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Abstract

In this paper we derive a relation between character sums and partial sums of Dirichlet series.
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1. Introduction

Let k be a positive integer greater than 1, and let x(n) be a real primitive character
modulo k. The series

(10 =3 X
n=1

can be divided into groups of k consecutive terms. Let v be any nonnegative integer,
j anintegersuch that 0 < j <k — 1, and let

J+k

. x(wk+n) x(n)
T 9 Y =
(v, . ) n;} vk+n Z vk+n’

Then
oo J 0
L, x)=) Tw0,x) =) xm/n+) Twj,x).
v=0 n=1 v=0

The case T(v, 0, x) was studied by Erdoés and Davenport [4]. Preliminary results
related to T'(v, j, x) can be found in papers by Davenport [4], the author [6, 7], and

This research is supported in part by a grant from the National Science Council of the Republic of China.
© 2001 Australian Mathematical Society 0263-6115/2001 $A2.00 + 0.00

425

https://doi.org/10.1017/51446788700002421 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700002421

426 Ming-Guang Leu (2}

Li and the author [8]. In [7], one can find that the behaviour of the sign of T(v, j, x)
has close relation to the class number problem for quadratic number fields.

In Section 2, Theorem 2.1 reveals a surprising relation between character sums and
partial sums of Dirichlet series. As an application, Theorem 2.1 converts some classi-
cal problems on quadratic residues to the problems of deciding the sign of T'(v, j, x)
(see Remark 2). In Section 3, we derive the imaginary version of Theorem 2.1. In
Section 4, as a reference, we record a connection among Bernoulli numbers, Bernoulli
polynomials and character sums.

We remind the reader that a real primitive character (mod k) exists only when either
k or —k is a fundamental discriminant, and that the character is then given by

d
X(n) = (_)v
n

where d is k or —k, and the symbol is that of Kronecker (see, for example, Ayoub {1]
for the definition of a Kronecker character).

Lastly, we state and prove a lemma which will be used in the proofs of Theorem 2.1
and Theorem 3.2.

LEMMA 1.1.

ix(i ek — X(m)ke™imilk i x s even;
ix(m)Vke mik ify is odd.

I=1

PROOF. Let us recall the definition of the Gauss sum

Zk: X(n)eZNimn/k — X(m)\/z, if X is even,
=1 ix(m)vk, if x is odd.

Multiplying by e~2""//* on both sides of the Gauss sum, we obtain as the left-hand

side
k j+k
Z X(n)eZNimn/ke—Znimj/k — Z X(n)eZHimn/ke—Znimj/k
n=1 n=j+1|
k
— ZX(] + l)e2m'm(j+l)/ke—27rimj/k
=1
k
— ZX(] + l)len‘mI/k,
=1
which completes the proof. g
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2. Even characters
In this section we show that the sign of T'(v, j, x) has close relation to the sign of

character sum Z{_, x (n), where x is the real even primitive character modulo k.
For an integer j in the closed interval [1, k — 1], write

Jj+k k .
. x(n) 1 ¢ xG +1))
T v J =T YR
.00 = §1vk+n = w+l/k

where w = v+ j /k. For w = v+ j/k > 0, consider the periodic function f (x) of
period 1, where f (x) is defined by the equation

f)=1/(w+x) for 0<x <1

Over the interval (0, 1), it has Fourier expansion

1 o0
f&x)=zap+ Z(am cos 2mmx + b, sin 2mwmx),
2 m=1

where

i 1 ..
2 2
am:Q/ COS2Amx \ and ,,m=2/ sin2wmx
0 w+x o wW-+x

(see [5, Theorem 2.5]). Since f(1-) = 1/(w + 1) and f(14+) = 1/w, by [5,
Theorem 2.5], we have

1
2.1 —{ra 1) == —+ ———
Q.1 [f( H+f1-0)} = o 2(w+1)
1
= an + ;(am cos2mtm + b, sin2mrm).
Using integration by parts, we have, form > 1,
2 1 1 4 ! cos 2mrmx
T Qmm)? |w? (w4 1)? Q@rm)? J, (w+x)3
Let
4 ' cos 2mmx 2 1 1
I, = d d J,= . —
(27rm)2/o w+xr o @rm) {wz (w+1)2}

By looking at the graph of y = (sin27xmx)/(w + x)* on the interval [0, 1], it is easy
to see that

4 ' cos 2mmx 12 Vsin 2w mx

S by @i TS @y Sy w0
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Since0 < I, =|I,| < J,,wehavea,, = J,—1I, = J,b,,, where 8,, = (J,, ~ 1,)/ Jn
and 0 < 6,, < 1. Similarly, we have

