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Abstract

Let Aq = k〈x, y〉/(x2, xy + qyx, y2) be the quantum exterior algebra over a field k with char k 6= 2, and
let 3q be the Z2 × Z2-Galois covering of Aq . In this paper the minimal projective bimodule resolution of
3q is constructed explicitly, and from it we can calculate the k-dimensions of all Hochschild homology
and cohomology groups of 3q . Moreover, the cyclic homology of 3q can be calculated in the case where
the underlying field is of characteristic zero.
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1. Introduction

Let 3 be a finite-dimensional algebra (associative with identity) over a field k. We
consider the enveloping algebra 3e

= 3op
⊗k 3. For a finitely-generated bimodule

3X3, the i th Hochschild homology and cohomology of 3 with coefficients in
X , denoted by H Hi (3, X) and H H i (3, X), are the groups Tor3

e

i (3, X) and
Exti3e(3, X) respectively, for each i ≥ 0 [7]. Of particular interest is the case
X = 3, and in this case we shall write H Hi (3) = H Hi (3, 3) and H H i (3) =

H H i (3, 3). It is well known that the Hochschild homology and cohomology of
an algebra are subtle invariants of associative algebras under Morita equivalence,
tilting equivalence, derived equivalence, and so on, and have played a fundamental
role in the representation theory of Artin algebras: Hochschild cohomology is closely
related to simple connectedness, separability and deformation theory [1, 8, 14, 18, 25];
Hochschild homology is closely related to the oriented cycle and the global dimension
of algebras [3, 16, 19].
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In [18], Happel asked the following question. If the Hochschild cohomology
groups H Hn(3) of a finite-dimensional algebra 3 over a field k vanish for all
sufficiently-large n, is the global dimension of 3 finite? In 2005, Buchweitz,
Green, Madsen and Solberg gave a negative answer to this question by exhibiting
the Hochschild cohomology behaviour of a family of pathological algebras Aq =

k〈x, y〉/(x2, xy
+ qyx, y2) (the so-called quantum exterior algebras) [5]. Moreover, these algebras
have been studied to exhibit some other pathologies and thus give negative answers
to some open problems, such as Tachikawa’s conjecture, Ringel’s problem, and
so on [20, 23, 26]. Recently, this class of algebras has been extensively studied.
Their Hochschild homology and cohomology have been calculated explicitly, and
the Hochschild cohomology rings of Aq have been determined via generators and
relations [5, 27].

During the last few years, several results and tools from algebraic topology, such as
covering theory, have been adapted to the representation theory of noncommutative
finite-dimensional associative algebras over a field k [13]. A comparison of the
Hochschild cohomology of the algebras involved in a Galois covering of the Kronecker
algebra with a cyclic group of order 2 was initiated in [22]. A Cartan–Leray spectral
sequence related to the Hochschild–Mitchell (co)homology of a Galois covering of
linear categories was obtained in [9]. The skew category, Galois covering and smash
product of a category over a ring are studied in [10, 11]. It is well known that
there are strong connections between skew group algebras, Galois coverings and
smash products of graded algebras [12]. Moreover, it is proved in [17] that a finite-
dimensional quiver algebra is Koszul if and only if its finite Galois covering algebra
with Galois group G satisfying char k - |G| is Koszul. As an example, the Galois
covering algebra 3q of quantum exterior algebra Aq with Galois group G satisfying
char k - |G| is Koszul again. In this note we consider the case where G is the
noncyclic Abelian group Z2 × Z2. We first provide a minimal projective resolution
of 3q . Applying this minimal projective resolution, we calculate the Hochschild
(co)homology of 3q , and the cyclic homology of 3q can be calculated in the case
where the underlying field is of characteristic zero. These examples will be helpful
to understand deeply the Hochschild homology and cohomology behaviour of Galois
covering algebras of Koszul algebras with finite Galois groups.

2. Minimal projective bimodule resolutions

Throughout this paper, we fix a base field k with char k 6= 2 and let Z2 = {0, 1} be
the residue group modulo 2. We always suppose that

Aq = k〈x, y〉/(x2, xy + qyx, y2)

is the quantum exterior algebra, with q ∈ k\{0}, unless otherwise specified.

Let Q be the quiver given by four points 0, 1, 0
′
, 1

′
and eight arrows x0, y0, x1, y1,

https://doi.org/10.1017/S0004972708000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972708000312


[3] Hochschild (co)homology 37

x ′
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•
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′

x ′

0oo

y′
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��
1•

y1
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x1

// •1
′

x ′

1oo
y′

1

OO

We sometimes write arrows xi , yi , x ′

i , y′

i instead of xi , yi , x ′

i
, y′

i
respectively, i = 0, 1,

and assume that, for any nonnegative integers k, j , if k ≡ j (mod 2), then x j = xk ,
x ′

j = x ′

k , y j = yk and y′

j = y′

k . For an arrow ρ ∈ Q, we denote the length of ρ by l(ρ),
and let o(ρ), t (ρ) be the origin and terminus of ρ respectively. Denote by I the ideal
of the path algebra k Q generated by

R := {xi x
′

i , yi yi+1, x ′

i xi , y′

i y′

i+1, xi y′

i + qyi xi+1, x ′

i yi + qy′

i x
′

i+1 | i = 0, 1}.

