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Asymptotics and Uniqueness of Travelling
Waves for Non-Monotone Delayed Systems
on 2D Lattices

Zhi-Xian Yu and Ming Mei

Abstract. 'We establish asymptotics and uniqueness (up to translation) of travelling waves for delayed
2D lattice equations with non-monotone birth functions. First, with the help of Ikehara’s Theorem,
the a priori asymptotic behavior of travelling wave is exactly derived. Then, based on the obtained
asymptotic behavior, the uniqueness of the traveling waves is proved. These results complement earlier
results in the literature.

1 Introduction

The discrete growth of mature populations for a single species in a patchy environ-
ment or the dynamic distribution of myelinated axons in nerve systems are usually
described as time-differential lattice equations. The study of the structure of solu-
tions, particularly the travelling wave solutions and the spreading speeds, has become
one of the hot spots of research in this field recently. Chan, Mallet, and Vleck [3]
studied the existence of travelling waves for 2D bistable lattice systems

dw;
Wd’i;(t) = D[ wis1,j(t) + wim1j(t) + Wi je1 (£) + wi j—1 (£) — 4w j(1)] + f(wi (1))

with a bistable birth-rate function f. Later, Cheng, Li, and Wang [8] considered the
delayed 2D lattice system

dw; j
(L. WT;U) = D[ wis1,j(t) + wim1,;(t) + Wi 1 (£) + w; j1(t) — dw; j(1)]

—dwij (1) + Y N BOY@b(Wist jrg(t — 1)),

€7, q€7.

and by applying the method developed in [17,19] for 1D lattice differential equations,
they showed that the spreading speed coincides with the minimal wave speed of the

Received by the editors January 26, 2011; revised May 11, 2011.

Published electronically August 31, 2011.

The research of Z. Yu was supported by the National Natural Science Foundation of China
(No. 11101282. The research of M. Mei was supported in part by Natural Sciences and Engineering Re-
search Council of Canada under the NSERC grant RGPIN 354724-2011.

AMS subject classification: 35K57.

Keywords: 2D lattice systems, traveling waves, asymptotic behavior, uniqueness, nonmonotone non-
linearity.

659

https://doi.org/10.4153/CMB-2011-180-4 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2011-180-4

660 Z.-X.Yu and M. Mei

2D lattice system (1.1) in the case where the birth function b(u) is monotone. In [9],
they further investigated the stability of travelling waves for the system

dw; ;(t)
dt

= D[Wi+17j(t) Fwio1 () +wi () +wi ja1(f) — 4Wi-,j(t)}
— dw; j(t) + b(wij(t — 1))

with monotone birth function b. However, the asymptotics and uniqueness of travel-
ling waves for (1.1) with monotone or non-monotone nonlinearity still remain open
problems. To study these problems is the main purpose of this paper.

Throughout this paper, we define a travelling wave of (1.1) with speed ¢ in di-
rection ¢ to be a nonnegative bounded solution in the form w; ;(t) = ¢(icosf +
jsin @ + ct) satisfying ¢(—oc) = 0 and liminfe_, o ¢(&) > 0. Substituting w; ;(t) =
@(icosf + jsinf + ct) into (1.1), we have the wave profile equation

(1.2)
cd' (&) = D[¢(£ +cos) + ¢ — cosB) + p(£ +sin ) + ¢p(§ — sinf) — 4(;5(5)}
—dp(©)+ > > BV (@b($(E — Icost — gsin — cr)) .

leZ q€l

Clearly, when the wave direction is § = 0 or § = o (1.2) can be reduced to a special
wave profile equation of the 1D lattice system

dw;(t)
(1.3) = D[wi(t) + wi—1(t) — 2w;(t)] — dw;(t)
+3 Bli— Pblwi(t—1), i€,
JEZ
which was widely investigated in [12, 13,15, 17-19].
The uniqueness of monotone travelling waves for various evolution systems has
been established; for example, see [2,5-7, 10, 16, 18] and the references therein. The

proof of uniqueness strongly relies on the monotonicity of travelling waves. It seems
very difficult to extend the techniques in those papers to the non-monotone evo-
lution systems, because the wave profile may lose the monotonicity (sometimes it
is impossible; see, e.g., [14]). Regarding the uniqueness of travelling waves without
preconditions, the corresponding study is very limited, see, e.g., [4, 11, 13]. For the
noncritical waves case, Diekmann and Kaper [11] and Fang et al. [13] studied a
nonlinear convolution equation and equation (1.3), respectively. Since the technique
developed in [11,13] seems hard to extend to solving the uniqueness of critical waves
for (1.1), we need a new approach to treat the lattice equation (1.1) for the criti-
cal waves case. Notice that Carr and Chmaj [4] considered the nonlocal dispersion
equation of Fisher-KPP type

uy— Jxu+u= f(u),
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where Jxu = ﬁm J(x—y)u(y, t)dy is the convolution with a Gaussian-like kernel J(x),
and f(u) is monostable. With the help of the established a priori asymptotic behavior
of the travelling waves and Ikehara’s Tauberian theorem for Laplace transforms, they
proved that all noncritical and critical travelling waves ¢(x + ct) are unique up to a
shift. Inspired by [4], we apply this technique to the 2D discrete system (1.1) and
show that all noncritical and critical travelling waves ¢(i cos 6 + jsin 6 + ct) for the
lattice equations (1.1) are also unique up to translations.