L o 2 (11 ) 4 (1 1 )
" 2rm\w w41 QRam)® \w? (w+1)3

4 12 ' cos 2mmx
QRam)? J, (w+x)*

Let
12 ! 2 4 1 1
_ cos 2mmx dx and Y, = 1
QRam) J, (w+x)* QRrm)® \w?* (w+1)°
Then
12 ' cos 2mmx 48 Usin 2w mx
= dx >0

T2rmy ), waxr T Camy ), w2

and X,, < Y,.. Hence, we have
b — 2 1 1 4 1 1 )
" oam\w w+i1) @amp\wr w+1p)"™M

where n,, = (Y, — X,,)/ Y, and 0 < n,, < 1. Now

!
T(v,j,x)= ZX(I_:[-/]: w=v+j/kandj > 1)

k—1

= —Zxo +Df /b + x(; + k) —— +1

1
=1 Zx(/ +Df (1/k)

2x(J + k)
+*k—{
_xU+H T

k 2w

_le: G +D 1 +§: 27'rml+b S,n27'tml
=22.X 50 2 iy COS —- m i —

x(;)(_+ 1 )_2)((1‘) !

ap + Z(a,,l cos2nm + b, sin 2nm)]

m=1

(by (2.1)

T 2w+ D k 2w

_ ! . 2mml x() -1
= Zx(1+l)2(amcos +b,,.1 k )+ ¥ Jwwil)
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(since Zf_, xG+H=0

2rrml
—E4- ZZ(amx(j +hcos ™ b G+ Dsin km)

=1 m=1

(where E = —x(j)/Quw(w + 1)k) )

+b ZX([ + I) sin

E+%Z( l‘;x(]+l)cos kl>

m=1

1 0
+ Z "g (a,,,x(m)«/kcos

—b,,,x(m)x/—sm kj)

(by Lemma 1.1). Hence
VET(v, ], x)

fo o] 2 . 2 .
= VkE + g (a,,,x(m) cos Nkmj — b, x(m) sin ﬂkmj )

1 1 2 i > x(m)9,,, 27rmj
‘“[E“LE +l)l(27r)2< w+1)z; k

2 — x(m) . 2mmj
_Eg - sin p

4 1 1 1 XM . 27mj
+ 2 <F+w(w+1) (w+1)2)21 m Tk }

(where 0 < 6,,,n, < 1)
(U N[ 2 (1 N X 2nmy
—<w w+1)[2ﬁ+(2n)2<w+w+l>m¥ mt Tk
1 (& 1
—ﬁ<ZX(M)+§X(I)>

4 1 1 1 x(m)n,,, . 2nmj
+ (27r)3(w2+w(w+1) (w+1)2)z S ]

(by Proposition 2.3)

(1 1 2 (1 1 \Gx(m)bn 2an_ X(m)
’(w w+1){(2n)2(w+w+l)m§ me Z

1

4 1 1 1 > xmn, . 2amj
* (2n)3(w2+w(w+1)+<w+1)2)z~, m k|
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Let

_ 2 i X(m)B 27tmj
S)) = 054 )2( w+1)‘z k

4 1 1 1 X(m)n,,, . 2mmj
+(2ﬂ)3<w2+w(w+l) (w+1)2)iz T

n

and

7
g

Then we have

2 (L Vgt (Ll Y
(2m)? w+ ¢ 2ra¥ \w? ww+l) (w+1)? d

2 2n? 4 3 72 X
S e et C@=m6>50)

=(1/64+1/(@4nw))/w < 1/(4w) (ifv >1).

S, j) =<

If | M| = IZ{"ZI x(m)l > 1, then, for an integer v > vk/(4|M|), we have P, =
IMI/VE > 1/(4w).

We have proved the following theorem.

THEOREM 2.1. Letk > 5,k =00r1 (mod 4) be a fur;damental discriminant and
X the real even primitive character modulo k. If M =Y _ x(m) # O, then

J
T(v,j,x) ) _ x(m) <0

m=1

for an integer v > max{1, Vk/(4|M})}.

REMARK 1. Theorem 2.1 can replace Theorem 2.1 and Theorem 2.2 of [ 7], a weaker
result of author’s earlier work.

REMARK 2. Let Sji = §;i(X) = X ¢ 1yt <n<iry X (1), where i and j are natural
numbers, and k is the modulus of x. In [3], Berndt expressed S;; as a linear combina-
tion of L-functions evaluated at s = 1. For some classes of real primitive characters,
he proved that §;; is of a constant sign for particular j and i. Some cases when
S;i 1s of a constant sign are still open problems. For example, let x,(n) denote the
Legendre symbol modulo p, where prime p = 1,7 (mod 8). Although numerical
computations suggest that Ss; > 0, Berndt {3] was unable to say anything about the
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sign of Ss;. As an application of Theorem 2.1, the following Theorem 2.2 provides a
new approach to attack the problem whether Ss,(y,) is of a constant sign for prime
p =1 (mod 8).