For information on quivers we refer to [2]. Set 3q = k Q/I . Then 3q is just the
Z2 × Z2-Galois covering of the quantum exterior algebra over k, which is a Koszul
algebra (see [17]). Denote by e0, e′

0, e1, e′

1 the primitive orthogonal idempotents

corresponding to the points 0, 0
′
, 1, 1

′
respectively. Then we can order the paths in

Q in left length-lexicographic order by choosing

e0 ≺ e′

0 ≺ e1 ≺ e′

1 ≺ x0 ≺ x ′

0 ≺ x1 ≺ x ′

1 ≺ y0 ≺ y′

0 ≺ y1 ≺ y′

1,

namely, u1 . . . us ≺ v1 . . . vt with ui and vi being arrows if s < t , or s = t but ui = vi
for 0 ≤ i < r and ur ≺ vr for some 1 ≤ r ≤ s. Thus, 3q has an ordered k-basis

B = {ei , e′

i , xi , x ′

i , yi , y′

i , yi xi+1, y′

i x
′

i+1 | i = 0, 1},

if we identify the elements of B with their images in 3q . We always write a
composition of paths from left to right.

Now we construct a minimal projective bimodule resolution (P•, δ•) of 3q . For
each n ≥ 0, we first construct certain elements

{ f (n,i)
j , f (n,i ′)

j | 0 ≤ j ≤ n, i = 0, 1}.

Let

f (0,i)
0 = ei , f (0,i ′)

0 = e′

i ,

f (1,i)
0 = xi , f (1,i)

1 = yi , f (1,i ′)
0 = x ′

i , f (1,i ′)
1 = y′

i .

For any ρ ∈ {x0, y0, x1, y1}, we define

ρ(l)
=

{
ρ′ if l is odd;

ρ if l is even.
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Then we can define

{ f (n,i)
j , f (n,i ′)

j }
n
j=0, i = 0, 1,

for all n ≥ 2 inductively by setting

f (n,i)
j = q j f (n−1,i)

j x (n+ j+1)
i+ j + f (n−1,i)

j−1 y(n+ j)
i+ j+1,

f (n,i ′)
j = q j f (n−1,i ′)

j x (n+ j)
i+ j + f (n−1,i ′)

j−1 y(n+ j+1)

i+ j+1 , (2.1)

and

f (n,i)
−1 = f (n,i ′)

−1 = f (n,i)
n+1 = f (n,i ′)

n+1 = 0, i = 0, 1.

Let

0(n)
= { f (n,i)

j , f (n,i ′)
j | 0 ≤ j ≤ n, i = 0, 1}.

Clearly, |0(n)
| = 4(n + 1).

Recall that a nonzero element

x =

s∑
i=1

αi pi ∈ k Q

is said to be uniform if there exist vertices u and v in Q0 such that o(pi ) = u
and t (pi ) = v for all pi , i = 1, 2, . . . , s. Note that f (n,i)

j and f (n,i ′)
j are linear

combinations of some paths in k Q for all 0 ≤ j ≤ n, which are uniform. Thus for
any f ∈ 0(n), we usually denote by o( f ) and t ( f ) the common origins and termini of
all the paths occurring in f . Set

0
(n)
i j = { f ∈ 0(n)

| o( f ) = i and t ( f ) = j}, i, j = 0, 1, 0′, 1′.

Let ⊗ := ⊗k . Let

Pn :=

∐
f ∈0(n)

3qo( f ) ⊗ t ( f )3q (∀ n ≥ 0).

Note that

f (n,i)
j = xi f (n−1,i ′)

j + qn− j yi f (n−1,i+1)
j−1 ;

f (n,i ′)
j = x ′

i f (n−1,i)
j + qn− j y′

i f (n−1,(i+1)′)
j−1 . (2.2)

So we can define δn : Pn → Pn−1 by setting

δn(o( f (n,i)
j ) ⊗ t ( f (n,i)

j )) = xi ⊗ t ( f (n−1,i ′)
j ) + (−1)nq j o( f (n−1,i)

j ) ⊗ x (n+ j+1)
i+ j

+ qn− j yi ⊗ t ( f (n−1,i+1)
j−1 )

+ (−1)no( f (n−1,i)
j−1 ) ⊗ y(n+ j)

i+ j+1;
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δn(o( f (n,i ′)
j ) ⊗ t ( f (n,i ′)

j )) = x ′

i ⊗ t ( f (n−1,i)
j ) + (−1)nq j o( f (n−1,i ′)

j ) ⊗ x (n+ j)
i+ j

+ qn− j y′

i ⊗ t ( f (n−1,(i+1)′)
j−1 )

+ (−1)no( f (n−1,i ′)
j−1 ) ⊗ y(n+ j+1)

i+ j+1 .

THEOREM 2.1. The complex (P•, δ•)

· · · → Pn+1
δn+1
−→ Pn

δn
−→ · · ·

δ3
−→ P2

δ2
−→ P1

δ1
−→ P0 −→ 0

is a minimal projective bimodule resolution of the covering algebra 3q = k Q/I .

