eibi<t' at y' = 0 j

and the condition at the .rigid bottom:

(61) v' = 0 at y' = -h .

Here E,'(x', t') is the elevation of the free surface and g is the

gravitational constant. Also we have the initial conditions:

(71) «'(*', 0) = v'(x\ 0) = p'(x\ 0) = ?'(*', 0) = 0 .

The pressure mechanism is switched on at t' > 0 . In order to non-

dimensionalize the above variables, we introduce

(z\ y') = h{x, y) , V = & , V = UUQ , f = t |- ,

p1 = ppf^ , (u1, v') = UQ(u, v) , 0)' = -£u , b' = b-fi- ,

P ^ ' ) = PP 0(*)^ and Y = ̂  .

The equations (l1) to (7') then may be written as

(1) Ut + J/Mx + ^ = -px ,

(2) wt + Uvx = -py ,

(3) " + v = 0 ,
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W V = Uix + 5 t at y = 0 ,

(5) p = Y5 + P 0 « M * at y = 0 ,

(6) v = 0 at i/ = -1 ,

(7) w(a:, y, 0) = u(x, y, 0) = p(x, j / , 0) = £(x, 0) = 0 .

Also we have

(8) U = by + 1 .

2. The unsteady problem

In order to solve the above equations, we shall use the Fourier

transform with respect to x , defined by:

(9) £(f) = f(X, . . . ) = - i - f" gx, ...)e~iXxdx .

The equations ( l ) to (3 ) , together with the appropriate conditions from

(7) , transformed according to (9), yield

(10) v = A(X, t)sinhX(j/+l) ,

(11) u = iAcosh\(y+l) ,

and

(12) P = - J AtcoshX(y+l) - iM4coshX(z/+l) + ^ Acosh\{y+l) ,

with A(X, t) as the 'constant' of integration. Also taking the transform

of (k) and (5) and using the equations (1O)-(12) to eliminate V and p ,

we get, after simplifications:

(13) Xtt + (2iX--ifctanhX)C. + (-X2+Z>XtanhX+YXtanhX)I = -p XtanhXe'"0* .

The solution of this equation subject to the in i t i a l conditions

, 0) = lf(X, 0) - 0 , is given by

ik t ik t p XtanhXe

l , t)-Ve * Be " + l

where
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p AtanhA p AtanhA
v 15) D = - -7rr jTTTTnrT > ® = 7£ 5

and

(16) k+ = -A + %fctanhA + / %fc2tanh2A+YAtanhA .

The equations (lk) and (16) then yield:

From now on we shal l consider P^x) = e6(aj) , where c i s constant, so

that Po(^) = °/v2y . Taking the inverse Fourier transform of (17), we

get

iwt K+^ iut 4

6 —Q & —&

-«> [%b tanhA+yAtanhA]J

which gives the amplitude of the disturbance for the unsteady problem.

Also from (10) and the Fourier transform of {h) together with (lU), we get

A{\, t) . Substituting i t s value in the equations (1O)-(12), and taking

thei r inverse Fourier transformations, we can get u(x, y, t), v(x, y, t) ,

and p(x, y, t) , thus solving the nonsteady problem completely. In the

sequel we shal l confine ourselves to the amplitude function £>(x» t) only.

Also i t wi l l toe convenient to write

(19) £(*, *) =

where

ik t ik+t

(21) J = J "J
—00

and

AtanhA
(22)

b2tanh2A+Y*tanhA]1/2
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Our principal interest is to study £(#, t) for large t to obtain the

form of the steady state solution. The behaviour of the latter for large

\x\ will determine the nature of the radiation conditions. This analysis

has to be carried out subject to the condition |x| « t . Thus |x| •+• »

i m p l i e s t •*•<*>.

3. The transients

The transients depend upon the integral J . The major contribution

to its asymptotic evaluation for large t arises from the stationary

points of the functions k+(\) and from the poles of its integrand. Here

we shall consider the former. The polar contribution subscribes to the

steady state solution and will be discussed in the next section. It is

shown in Appendix A that each of the two functions k+(X) has precisely

one stationary point; that is,

(23)
dk

d\ = 0 and
dk

"dk = 0
A=-p

provided

(A-U) y > 1-b .

The presence of b in this condition reflects the contribution of the

shear in the initial flow. Setting it equal to zero, we retrieve its

analogue:

(2*0 y > 1

obtained in the earlier works [5, 61 . We can now examine the effect of

the initial shear.

