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Abstract

In this paper we derive a relation between character sums and partial sums of Dirichlet series.
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1. Introduction

Let k be a positive integer greater than 1, and let x( i ) be a real primitive character
modulo k. The series

n=l

can be divided into groups of A: consecutive terms. Let v be any nonnegative integer,
j an integer such that 0 < j < k — 1, and let

Then

u=0 n=l u=0

The case T(v, 0, x) was studied by Erdbs and Davenport [4]. Preliminary results
related to T(v,j,x) can be found in papers by Davenport [4], the author [6, 7], and
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Li and the author [8]. In [7], one can find that the behaviour of the sign of T(v, j , x)
has close relation to the class number problem for quadratic number fields.

In Section 2, Theorem 2.1 reveals a surprising relation between character sums and
partial sums of Dirichlet series. As an application, Theorem 2.1 converts some classi-
cal problems on quadratic residues to the problems of deciding the sign of T(v, j , x)
(see Remark 2). In Section 3, we derive the imaginary version of Theorem 2.1. In
Section 4, as a reference, we record a connection among Bernoulli numbers, Bernoulli
polynomials and character sums.

We remind the reader that a real primitive character (mod k) exists only when either
k or —k is a fundamental discriminant, and that the character is then given by

X(n)=(-),

where d is k or —it, and the symbol is that of Kronecker (see, for example, Ayoub [1]
for the definition of a Kronecker character).

Lastly, we state and prove a lemma which will be used in the proofs of Theorem 2.1
and Theorem 3.2.

LEMMA 1.1.

* ( ,
xU + D^i-aik = ixWVke™*", ifX is even;

\ix(m)Vke-2nimJ'k, if x is odd.

PROOF. Let us recall the definition of the Gauss sum

i s e v e n ;

\ix(m)Vk, i fx is odd.

Multiplying by e~
2n""ilk on both sides of the Gauss sum, we obtain as the left-hand

side

k j+k

\^ X(n)elni'""lke~2n"n'lk = V~*
n = \ n—j+\

k

which completes the proof. •
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2. Even characters

In this section we show that the sign of T(v, j , x) has close relation to the sign of
character sum YH=\ x(n)< where x is the real even primitive character modulo k.

For an integer j in the closed interval [1, k — 1], write

n v J . x ) .

where w — v + j /k. For w = v+j/k>0, consider the periodic function f (x) of
period 1, where / (x) is defined by the equation

f(x) = l/(w+x) f o r O < * < l .

Over the interval (0, 1), it has Fourier expansion

/ (x) = -ao + /J(#m cos 2nmx + bm sin 2nmx),

where
S1n • • " - * _ d x„ f cos2nmx , , „ f si

am = 2 rfx and bm=2 -
Jo w+x Jo W + X

(see [5, Theorem 2.5]). Since / ( 1 - ) = l/(w + 1) and / ( 1 + ) = l/w, by [5,
Theorem 2.5], we have

2 zu; z(̂ iy + i ;

1 J2.
-*mSi

m = l

Using integration by parts, we have, for m > 1,
2

am = (2nm)2

Let

1 1 1 4 /•' COS27T77IX

^ ~ (u; + l ) 2 j (2nm)2 Jo (w+x)* *'

_ 4 T cos2nmx _ 2 f 1
m ~ ( 2 ) 2 i O + ) 3 ^ an m~ ((27rm)2 i0 O + x ) 3 ^ a n m ~ (2;rm)2

By looking at the graph of y = (sin 2nmx)/(w + x)4 on the interval [0, 1], it is easy
to see that

_ 4 /"' co$2nmx . 12
*m — TZ

/
'
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Since 0 < Im = | / J < Jm, we have am = Jm-Im- Jm0m, where 9m = (Jm - Im)/Jm

and 0 < 9m < 1. Similarly, we have

2/1 1

2nm\w w + lj (2nm)3 \w3 (w + 1);

12

Let
12 fl cos27rmx 4

dx and K, =
(2TTW)3 \ W 3

Then
12 /"' cos2^mA: 48

X.m —
C1

(2nmy JQ (W + X)4 (2nm)4 JO (W + x)5

and Xm < Ym. Hence, we have

b =_A_(}___±_\ ^_
m 2nm\w w + \) (2;rm)3

where r}m = (Ym - Xm)/Km and 0 < rjm < 1. Now

^ w + l/k

1

+0/(//*) A: w + 1

,-.
2xC/+i) 1 ^ ^ , . . _ , _ , .