PROOF. We consider the minimal projective bimodule resolution of 3q constructed
in [6, Section 9]. Let X = {x0, y0, x1, y1, x ′

0, y′

0, x ′

1, y′

1}. Since 3q is a Koszul algebra
(see [17]), we only need to prove that 0(n) is a k-basis of the k-vector space

Kn :=

⋂
p+q=n−2

X p R Xq .

Note that X Kn−1 ∩ Kn−1 X ⊂ Kn . By Formulae (2.1) and (2.2),

f (n,0)
j , f (n,0′)

j , f (n,1)
j , f (n,1′)

j ∈ Kn,

by induction on n. Clearly, 0(n) is k-linearly independent.
Denote by (R⊥) the ideal of k Q generated by

R⊥
:= {yi xi+1 − qxi y′

i , y′

i xi+1 − qx ′

i y′

i | i = 0, 1}.

Then the quadratic dual of the Koszul algebra 3q is just the algebra 3!
q

= k Q/(R⊥), which is isomorphic to the Yoneda algebra E(3q) of 3q (see
[4, Theorem 2.10.1]). Thus the Betti numbers of a minimal projective resolution of
3q over 3e

q are dimk Kn = 4(n + 1). Hence 0(n) is a k-basis of Kn .
Finally, the maps δ• are determined by [6, p. 354]; see also [15]. 2

3. Hochschild homology and cyclic homology

In this section we calculate the k-dimensions of Hochschild homology groups and
cyclic homology groups (in the case char k = 0) of the covering algebra 3q . Let X
and Y be the sets of uniform elements in k Q; then one defines

X � Y = {(p, q) ∈ X × Y | t (p) = o(q) and t (q) = o(p)}.

We denote by k(X � Y ) the vector space that has as basis the set X � Y .
Applying the functor 3q ⊗3e

q
(·) to the minimal projective bimodule resolution

(P•, δ•), we have the following result.

LEMMA 3.1. We have 3q ⊗3e
q
(P•, δ•) = (N•, τ•), where Nn ∼= k(B � 0(n)) and τn :

Nn → Nn−1 is given by
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τn(b, f (n,i)
j ) = (bxi , f (n−1,i ′)

j ) + (−1)nq j (x (n+ j+1)
i+ j b, f (n−1,i)

j )

+ qn− j (byi , f (n−1,i+1)
j−1 ) + (−1)n(y(n+ j)

i+ j+1b, f (n−1,i)
j−1 );

τn(b, f (n,i ′)
j ) = (bx ′

i , f (n−1,i)
j ) + (−1)nq j (x (n+ j)

i+ j b, f (n−1,i ′)
j )

+ qn− j (by′

i , f (n−1,(i+1)′)
j−1 ) + (−1)n(y(n+ j+1)

i+ j+1 b, f (n−1,i ′)
j−1 ).

PROOF. Clearly,

Nn = 3q ⊗3e
q

Pn = 3q ⊗Ee

∐
f ∈0(n)

(o( f ) ⊗k t ( f ))

∼=

∐
α,β∈{e0,e′

0,e1,e′

1}

α3qβ ⊗k β0
(n)
j i α,

where E is the maximal semisimple subalgebra of 3q . Thus B � 0(n) forms a k-basis
of Nn by definition.

From the isomorphism above, we have the commutative diagram

· · · −→ 3q ⊗3e
q

Pn

o

��

1 ⊗ δn // 3q ⊗3e
q

Pn−1 −→ · · ·

o

��
· · · −→ k(B � 0(n))

τn // k(B � 0(n−1)) −→ · · ·

So the differentials τn can be induced by δn in the minimal projective resolution
(P•, δ•). 2

Note that H Hn(3q) = Ker τn/Im τn+1 by definition:

dimk H Hn(3q) = dimkKer τn − dimkIm τn+1

= dimk Nn − dimkIm τn − dimkIm τn+1. (3.1)

Consequently, to calculate the dimensions of Hochschild homology groups of 3q , we
only need to determine the dimk Nn and dimkIm τn .

For any (b, f ) ∈ B � 0(n), l(b) and n must have the same parity. If n is odd, then

B � 0(n)
= ({x0} � 0

(n)

0′0) ∪ ({x ′

0} � 0
(n)

00′ ) ∪ ({x1} � 0
(n)

1′1) ∪ ({x ′

1} � 0
(n)

11′ )

∪ ({y0} � 0
(n)
10 ) ∪ ({y′

0} � 0
(n)

1′0′) ∪ ({y1} � 0
(n)
01 ) ∪ ({y′

1} � 0
(n)

0′1′);

if n is even, then

B � 0(n)
= ({e0} � 0

(n)
00 ) ∪ ({e′

0} � 0
(n)

0′0′) ∪ ({e1} � 0
(n)
11 ) ∪ ({e′

1} � 0
(n)

1′1′)

∪ ({y0x1} � 0
(n)

1′0) ∪ ({y′

0x ′

1} � 0
(n)

10′ )

∪({y1x0} � 0
(n)

0′1) ∪ ({y′

1x ′

0} � 0
(n)

01′ ).