The rest of this paper is organized as follows. In Section 2, the asymptotic behavior
of travelling waves of (1.1) for ¢ > ¢, (0) is derived with the help of Ikehara’s theorem.
In Section 3, the uniqueness of travelling waves is established.

2 Asymptotic Behavior of Travelling Waves

In this section, we show the asymptotic behavior of travelling waves of (1.1) for ¢ >
¢, (0) with the help of Tkehara’s theorem.

Assume that the function b(u) is differentiable at u = 0. Define the characteristic
equation

A(C,/\) =)\ — D(e)\cosﬁ +e—)\cost9 +e)\sin9 +e—)\sin9 _ 4)

— b/(o) Z Z6(l)v(q)ef)\(lcos0+qsin€+cr) + d,

leZ q€l

where ¢ is regarded as a parameter. We make the following assumptions on functions
5,7, and b.

(H1) B() = (=) > 0and y() = (=) > Oforanyl € Z; > ., B() =
quz 7(q) = 1; there exists A* > 0 such that

XO) =)0 By (e

leZ q€l

is convergent when A\ € [0, \*) and lim,_,: xY(\) = +oo, where A\* may be
+00.

(H2) bis continuous from R* to R* with b’(0) > d; there exista > 0, 6 > 0, and
o > 1 such that b(u) > b’(0)u — au’ for all u € [0, ).

(H3) Forall uy,uy > 0, |b(u1) — b(up)| < b'(0)|ug — uyl.

According to (H1), for any ¢ > 0, A(c, ) is well defined on [0, \*). We have the
following lemma, whose proof is similar to that of [8, Lemma 4.2].

Lemma 2.1 Assume that (H1) holds and b’(0) > d. Then, there exist a unique pair
of c.(0) > 0 and A\ > O for any fixed 0 € [0, 5] such that the following assertions
hold.

() Ale(0),X) =0, 28| g\ ). =0.
(ii) Foranyc € (0,c.(0)) and X\ € [0, ), Ale, \) < 0.
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(iii) For any ¢ > ¢,(0), A(c,\) = 0 has two positive roots 0 < A\ < Ay < A,
Moreover, if ¢ > c.(0), Ay < Ay and A(c,\) > 0 for any A € (A, \2); if
c=c,(0), then \{ = Xy = \,.

We recall a version of Ikehara’s Theorem.

Lemma 2.2 ([4]) Let F(\) = 0+Oo u(x)e~Ndx, with u being a positive decreasing

function. Assume that F(\) has the representation

)
FQ\) = Oraft

where k > —1 and h is analytic in the strip —a. < ReA < 0. Then

lim ux)  h(—a)
x3ibo xke—ax N(a+1) '

We now state the asymptotic behavior of the travelling waves for (1.1) as follows.
Theorem 2.3 Assume that (H1) and (H2) hold. Let ¢(icosf + jsinf + ct) be a
travelling wave of (1.1) with ¢(—o0) = 0. Then

. ) . .9 .
lim exists for ¢ > ¢,.(0), lim ——= exists for c = ¢, ().
{——o0 eMié f *( ) {——o0 |f‘€)‘*§ f *( )

Proof First, claim that ¢ is positive. Suppose on the contrary that there exists £, €

R such that ¢(£§;) = 0. Since ¢ is a nonnegative bounded travelling wave with

¢(—00) = 0 and liminfe .00 9(€) > 0, & = sup{& € R[p(&) = 0} is well
defined and ¢ (&) = ¢'(&) = 0. Thus,

0= co’(&)
= D[¢(§0 + cos0) + d(& — cosB) + (& + sinb) + p(&y — sinb) — 4¢(§0)}
—do(&o) + Z Z 5(1)7((1)17((;5(50 —lcosf — gsinf — cr))

€7 q€Z

> Dp(&y + cos ) + Dp(&y + sinf) > 0,

which implies that ¢(§, + cos€) = 0 and ¢(&y + sinf) = 0. This contradicts the
definition of &, for any 6 € [0, 7].

Second, claim that there exists p > 0 such that ¢(¢) = O(e %) as £ — —oc.
Define f(¢)(x) := ¢(€ + cos ) + p(€ — cos 0) + ¢(€ +sinf) + Pp(€ — sin ) — 4¢(€).
Since b'(0) > dand )., B(]) = quz ~v(q) = 1, there exist €y, N7, and N, such
that

A= (1—e)b'(0) Y Y BYg) —d>o.