H < -ao + > (am cos 27rm + bm si
* 2 ^- f

I m = l

it 2w * ^ »

1 \—v .. .. I 1 ^ / 2^-m/ . . 2nmV
, cos — h 6m sin

k \2w 2(w + \)) k 2w
k

2X(j)

. 2nml\
i n — —c o s + & M s i n +

f , \ * k ) k 2w(w +
1=1 m=\
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(since T.UxU +0 = 0)

(=1 m=\

(where E = -x(j)/(2w(w + l)k))
, oo / k

,. 2nml 2nml\
/)cos —r~ + b-x(J + / } sin —r~

2nml T—v 2nml

bJ2(J l)
^ 1 \-^ / , . rr 2nmj r- 2nmj \

= E + - 2_̂  I amx(m)V^cos — bmx{mWk sin —— I

(by Lemma 1.1). Hence

VkT(v,j,X)

2nmj 2nmj\
amx(m) cos — bmx(m) sin —-—

k k )
( 2 / 1 1 \™x(m)em 2nmj
< I I > cos" ^T+TJ COS

2 yr^xifn) . 2nmj
- — > sin —-—

2n t—1 m k
m = l

4/1 1 1 \ ^ x(m)im 2nmj
+ 7^—^ I - 7 + , . n + 7—-777 I > 5— sin — —

(2iry \w* w(w + 1) (w + IVI '—' mJ A:
m=\(where 0 < 9m,r)m < 1)

2 ( 1 , } \ ^ n Xim)9m 2nmj
+ ,~ .-, 1 r > ;— cos —-—

/ 1
VW2(2ny \wz 10(10 + 1) (w

(by Proposition 2.3)

1

Xim)r)m . 2nmj
— sin

w w
M f 2 l"1 i l

IJ \ (2TT)2 \w w + l

4/1 1 1 \ ~ X(m)r,m . 2nmj_\
(2ny \w2 w(w + I) (w + I)2) ^ m3 S1" k \
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Let

S(vJ) = 2 (
(2K)2 \

4

' (2TT)3

1
w

(

+

1

'w2

Ming-Guang

1 ^
W+l)

00 ,

v-^ X("
i^\ n

1

w(w -f 1) ' (

Leu

1

u ; + l ) 2

2nmj
k

)

OC

E
m = l

X(m)r,m . 2nmj
m3 k

[6]

and

Then we have

2/1 1 \ 4/1
S(vJ) < —— - + —— £(2) + —— —

(2JT)2 \W W + \J (2n)3 \W2 • +
1

(^+1):

2 2 7T2 4 3 n2

~ (2JT)2W~6+ (2jt)iw2~6
= (1/6 + i/(47Tt/;))/u; < l/(4w) (if v > 1).

If \M\ — | J2J
m=\ X(m)\ > 1, then, for an integer v > V^/(4|M|), we have Pj =

\M\/*/k> l/(4io).
We have proved the following theorem.

THEOREM 2.1. Let k > 5, k = 0 or 1 (mod 4) 6e a fundamental discriminant and
X the real even primitive character modulo k. If M = XX,=i Xim) ^ 0. then

< 0
m=l

for an integer v > maxfl,

REMARK 1. Theorem 2.1 can replace Theorem 2.1 and Theorem 2.2 of [7], a weaker
result of author's earlier work.

REMARK 2. Let Sj, = Sjj(x) = J2(i-l)k/j<n<,k/j x(«). where i and; are natural
numbers, and k is the modulus of x- 1° [3], Berndt expressed S,, as a linear combina-
tion of L-functions evaluated at s = 1. For some classes of real primitive characters,
he proved that 5,, is of a constant sign for particular j and /. Some cases when
5,-,- is of a constant sign are still open problems. For example, let Xp(n) denote the
Legendre symbol modulo p, where prime p = 1, 7 (mod 8). Although numerical
computations suggest that 55i > 0, Berndt [3] was unable to say anything about the
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sign of S5i. As an application of Theorem 2.1, the following Theorem 2.2 provides a
new approach to attack the problem whether S$\(Xp) IS of a constant sign for prime
p = 1 (mod 8).