Hence dimk Nn = 4(n + 1).
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We now define an order on B � 0(n) as follows:

(b1, f (n,i1)
j1

) ≺ (b2, f (n,i2)
j2

) if j1 < j2, or j1 = j2 but b1 ≺ b2,

for any (b1, f (n,i1)
j1

), (b2, f (n,i2)
j2

) ∈ B � 0(n) and i1, i2 ∈ {0, 0′, 1, 1′
}.

We still denote by τn the matrix of the differentials τn under the ordered bases
above, and write

Ai =


1 q i 0 0
q i 1 0 0
0 0 1 q i

0 0 q i 1


4×4

, Bi =


qn−i 0 1 0

0 qn−i 0 1
1 0 qn−i 0
0 1 0 qn−i


4×4

.

It follows from the descriptions of the differentials τn in Lemma 3.1 that if n is odd,
then

τn =



0
0 A2

−B1 0
0 A4

−B3
. . .

. . . 0
0 An−1

−Bn−2 0
0


4(n+1)×4n

;

and if n is even, then

τn =



A0
0 0

B2 A2

0
. . .

. . . 0
Bn−2 An−2

0 0
Bn


4(n+1)×4n

.

Clearly,

rank(τn) =

∑
i∈{1,3,5,...,n−2}

rank
(

Ai+1
−Bi

)
,
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if n is odd; and

rank(τn) = rank(A0) + rank(Bn) +

∑
i∈{2,4,6,...,n−2}

rank
(
Bi Ai

)
= 4 +

∑
i∈{2,4,6,...,n−2}

rank
(
Bi Ai

)
,

if n is even.

LEMMA 3.2. Let 3q be the Z2 × Z2-Galois covering of Aq , with q an rth (r > 2)

primitive root of unity. If n (>2) is odd,

rank(τn) =


2n − k − 1 if r is odd and n = 2kr − 1, for some k ≥ 1,

or r is even and n = kr − 1, for some k ≥ 1;

2n − 2 otherwise.

and if n(>2) is even, then

rank(τn) =


2n − k + 1 if r is odd and n = 2kr, for some k ≥ 1,

or r is even and n = kr, for some k ≥ 1;

2n otherwise.

PROOF.
CASE I. Suppose n is odd.

For i = 1, 3, 5, . . . , n − 2, by elementary operations, each(
Ai+1
−Bi

)
can be changed into

0 0 −qn−i
−qn+1

0 0 −qn+1
−qn−i

0 0 1 q i+1

0 0 q i+1 1
0 0 q2(n−i)

− 1 0
0 0 0 q2(n−i)

− 1
−1 0 0 0
0 −1 0 0


8×4

.

Note that rank
(

Ai+1
−Bi

)
= 3 or 4, and rank

(
Ai+1
−Bi

)
= 3 if and only if{

q2(n−i)
= 1;

q2(i+1)
= 1

⇐⇒

{
q2(n+1)

= 1;

q2(i+1)
= 1.

Moreover, q2(n+1)
= 1 if and only if either of the following ((1) or (2)) is satisfied:
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(1) r is odd and 2(n + 1) = 4kr , for some k ≥ 1;
(2) r is even and 2(n + 1) = 2kr , for some k ≥ 1.
Since i is odd, we have q2(i+1)

= 1 if and only if either of the following ((3) or (4)) is
satisfied:
(3) r is odd and 2(i + 1) = 4k1r , for some k1 ≥ 1;
(4) r is even and 2(i + 1) = 2k1r , for some k1 ≥ 1.

If (1) and (3) are satisfied, then r is odd, n = 2kr − 1 and k1 = 1, 2, . . . , k − 1. So
the number of i satisfying

rank
(

Ai+1
−Bi

)
= 3

is k − 1, and rank(τn) = 2n − k − 1.
If (2) and (4) are satisfied, then r is even, n = kr − 1 and k1 = 1, 2, . . . , k − 1. So

the number of i satisfying

rank
(

Ai+1
−Bi

)
= 3

is k − 1, and rank(τn) = 2n − k − 1.
Otherwise, for each i ,

rank
(

Ai+1
−Bi

)
= 4.

So rank(τn) = 4 × ((n − 1)/2) = 2n − 2.

CASE II. Suppose n is even.

For i = 2, 4, 6, . . . , n − 2, by elementary operations, each (Bi Ai ) can be
changed into

0 0 1 − q2(n−i) 0 1 q i
−qn−i

−qn

0 0 0 1 − q2(n−i) q i 1 −qn
−qn−i

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0


4×8

.

Note that rank(Bi Ai ) = 3 or 4, and rank(Bi Ai ) = 3 if and only if{
q2(n−i)

= 1;

q2i
= 1.

⇐⇒

{
q2n

= 1;

q2i
= 1.

Moreover, we have q2n
= 1 if and only if either of the following ((5) or (6)) is satisfied:

(5) r is odd and 2n = 4kr , for some k ≥ 1;
(6) r is even and 2n = 2kr , for some k ≥ 1.

https://doi.org/10.1017/S0004972708000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972708000312


44 H. Bo and X. Yunge [10]

Since i is even, we have q2i
= 1 if and only if either of the following ((7) or (8)) is

satisfied:
(7) r is odd and 2i = 4k1r , for some k1 ≥ 1;
(8) r is even and 2i = 2k1r , for some k1 ≥ 1.