If b > 1 , that is, i1 > Y , in the dimensional units, (A-lt) is

satisfied for all Y • Taking, in particular, Y = 0 which implies

g = 0 , we conclude that steady flows in the presence of such a shear exist

even when the gravity is absent. Simple calculations, on the other hand,

show that this is not so when, besides, shear is absent. In this case the

transients increase indefinitely as 0(t) for large t . Thus for

b' 2 -5— , vorticity generated by the shear becomes more important than

gravity and is responsible for the decay or otherwise of the transients.
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For the asymptotic evaluation of J , we consider the following two

cases:

( i ) none of the stationary points , x = a, -p coincide with a

pole of the integrand;

( i i ) some may do so. This i s called the c r i t i c a l case.

If case ( i ) holds, we may use the method of stationary phase [ 2 ] , to wr i te ,

It shows that the transients behave as 0[t~1/2) for large t and the

steady state solution results after the lapse of a long time.

Case (ii) entails the study of the roots of the equation

(26) (uy-kj (u-k+) = 0 .

Using (l6) and simplifying, we can write it in the form

1/2
](27) ±(u>+X) =

The required roots, which are the points of intersect ion of the curves

r ± : y = ±(w+X)

with the curve

r : y = [tanhX{a)2>+X(Y+k)}]1/2 ,

are shown in Figure 1 on page 270. This shows that X = a i s the only

possible stationary point that also sa t i s f ies equation (26). For t h i s , we

must have

o ci l /p

(28) u - f e ( a ) = u + a - ibtanha - \hb tanh a+YOtanha} = 0 ,

and from (A-l),

dk

-3T

2 2 2
b 2 1 YtanhO+YPsech O+hb tanhOsech O

= 1 - — sech o* - — i ^ w p
[%b tanh o+YOtanha]

= 0 .

The elimination of a from these equations yields the condition for the
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critical case in the form

(30) Y = Vc(b, to) .

It is clear that the satisfaction of condition (30) implies the

satisfaction of (A-lt). This result subsumes the results of Stoker [6],

Puri [5], and Debnath and Rosenblat [?]. We can obtain their results

exactly by setting the appropriate parameter in (30) equal to zero.

The asymptotic approximation of J in this case also has the same

contribution from X = -p as that in (25). To discuss the contribution

from X = a , we write

_t\x itk
( 3 1 ) J ••

i\x itk
e +dX

where e i s a small positive number such that 0 < O - e . I t i s clear

that the maximum contribution to the value of J arises from the l a s t two

integra ls . To evaluate these we use the transformation K = u - k (\) .

In order to see that i t i s not singular in (o-e, a) and (a, O+e) , we

expand K in the vicini ty of a :

K = u _ K+(a) = - JT (X-a)2?c;(a) + . . . .

From the appendix, we see that k'^(a) = F'(o) < 0 . Hence K > 0 and

-7T f 0 in (o-e, a) and (a, a+e) . Indeed

^ = . |2Kfc"(o)|sgnU-a) .

From (31) then, we have

where
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KQ = o) - fe+(a+e) > 0 ,

K = a) - fe+(a-e) > 0 .

Following LighthiI I [3] we now have

(32) J ^ g c - a / a j i l a f c ^ o ) ! - 1 / 2 ! ^ ) ] * 1 ^ " * ^ 0 ^ ^ as * - - .

Thus the integral e/ and therefore the amplitude £(x, t) increases

indefinitely as 0[t ) for large t . This shows that there is no

steady state in the critical case. The linear theory thus fails and any

further discussion of the problem in this case requires invoking the non-

linear theory.

4 . R a d i a t i o n c o n d i t i o n s

We shall now study the integrals J and J for large |x| such that

|x| « t . The main contribution to their evaluation arises from the poles

of their integrands which are the solutions of the equation (26) shown

graphically in Figure 1. Referring to i t again, we find the following

three cases.

CASE I. There are only two negative zeros, that i s , at X = -P-,5 -Pp

obtained from the intersection of F with T . Also p > p .

CASE II . There are four zeros. Two of these are as in Case I and

two more, A = a. , a. , result from the intersection of T+ with T .

Also i t is clear that 0 < a < a < a . Observing that T is a

monotonically increasing function of y , i t is easy to see that

(33) Y > Yc(w> b)

is the necessary and sufficient condition for the additional points of

intersection.