THEOREM 2.2. Let prime p = 1 (mod 8) and) = [p/5] be odd. Then

SSI(XP) > 0 ifandonly if T(v,j, x) < 0

for some integer v > max{l, >/k/(4\M\)}.

PROOF. By assumption j = [p/5] is odd, where [x] denotes the greatest integer
less than or equal to x. Hence Ssi(xP) ^ 0. Now, by applying Theorem 2.1, the
theorem follows. •

Finally, to close this section, we need to state Proposition 2.3. The proofs of
Proposition 2.3 and Proposition 3.1 are very similar. Since the proof of Proposition 2.3
can be found in [7, Proposition 2.4], we only provide here the proof of Proposition 3.1
(see Section 3).

PROPOSITION 2.3. Let j be any integer in the closed interval [1, k — 1] and x the
real even primitive character modulo k. Then

n=l n = l

3. Odd characters

In this section we derive the imaginary version of Theorem 2.1. First, we prove the
following crucial proposition.

PROPOSITION 3.1. Let j be any integer in the closed interval [1, k — 1] and x the
real odd primitive character modulo k. Then

— cos —A

where h(—k) denotes the class

PROOF. For fixed integer j , we define the periodic function 0 with period 2n as
follows:

000 =
i fO<x < 2nj/k;

1/2 ifx=0oTx = 2nj/korx—2n;

0 \f2nj/k <x <2n.
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T h e n EC! X(n) + xU)/2 = J2k
n=l(H2nn/k)x(n). Since (0(0+) + 0(O_))/2 =

(1 +0)/2 = 0(0) and (4>((2nj/k)+) + <P((2nj/k).))/2 = (0+ l)/2 = <p(2nj/k),
by [5, Theorem 2.5], over the interval [0, 2n], 0 has a Fourier expansion

00

, \~V_ , ^sin/ut),
k „„

where

ao/2=-, an = — I (p(x)cosnx dx = — s i n
nn

and
k n Jo

x Jo
sin«jc dx = — cos

nn nn k

Now

m=\

(2nm\

~r x{m)

E \J ^ ( 2nmn . 27rwn\|

{ T + / I an cos —• 1- bn sin —•— > x(m)
m=l I K n=\ V " ' \

I, t \

2nmn\\2_,[ X(m)ancos— 1- x(m)bn sin

(since ^ = 1 x(m) = 0)
oo / k k \

E l x~^ 2nmn ^-^ 2nmn\

2_,X(m)an cos —— + }_^x(m)bn sin ——k ^-^ lc I
n=\ \m=\ m=\

k „ k

+ bn 2_.X(m) sin
m = l

2nmn ^-\ 2nmn \

nn k

= —L{\,x) > cos——
n n *—' n k

u( v\ ^STXin) 2nnj
= h(-k) > cos——.

n *-^ n k
n — \

Here we use the class number formula for imaginary quadratic fields

h(-k) = (Vk/n)L(l,x)

and the Gauss sum El=i x("i) exp(2nimn/k) = ix(n)y/k for x(—l) — ~1- D
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THEOREM 3.2. Let k > 5, — k = 0 or 1 (mod 4) &e a fundamental discriminant
and x the real odd primitive character modulo k. If M — h(—k) — Yl'm=\ Xi™) ^ 0>

x) ( ( ) £ x ( » o ) >o
\ m=l /

for some integer v > max {1, V^/(4|M|)J.