If (5) and (7) are satisfied, then r is odd, n = 2kr and k1 = 1, 2, . . . , k − 1. So the
number of i satisfying rank(Bi Ai ) = 3 is k − 1, and rank(τn) = 2n − k + 1.

If (6) and (8) are satisfied, then r is even, n = kr and k1 = 1, 2, . . . , k − 1. So the
number of i satisfying rank(Bi Ai ) = 3 is k − 1, and rank(τn) = 2n − k + 1.

Otherwise, for each i , rank(Bi Ai ) = 4. So

rank(τn) = 4 + 4 ×
n − 2

2
= 2n.

The proof is complete. 2

LEMMA 3.3. Let 3q be the Z2 × Z2-Galois covering of Aq . If q (6=0) is not an rth
(r > 2) primitive root of unity, then for n > 2

rank(τn) =


2n − 2 if n is odd and q (6=0) is not a root of unity;

2n if n is even and q (6=0) is not a root of unity;
3
2 (n − 1) if n is odd and q = ±1;

3
2 n + 1 if n is even and q = ±1.

PROOF.
CASE I. Suppose n is odd. If q ( 6=0) is not a root of unity, then q2(n+1)

6= 1 for
n > 2, and rank(τn) = 2n − 2; if q = ±1, then q2(n+1)

= q2(i+1)
= 1, and rank(τn)

= (3/2) (n − 1).

CASE II. Suppose n is even. If q ( 6=0) is not a root of unity, then q2n
6= 1 for n > 2,

and rank(τn) = 2n; if q = ±1, then q2n
= q2i

= 1, and rank(τn) = (3/2)n + 1. This
completes the proof. 2

For n = 0, 1, 2, direct computations show that

dimk H H0(3q) = 4;

dimk H H1(3q) = 4;

dimk H H2(3q) =

{
4 if q 6= ±1, ±

√
−1;

5 if q = ±1, ±
√

−1.

THEOREM 3.4. Let 3q be the Z2 × Z2-Galois covering of the quantum exterior
algebra Aq . If q is an rth (r > 2) primitive root of unity, then for n > 2
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dimk H Hn(3q) =



k + 3 if r is odd and n = 2kr − 2 or n = 2kr, for some k ≥ 1,

or r is even and n = kr − 2 or n = kr, for some k ≥ 1;

2k + 2 if r is odd and n = 2kr − 1, for some k ≥ 1,

or r is even and n = kr − 1, for some k ≥ 1;

4 otherwise.

PROOF. By Lemma 3.2 and the formula

dimk H Hn(3q) = dimk Nn − dimkIm τn − dimkIm τn+1,

we can get the result directly. 2

THEOREM 3.5. Let 3q be the Z2 × Z2-Galois covering of the quantum exterior
algebra Aq . If q (6=0) is not an rth (r > 2) primitive root of unity, then for n > 2,

dimk H Hn(3q) =

{
4 if q (6=0) is not a root of unity;

n + 3 if q = ±1.

PROOF. By Lemma 3.3, we have dimk(τn) + dimk(τn+1) = 4n if q (6=0) is not a root
of unity; and dimk(τn) + dimk(τn+1) = 3n + 1 if q = ±1. The theorem follows from
the formula (3.1) as desired. 2

Denote by HCn(3q) the nth cyclic homology group of 3q (see [21]).

COROLLARY 3.6. Let 3q be the Z2 × Z2-Galois covering of the quantum exterior
algebra Aq . If q is an rth (r > 2) primitive root of unity and char k = 0, then

dimk HCn(3q)

=


k + 3 if r is odd and n = 2kr − 1 or n = 2kr − 2, for some k ≥ 1,

or r is even and n = kr − 1 or n = kr − 2, for some k ≥ 1;

4 otherwise.

PROOF. By [21, Theorem 4.1.13],

dimk HCn(3q) − dimk HCn(k
4) = −(dimk HCn−1(3q) − dimk HCn−1(k

4))

+ (dimk H Hn(3q) − dimk H Hn(k
4)).

Thus

dimk HCn(3q) − dimk HCn(k
4) =

n∑
i=0

(−1)n−i (dimk H Hi (3q) − dimk H Hi (k
4)).

It is well known that

dimk H Hi (k
4) =

{
4 if i = 0;

0 if i ≥ 1
and dimk HCi (k

4) =

{
4 if i is even;

0 if i is odd.

By Theorem 3.4, we can obtain the result. 2
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COROLLARY 3.7. Let 3q be the Z2 × Z2-Galois covering of the quantum exterior
algebra Aq . If q ( 6=0) is not an rth (r > 2) primitive root of unity and char k = 0,
then

dimk HCn(3q) =


n − 1

2
+ 4 if q = ±1 and n is odd;

n

2
+ 4 if q = ±1 and n is even;

4 if q (6=0) is not a root of unity.