THEOREM 2.2. Let prime p = 1 (mod 8) and j = [p/5] be odd. Then
Ssi(x,) >0 ifandonlyif T(v,j,x) <O
for some integer v > max{1, «/E/(4|M|)}.

PROOF. By assumption j = [p/5] is odd, where [x] denotes the greatest integer
less than or equal to x. Hence Ss5:(x,) # 0. Now, by applying Theorem 2.1, the
theorem follows. a

Finally, to close this section, we need to state Proposition 2.3. The proofs of
Proposition 2.3 and Proposition 3.1 are very similar. Since the proof of Proposition 2.3
can be found in {7, Proposition 2.4], we only provide here the proof of Proposition 3.1
(see Section 3).

PROPOSITION 2.3. Let j be any integer in the closed interval [1, k — 1] and x the
real even primitive character modulo k. Then

j-1
| X(n) 27mj
;X(") +5xG) = Z

3. Odd characters

In this section we derive the imaginary version of Theorem 2.1. First, we prove the
following crucial proposition.

PROPOSITION 3.1. Let j be any integer in the closed interval [1, k — 1] and x the
real odd primitive character modulo k. Then

Zx(n>+ SxG) = h(=k) - %Z

n=1

where h(—k) denotes the class number of Q(+/—k).

(n) 27rnj
n Tk

[}

PROOF. For fixed integer j, we define the periodic function ¢ with period 27 as

follows:
1 if0 <x < 2mj/k;
dx)=11/2 ifx =0orx =2nj/korx =2m;
0 if2nj/k <x <2m.
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Then Y171 x(n) + x()/2 = ¥,_ ¢ Qrn/k)x(n). Since (#(0,) + ¢(0.))/2 =
(1+0)/2 =¢(0)and (@(2mj/k)y) + ¢(Q2nj/k)-))/2 = 0+ 1)/2 = ¢(2rj [ k),
by [5, Theorem 2.5], over the interval {0, 277 ], ¢ has a Fourier expansion

d(x) = j; + nXl:(a,, cos nx + b, sinnx),
where
] 2w nj
ag/2 = JE a, = - | ¢{x)cosnx dx = Esin k]
and
m . 1 1 27 nj
b, = — ¢(x)sinnxdx = — — — cos .
T Jo nwt  nmw k
Now

i 1 * 2 m
Zx(n)+§x(i)=z¢<7)x(m)
n=1

=3 {3 (oo 2 i 22 o
u e 2mrmn . 2mmn
Z Z(x(m)a,,cos P + x(m)b, sin P )

m=\ n=1

. 27
+ b, sin

(since 34 _, x(m) =0)

k
(Z x(m)a, cos

m=1

k
Al Z X (m)b, sin 2”}:"")
mn
( ”E' l)((m)cos +b E x (m) sm p )

1 2m
=be(n)f Z(E——Ecos )X(n)f

ﬁ VE o x(n)  2mnj
_7L(1’X)—72 " cosT

? ||M8 HM8

n=|

= h(— k)—éz (n)c sznknj.

n=1

Here we use the class number formula for imaginary quadratic fields
h(—k) = (Vk/m)L(1, x)
and the Gauss sum Z::, x(m)exprimn/k) = ix(n)«/l? for y(—1) = —1. O
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THEOREM 3.2. Let k > 5, —k = 0 or 1 (mod 4) be a ﬁmdamentall discriminant
and x the real odd primitive character modulo k. If M = h(—k) — > _| x(m) #0,
then

J
T(v.j. x) (h(—k) - x(m)) >0

m=1
for some integer v > max { 1, «/Z/(4|M|)}.

PROOF. As in Section 2, for an integer j in the closed interval [1, k — 1], write

Jj+k k .
. x(n) 1 xU +D
T s J s = T 5,
W, x) = Z_,H vk + n ZH w+ 1/k

where w = v+ j/k. For w = v+ j/k > 0, consider the periodic function
f (x) of period 1 such that f(x) = 1/(w+x)on (0,1], f(1-) = 1/(w+ 1) and
f(1+4) = 1/w. By [5, Theorem 2.5], over the interval (0, 1), f (x) has the Fourier

expansion
fx) = —aO + Z(a,,, cos2itmx + b, sin2nmx),
m=1
and
1 1— 1 1 1
I‘—(-—tl‘—;—iu +m §a0+2(amcos2nm+b sm27rm)
where