PROOF. AS in Section 2, for an integer j in the closed interval [1, k — 1], write

where w = v + j/k. For u> = v +j/k > 0, consider the periodic function
/ (* ) of period 1 such that / (JC) = \/{w+x) on (0, 1], / ( 1 - ) = \/{w + 1) and
/ (1+) = 1/tu. By [5, Theorem 2.5], over the interval (0, 1), / (x) has the Fourier
expansion

1 °°
/ (x) = -a0 + Tj(am cos 2nmx + bm sin 2nmx),

m = l

and

= h ———- = -
2 2w 2{w + 1) 2

where
/"' cos27rmx /"' si

am = 2 / Jx and bm=2
Jo w +x Jo

dx.
w + x

Applying exactly the same argument as in Section 2, we have the same expressions,
as in Section 2, for symbols am,9m,bm, and r)m. Now

T(v,j,X)

m=l \ (=1

(up to now, details are the same as in Section 2 )

. 27rm/' /- 27rm/ \
s i n ~ T \-bmx(m)y/k cos I2u;(u) + l)jt k *—> \ k k )
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(by applying Lemma 1.1 to odd character). Hence

y/kT{v,j,X)

~X(j) , v^ / , , . 2^ny 2jr»y \
= F + / «mX('")sin—- \-bmx(m)cos—-—

2w(w + l)y/k , V k k )

-*<» - ^ 2 <l l V-onWLsin*^.
2w(w -

2/1 1 \ 2nmj
+ — x(m) cos —-—

27T/M \ W 10 + 1 / K

(2;rm)3 \ ^ 3 (w + 1)3/
4

cos

(where 0 < #m,?7m < 1)

+ T A T I - + —l—r I > " ' : "' sin

oo

cosm k

4

(2TT)3

i i

{2)2\w io + 1/ y 2y/k (2n)2 \w

i / . . 1A . . i

4/1 1 1 \ A y(m)nm 2nmj \
+ — + — > ' cos —,— .

io(io + 1) ( i o + l ) ^ / * — ' w 3 A: /

(by Proposition 3.1)

2 ' i +
(2TT)2 V"^ w^+1

27rm/ \
(2n)3 \w2 ' io(io+l) ' (io+l)2

// '^- ' m3 """ A: /
COS
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Let M = h(-k) - jyn=i X{n), Pt = \M\/Vk and

h)E X(m)Qm . 2nmj
— sin

1

h?) E X(m)r]m—cos
m 3

27TW/

w(w + 1) (w , ., ,

If M / 0, then, by applying the same argument as in Section 2, we have P, >
l/(4u>) > S(v,j) for an integer v > max{l, */k/(4\M\)}. Hence, the theorem is
proved. D

REMARK 3. In [8, Theorem 6 (1)], we proved that T(v, [it/2], x) < 0 for a real odd
primitive character x of modulus k ^ 7 (mod 8) and an integer v > kl/4. Combining
Theorem 6 (1) of [8] and Theorem 3.2, we have h(—k) — Y^}n=\ X(n) < 0. Since class
number h(—k) is a positive integer, we derive X î=f X(i) > 0 for modulus k ^ 7
(mod 8), a well-known result of Dirichlet. For Dirichlet's classical result, the reader
can find a concise proof in the paper of Moser [9].

4. Bernoulli numbers and polynomials

As a reference, we state a connection among Bernoulli numbers, Bernoulli poly-
nomials and character sum. Let Bn(x) denote the nth Bernoulli polynomial and
Bn = Bn (0) the nth Bernoulli number. Then we have the following equation.

LEMMA 4.1. J2n=i n" = (B,+dN) - B,+,)/(l + q).

The proof can be found in [10].
For a prime integer/? > 3 and any positive integer n < p, we have (n/p) = n(p~l)/2

(mod p), where (n/p) denotes the Legendre symbol. By Lemma 4.1, for an integer
m in the interval [\,p — 1], we obtain

E ( j j ) s E"(/>"1>/2 = -~~[{BiP+n/2(m + 1) - *(p+,)/2} = a (mod p)

for some integer a, 0 < a < p. Now, we have the following criteria.

THEOREM 4.2.

(-) = a i(1) ir (-) = a if and only if 0 < a < (p - l)/2.
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"' / \
(2) 2_. I ~ I = a ~ P if and only if (p — l)/2 < a < p.

Where 0 < a < p is the integer such that 2(Bip+i)/2(ni + 1) — B[p+i)/2)/(p + 1) = a
(mod p).
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