PROOF. Similarly to the proof of Corollary 3.6, we can get this corollary by
Theorem 3.5. 2

For completeness, we also consider the degenerate case when q = 0. Then

A0 = k〈x, y〉/(x2, xy, y2),

and its Z2 × Z2-Galois covering algebra 30 = k Q/(R0), where the quiver Q is as in
Section 2 and

R0 := {xi x
′

i , yi yi+1, x ′

i xi , y′

i y′

i+1, xi y′

i , x ′

i yi | i = 0, 1}.

THEOREM 3.8. Let 30 be the Z2 × Z2-Galois covering of A0 as the above; then

dimk H Hn(30) = 4.

PROOF. Clearly, 30 is a quadratic monomial algebra. Denote by 3!

0 the quadratic
dual of 30; then

3!

0 = k Q/(y0x ′

0, y1x ′

1, y′

0x0, y′

1x1),

and

0n
= { f (n,i)

j = xi x
′

i xi . . . x (n− j+1)
i y(n− j)

i y(n− j)
i+1 . . . y(n− j)

i+ j−1, f (n,i ′)
j

= x ′

i xi x
′

i . . . x (n− j)
i y(n− j+1)

i y(n− j+1)

i+1 . . . y(n− j+1)

i+ j−1 | 0 ≤ j ≤ n, i = 0, 1}

is a k-basis of 3!

0. Thus, by [24], we can get a minimal projection resolution of 30,

(P0
• , δ0

•) : · · · → P0
n

δ0
n

−→ P0
n−1 −→ · · · −→ P0

2

δ0
2

−→ P0
1

δ0
1

−→ P0
0 −→ 0,

where

P0
n =

∐
f ∈0(n)

30o( f ) ⊗ t ( f )30,

and the differentials are given by

δ0
n(o( f ) ⊗ t ( f )) = Ln−1

⊗ t ( f ) + (−1)no( f ) ⊗ Rn−1,
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where Ln−1 and Rn−1 are the subpaths of f satisfying f = Ln−1g = h Rn−1 for some
g, h ∈ 0(n−1).

Applying the functor 30 ⊗3e
0
(·) to (P0

• , δ0
•), we get the homology complex

(N 0
• , τ 0

• ) of 30, and dimk N 0
n = 4(n + 1),

dimkIm τ 0
n =

{
2n − 2 if n is odd;

2n if n is even.

So dimk H Hn(30) = 4. 2

Similar to Corollary 3.6, we have the following result.

COROLLARY 3.9. Let 30 be the Z2 × Z2-Galois covering of A0 and char k = 0; then

dimk HCn(30) = 4.

4. Hochschild cohomology

In this section we calculate the k-dimensions of Hochschild cohomology groups of
the covering algebra 3q . Let X and Y be the sets of uniform elements in k Q; then one
defines

X//Y = {(p, q) ∈ X × Y | o(p) = o(q) and t (p) = t (q)}.

We denote by k(X//Y ) the vector space that has as basis the set X//Y .
Applying the functor Hom3e

q
(·, 3q) to the minimal projective bimodule resolution

(P•, δ•), we have the following result.

LEMMA 4.1. We have Hom3e
q
((P•, δ•), 3q) = (M•, ϕ•), where Mn ∼= k(B//0(n))

and ϕn+1
: Mn

→ Mn+1 is given by

ϕn+1(b, f (n,i)
j ) = (x ′

i b, f (n+1,i ′)
j ) + (−1)n+1q j (bx (n+ j)

i+ j , f (n+1,i)
j )

+ qn− j (yi+1b, f (n+1,i+1)
j+1 ) + (−1)n+1(by(n+ j)

i+ j , f (n+1,i)
j+1 );

ϕn+1(b, f (n,i
′
)

j ) = (xi b, f (n+1,i)
j ) + (−1)n+1q j (bx (n+ j+1)

i+ j , f (n+1,i ′)
j )

+ qn− j (y′

i+1b, f (n+1,(i+1)
′
)

j+1 ) + (−1)n+1(by(n+ j+1)
i+ j , f (n+1,i ′)

j+1 ).

PROOF. Clearly,

Mn
= Hom3e

q
(Pn, 3q) = Hom3e

q

( ∐
f ∈0(n)

3qo( f ) ⊗ t ( f )3q , 3q

)
∼=

∐
f ∈0(n)

(o( f ) ⊗ t ( f )3q) ∼=

∐
f ∈0(n)

(o( f )3q t ( f )).

Thus B//0(n) forms a k-basis of Mn by definition.
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Applying the commutative diagram

· · · −→ Hom3e
q
(Pn, 3q)

o

��

δ∗

n+1 // Hom3e
q
(Pn+1, 3q) −→ · · ·

o

��
· · · −→ k(B//0(n))

ϕn+1
// k(B//0(n+1)) −→ · · ·

we can induce the differentials ϕn by δn in the minimal projective resolution
(P•, δ•). 2

Clearly, for any (b, f ) ∈ B//0(n), l(b) and n must have the same parity. Thus
dimk Mn

= 4(n + 1).
Now, we can define an order on B//0(n) as follows:

(b1, f (n,i1)
j1

) ≺ (b2, f (n,i2)
j2

) if j1 < j2 or j1 = j2 but b1 ≺ b2,

for any

(b1, f (n,i1)
j1

), (b2, f (n,i2)
j2

) ∈ B//0(n) and i1, i2 ∈ {0, 0′, 1, 1′
}.