1 2 1 . 2
a,,,=2f COSAMY 4x  and b,,,=2/ ST dx.
0 w+x 0 w+x

Applying exactly the same argument as in Section 2, we have the same expressions,
as in Section 2, for symbols a,,, 6., b., and n,,. Now

T(v,j, x)

N
=szu(’+l/z FLXU DI WD+

Lx(G +k)
w1

+b ZXU +l)sm p 1)

_=xGy I
= —211)(11)_+_1)k+km= (a,,,Zx(/ -H)cos

(up to now, details are the same as in Section 2 )

-x() 1 . 2mmy 2w mj
= —" 4+ - - k b, k
Y00 + DX + ¥ L (a x(m)«/_sm T + b x (m)Vk cos
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(by applying Lemma 1.1 to odd character). Hence

VET (v, 7, x)
_ -x()
2w(w + )Vk

o =x() -
B 2w(w + DHVk +Z

2 (1 1
4= ——

2nmj
k

.

( ﬂkmj + b, x(m) cos

2 1 1  2wmj

—— 6,,

((27tm)2 <w2 (w + 1)2> X (m)6p sin —
1

27 mj

2nm\w  w+1

! ! ) (m) 2nmj)
"~ 2rm)? (E T w1y x (m)n, cos P

(where 0 < 6,1, < 1)

(Lo N[z, 2 (1,
_<w w+l>(2ﬁ +(27t)2(w+w+1>

2 X(m) os 2 mj
271 m k

4 1 1 1 X(m)r;,,, 2 mj
<2n)3<w2+w(w+1) (w+1)2); % )
(1 1 —x(G) 2 (1 1 =2 x(m)6,, . 2mmj
_(w w+1)( W +(2n)2<w+w+l>m2=: m: o0k

1
+%<h( k) — Zx(n)——x(;))

4 (1 1 1 > x(nﬂnm 2 mj
(2n)‘<w2+w(w+1) (w+1)2)z S )

m=1

x(m)b,, . 2mmj
m? k

K

m

(by Proposition 3.1)

. l_ 1 2 i 1 d x(m)6,, . 2mmj
_(w w+1)<(2n)2<w+w+1)m§ m? o Tk
1 J
— 1 h(=k) =
+ﬁ(< ) ;;an))

4 (1 1 1 — XM 2mmj
(27r)3<w2+w(w+1)+(w+1)2)'§ FERER A
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Let M = h(—k) = 3/ _, x(n), P, = |M|/~/k and

2 (1 x(m)t9 sin XM
S, j)= an )2( w+1)‘2 p

Ccos 3

Lt 4 <1 + 1 1 )
Rm)* \w?  ww+1) (w—{-l)2

If M # 0, then, by applying the same argument as in Section 2, we have P, >
1/(4w) > S(v,j) for an integer v > max{1, Vk/(4/M))}. Hence, the theorem is
proved. O

REMARK 3. In [8, Theorem 6 (1)], we proved that T (v, [k/2], x) < Oforareal odd
primitive character y of modulus k # 7 (mod 8) and an integer v > k'/*. Combining
Theorem 6 (1) of [8] and Theorem 3.2, we have h(—k) — [km 1 x(n) < 0. Since class
number h(—k) is a positive integer, we derive ti2) x(n) > 0 for modulus k # 7

n=1
(mod 8), a well-known result of Dirichlet. For Dirichlet’s classical result, the reader
can find a concise proof in the paper of Moser [9].

4. Bernoulli numbers and polynomials

As a reference, we state a connection among Bernoulli numbers, Bernoulli poly-
nomials and character sum. Let B,(x) denote the nth Bernoulli polynomial and
B, = B,(0) the nth Bernoulli number. Then we have the following equation.

LEMMA 4.1. 3"V 'n9 = (B, 1(N) — B,1)/(1 + g).

The proof can be found in [10].

For a prime integer p > 3 and any positive integern < p, we have (n/p) = n?~/?
(mod p), where (n/p) denotes the Legendre symbol. By Lemma 4.1, for an integer
m in the interval [1, p — 1], we obtain

) z =m (p—l)/2=_2 B m+1) - B =a (mod
Z(p> Zn p+1{ (p+l)/2( ) (p+|)/2} ( p)

n=1

for some integer o, 0 < o < p. Now, we have the following criteria.

THEOREM 4.2.

(1) > (;) —o ifandonlyif 0<a < (p—1)/2.

n=1
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(2) > (f,—) =a—p ifandonlyif (p-1)/2<a<p.

n=1

Where 0 < a < p is the integer such that 2(B41)2(m + 1) — Bpinp)/(p+1) =«
(mod p).
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