CASE III. This case follows from the second case in the event that

the additional zeros coalesce, that is, when w - fc+(A) = 0 and

^ +

-3T- = 0 hold simultaneously. This is precisely the critical case

characterized in the previous section by the condition
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(30) Y = yr{6, b) .

I t was concluded there that this condition does not permit any steady state

flow. Hence this case will not be pursued any further.

The integrals are now evaluated by using the well-known formula:

rb

0(1/1*1)

(3l») f ( \ ) e - K x d \ • ^ • n i ( s g n x ) e ° [ r e s i d u e o f / ( A ) a t A = X ]

where X = X is a simple pole of f(X) in (a, b) .

To evaluate the integral I , we write

In the first case, each of these integrals have one simple pole. Thus

applying the formula (3*0, we obtain

(36)

where

[ -ip xi -ip a; /

and

(38) •+(-P l ) = lim -dk IdX
+

In the second case, we have to add to (36) the contribution from the other

two positive poles at X = a , X = a . This again follows immediately

with an application of (31*),yielding

(39)
r ia x-,

(sgna;)U+(a1)e
 x I + i>+

ia x
e 0

Similarly, the polar contribution to the value of J , in the first

case, follows from the poles X = -p < 0 and X = -p < -p . To find it,

we write

https://doi.org/10.1017/S0004972700043859 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700043859


2 7 4 K . K . P u r i

(1*0) J =
fCO ik t

dX

r d\

(X)e
iKt

so that the main contribution comes from the first and the third integral.
Setting K = k (X) in the first one and denoting i t by J , we have,

using equation ( l6) ,

J, = f [*
x 'k (-p)

Formula (3U) then yields

(Ul) ^n ~

dK

Similarly, we treat the third integral. Transforming the variable of

integration from X to k+(X) and using (3U), it yields the contribution

From (l40)-(U2) we have

(U3) ^ - i
- i p x —ip

2

In the second case, that is, when condition (33) holds, we have to add

to (1*3) the contributions of the two additional positive poles at

X = a a . This is given by the fourth integral in equation (kO).

Denoting it by J , we write it as

- (f * r iXx ife
+*•e

to-fe.

Again setting \i = k+(X) , we get

kjo) kja)

J 0 J-«> X=fe X w-p
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We invoke formula (3**) again t o ob ta in

(kk) J2 = irie

We can now collect the various results from (36), (39), (kO), (k3), and

(kk) for the steady state problem.

Writing r\(x) = lim £(x, t) , we have the following.

(i) Let Y < Yc ,

<U5)

—%0

0 , x < 0 .

(ii) Let y > yr ,

n(x) -

Thus, in the first case there are two progressive waves moving downstream

with velocities w/p. and u/p and no disturbance upstream.

In the second case, aside from the above two waves, there are two

more, moving with velocities w/o" and w/a towards the negative

x-direction. The lat ter is on x > 0 and so, seemingly have started at
00 . Physically i t does not make sense because there is no source of energy

present at +°° . The real explanation is that the wave is actually moving

towards +°° when viewed in a reference frame moving with the undisturbed

velocity at the free surface. These results are looked upon as

representing the radiation conditions at ±°° in both the cases; that i s ,

when Y < Yc and Y > Yc •

Appendix A

The stationary points of k (A) are given by the solutions of the

dk+
equation —rr- = 0 , that is,
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/ . -. ^ b ^2\ i. 1 YtanhX+YXsech2X+%b2tanhXsech2XlA-1) 1 = — sech A + —<- —•j-
2 d [ ^ z A ] 1 ^

= F(X) , say.

We observe t ha t

F(\) + 0 as X •* ±°° ,

and t o

(A-2) Hb ± /y+%fo2 as X •* 0+ .

Also

Y ftanhX-Xsech X)
-

%i tanh X+yXtanhX]

o v.2-v ^-v/i, yX+%fc2tanhX- 2sech XtanhXjfc + r—'

I t can eas i ly be seen t h a t f'{\) < 0 for X > 0 and hence F{\) i s

monotonically decreasing in (0, <*>) and (-00, 0) . I t follows from (A-l)-

(A-2) tha t fe+(X) has precisely one s ta t ionary po in t , say X = a > 0

provided

(A-1+) hb + /y+%2>2 2 1 , tha t i s , y > 1-b .

Simi la r ly , we can show tha t —JJT- = 0 for only one value , X = -p < 0 ,

provided the condition (A-1+) holds.
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