We still denote by ϕn the matrix of the differentials ϕn under the ordered bases
above, and write

Ci =


−q i 1 0 0

1 −q i 0 0
0 0 −q i 1
0 0 1 −q i


4×4

, Di =


−1 0 qn−i 0
0 −1 0 qn−i

qn−i 0 −1 0
0 qn−i 0 −1


4×4

.

It follows from the description of the differentials ϕn in Lemma 4.1 that if n is odd,
then

ϕn
=



C0 D1
0 0

C2 D3
0 0

. . .
. . .

Cn−3 Dn−2
0 0

Cn−1 Dn


4n×4(n+1)

;

and if n is even, then
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ϕn
=



0 q D2
0 −qC0 0

0 q D4

−qC2
. . .

. . . 0
0 q Dn 0

−qCn−2 0


4n×4(n+1)

.

Clearly,

rank(ϕn) =


∑

i∈{0,2,4,...,n−1}

rank(Ci Di+1) if n is odd;

∑
i∈{0,2,4,...,n−2}

rank

(
Di+2

−Ci

)
if n is even.

LEMMA 4.2. Let 3q be the Z2 × Z2-Galois covering of Aq , with q an rth (r > 2)

primitive root of unity. If n (>2) is odd, then

rank(ϕn) =


2n − k + 1 if r is odd and n = 2kr + 1, for some k ≥ 1,

or r is even and n = kr + 1, for some k ≥ 1;

2n + 2 otherwise;

and if n (>2) is even, then

rank(ϕn) =


2n − k − 1 if r is odd and n = 2kr + 2, for some k ≥ 1,

or r is even and n = kr + 2, for some k ≥ 1;

2n otherwise.

PROOF.
CASE I. Suppose n is odd.

For i = 0, 2, 4, . . . , n − 1, by elementary operations, each (Ci Di+1) can be
changed into

−q i 1 −qn−1 qn−i−1 q2(n−i−1)
− 1 0 0 0

1 −q i qn−i−1
−qn−1 0 q2(n−i−1)

− 1 0 0
0 0 0 0 0 0 −1 0
0 1 0 0 0 0 0 −1


4×8

.

Note that rank(Ci Di+1) = 3 or 4, and rank(Ci Di+1) = 3 if and only if{
q2(n−i−1)

= 1;

q2i
= 1

⇐⇒

{
q2(n−1)

= 1;

q2i
= 1.

Moreover, we have q2(n−1)
= 1 if and only if either of the following ((1′) or (2′)) is

satisfied:
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(1′) r is odd and 2(n − 1) = 4kr , for some k ≥ 1;
(2′) r is even and 2(n − 1) = 2kr , for some k ≥ 1.
Since i is even, we have q2i

= 1 if and only if either of the following ((3′) or (4′)) is
satisfied:
(3′) r is odd and 2i = 4k1r , for some k1 ≥ 0;
(4′) r is even and 2i = 2k1r , for some k1 ≥ 0.

If (1′) and (3′) are satisfied, then r is odd, n = 2kr + 1 and k1 = 0, 1, . . . , k. So
the number of i satisfying rank(Ci Di+1) = 3 is k + 1, and rank(ϕn) = 2n − k + 1.

If (2′) and (4′) are satisfied, then r is even, n = kr + 1 and k1 = 0, 1, . . . , k. So
the number of i satisfying rank(Ci Di+1) = 3 is k + 1, and rank(ϕn) = 2n − k + 1.

Otherwise, rank(ϕn) = 4 × ((n + 1)/2) = 2n + 2.

CASE II. Suppose n is even.
For i = 0, 2, 4, . . . , n − 2, by elementary operations, each(

Di+2
−Ci

)
can be changed into

−1 0 0 0
0 −1 0 0
0 0 q2(n−i−2)

− 1 0
0 0 0 q2(n−i−2)

− 1
0 0 qn−2

−qn−i−2

0 0 −qn−i−2 qn−2

0 0 q i
−1

0 0 −1 q i


8×4

.

Note that rank
(

Di+2
−Ci

)
= 3 or 4, and rank

(
Di+2
−Ci

)
= 3 if and only if

{
q2(n−i−2)

= 1;

q2i
= 1

⇐⇒

{
q2(n−2)

= 1;

q2i
= 1.

Moreover, we have q2(n−2)
= 1 if and only if either of the following ((5′) or (6′)) is

satisfied:
(5′) r is odd and 2(n − 2) = 4kr , for some k ≥ 1;
(6′) r is even and 2(n − 2) = 2kr , for some k ≥ 1.
Since i is even, we have q2i

= 1 if and only if either of the following ((7′) or (8′)) is
satisfied:
(7′) r is odd and 2i = 4k1r , for some k1 ≥ 1;
(8′) r is even and 2i = 2k1r , for some k1 ≥ 1.
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If (5′) and (7′) are satisfied, then r is odd, n = 2kr + 2 and k1 = 0, 1, . . . , k. So
the number of i such that

rank
(

Di+2
−Ci

)
= 3

is k + 1, and rank(ϕn) = 2n − k − 1.
If (6′) and (8′) are satisfied, then r is even, n = kr + 2 and k1 = 0, 1, . . . , k. So

the number of i such that

rank
(

Di+2
−Ci

)
= 3

is k + 1, and rank(ϕn) = 2n − k − 1.
Otherwise, rank(ϕn) = 4 × (n/2) = 2n. The proof is complete. 2

LEMMA 4.3. Let 3q be the Z2 × Z2-Galois covering of Aq . If q (6=0) is not an rth
(r > 2) primitive root of unity, then for n > 2,

rank(ϕn) =


2n + 2 if n is odd and q (6=0) is not a root of unity;

2n if n is even and q (6=0) is not a root of unity;
3
2 (n + 1) if n is odd and q = ±1;

3
2 n if n is even and q = ±1.

PROOF.
CASE I. Suppose n is odd. If q ( 6=0) is not a root of unity, then q2(n−1)

6= 1
for n > 2, and rank(ϕn) = 2n + 2. If q = ±1, then q2(n−1)

= q2i
= 1, and rank(ϕn)

= (3/2) (n + 1).

CASE II. Suppose n is even. If q ( 6=0) is not a root of unity, then q2(n−2)
6= 1 for

n > 2, and rank(ϕn) = 2n. If q = ±1, then q2(n−2)
= q2i

= 1, and rank(ϕn) = (3/2)n.
This completes the proof. 2

For n = 0, 1, 2, direct computations show that

dimk H H0(3q) = 1;

dimk H H1(3q) = 2;

dimk H H2(3q) =

{
3 if q = ±1, ±

√
−1;

1 if q 6= ±1, ±
√

−1.

THEOREM 4.4. Let 3q be the Z2 × Z2-Galois covering of the quantum exterior
algebra Aq . If q is an rth (r > 2) primitive root of unity, then for n > 2,
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dimk H Hn(3q) =



k + 1 if r is odd and n = 2kr or n = 2kr + 2, for some k ≥ 1,

or r is even and n = kr or n = kr + 2, for some k ≥ 1;

2k + 2 if r is odd and n = 2kr + 1, for some k ≥ 1,

or r is even and n = kr + 1, for some k ≥ 1;

0 otherwise.

PROOF. Note that H Hn(3q) = Ker ϕn+1/Im ϕn by definition, and

dimk H Hn(3q) = dimkKer ϕn+1
− dimkIm ϕn

= dimk Mn
− dimkIm ϕn+1

− dimkIm ϕn

= dimk Mn
− rank ϕn+1

− rank ϕn. (4.1)

The theorem follows from Lemma 4.2. 2

THEOREM 4.5. Let 3q be the Z2 × Z2-Galois covering of the quantum exterior
algebra Aq . If q (6=0) is not an rth (r > 2) primitive root of unity, then for n > 2,

dimk H Hn(3q) =

{
0 if q ( 6=0) is not a root of unity;

n + 1 if q = ±1.

PROOF. By Lemma 4.3,

dimk(ϕ
n) + dimk(ϕ

n+1) = 4n + 4

if q ( 6=0) is not a root of unity; and

dimk(ϕ
n) + dimk(ϕ

n+1) = 3n + 3

if q = ±1. The theorem follows from the formula (4.1) as desired. 2

COROLLARY 4.6. If q ( 6=0) is not an rth (r > 2) primitive root of unity, then the
Hilbert series of the Z2 × Z2-Galois covering of the algebra 3q is

∞∑
n=0

dimk H Hn(3q)tn
=


1

(1 − t)2 if q = ±1;

1 + 2t + t2 if q (6=0) is not a root of unity.

PROOF. This follows from Theorem 4.5 and the fact that
∞∑

n=0

(n + 1)tn
=

1

(1 − t)2 . 2

Theorem 4.5 shows that the Z2 × Z2-Galois covering of the algebra 3q also give a
family of counterexamples to Happel’s question in the case where q (6=0) is not a root
of unity. For completeness, we also consider the degenerate case when q = 0.
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THEOREM 4.7. Let 30 be the Z2 × Z2-Galois covering of A0; then

dimk H Hn(30) =


1 if n = 0;

5 if n = 1;

2n if n ≥ 2 is even;

2n + 2 if n ≥ 2 is odd.

PROOF. Denote the cohomology complex of 30 by (M•

0 , ϕ•

0). We can get

dimk Mn
0 = 4(n + 1);

dimkIm ϕ1
0 = 3;

dimkIm ϕn
0 =

{
2n + 2 if n ≥ 2 is odd;

0 if n ≥ 2 is even.

Thus, we can get this theorem by the formula (4.1). 2

Similar to Corollary 4.6, we have the following result.

COROLLARY 4.8. The Hilbert series of the Z2 × Z2-Galois covering algebra 30 is

∞∑
n=0

dimk H Hn(30)t
n

= 1 + t +
4t (1 + t)

(1 − t2)2 .
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