[<Ny [q| <N,

For such ¢y > 0, there exists g > 0 such that b(u) > (1—€0)b’(0)u for any u € [0, o]
according to (H2). Since ¢(—o0) = 0, there exists M > 0 such that ¢(§) < & for
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any £ < —M. Integrating (1.2) from 7 to £ with £ < —M — N; — N, + cr, it follows
that

(2.1) c[é(§) — o(n)]

13 3
= dy — d d
D /] £(6)(r)dy /n 6()dy

13
+ / 3> BY@b(é(y — Lcosd — gsin 6 — cr))dy

T ez qer

13 13
dy — d d
> D / F(@)(dy /} o(y)dy

3
+ / > > BOV@b(y — Icosf — gsin — cr)dy

TSN <N,

13 3
> D / £ &)y — d / o(y)dy
7] T]

13
FH 01— e) / S Y B @6y — lcosd — gsind — cridy

TSNy |q| <Ny

¢ 13
_p /] F(6)()dy +A /] o)y

13
O [ 3 Y s
"

I|I<Ny |q]<N2

X [¢p(y —lcosO — gsin@ — cr) — ¢(y)]dy.

Since ¢(€) is differentiable, we have

13
/ F(@)(dy
"

§ cos 6 13 — cos @
= / / ¢’(y+7')d7'dy+/ / o' (y + T)drdy
n J0 n Jo

& psind 13 —sin @
+/ / ¢’(y+7')d7'dy+/ / ¢'(y + m)drdy
n J0 n Jo

— cos 0

cos
=/ [¢(€+T)—¢(n+7)]d7+/ [6(¢ +7) — ol + 7)]dr
0 0

sin 6 —sinf
+/ [¢(€+T)—¢(n+7)]d7+/ [6(€ +7) — é(n +7)]dr.
0 0
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Similarly, we know that

3
[ X 3 Bn@oty ~ teost — qsing — cr) — 6()] dy

TSN [q| <N,

- Z Z B()y(q)(Icosf + gsin 6 + cr)

<Ny |q| <N,

1
x/ [¢(§77(lc059+qsin9+cr)) f¢(n77(lcos9+qsin0+cr))]dT.
0

Letting 7 — —o0 in (2.1), we obtain

13
22) A / 6()dy

cos @ —cos @
<ch(©) - D [ / O( + )T + / (€ + 7)dr
0 0

sin 0

—sin6
+ o€+ T)dT + / o€ + 'r)dT]
0

0

FO)1— ) Y > Ay(@licosd +qsind +crlg ($)(E),

[I]<N; |q|<N,
where

1
8.4(d)(€) :/0 ¢(§—T(l€059+qsin€+cr)) dr.

It then follows from (H1) that ffoo ¢(y)dy < +oo. Letting ®(£) = ffoo o(y)dy and
integrating (2.2) from —oo to &, we have

13
A / B(y)dy

— 00

cos 6 — cos 0
< c®(§) — D[/ S(E+T)dT + / O(E+T)dT
0 0

sin 6 —sin@
+ / P+ T)dT + / D&+ T)dT:|
0 0

+b(0)(1—€) > > BUY(g)llcosd +qsind + crlgo(P)(E)

<N [g| <N,
< 0®(§ + k)

for some x > 0 and g > 0 according to the monotonicity of ®(&). Letting w > 0
such that p < Aw, and letting ¢ < —M — N; — N, + cr, it then follows that

1 /¢ 1 /¢ 0
B(E —w) < - / B(y)dy < - / B(y)dy < -2 D€ + 1),
w Je o T J oo Aw

https://doi.org/10.4153/CMB-2011-180-4 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2011-180-4

Asymptotics and Uniqueness of Travelling Waves 665

Kt+w

Define h(¢) = ®(£)e "¢, where p = ——In ATW > 0. Hence,

h(§ — @) = B¢ —m)e "™ < ie”("””“z’)h@ + k) = h(§ + k),
Aw

which implies that & is bounded. Therefore, ®(¢) = O(e”¢) when ¢ — —oo. Inte-
grating (1.2) from —oo to &, it follows from (H3) that

cp(§) = D[@(g +cosf) + P(§ — cos ) + P(E +sinf) + P(E —sinfh) — 4<I>(€)]

3
—d@(f)+[ ZZﬂ(Z)’y(q)b(gﬁ)(f—lcos@—qsin(‘)—cr))

o Ie7 q€l

< f(@)() — dP(E) +b'(0) > Y BDY@®(E — Icosd — qsinf) — cr).

I€Z q€Z
Thus, we prove ¢(£) = O(e”*) when £ — —o0.

By the above argument, for any 0 < ReA < p we can now define the two-sided
Laplace transform of ¢:

L) = [ ély)e Vdy.
R

We claim that L(\) is analytic for any ReA € (0, A;) and has a singularity at A = ;.
Indeed, since

/ef)\yf(d))(y)dy — L()\)(e)\cosﬁ +ef)\cos() +e)\sin9 +ef)\sin9 _ 4)
R

and

c¢'(&) = DF(@)(E) +dp(€) — b'(0) Y > BV(q)$(& — Icost — qsin 6 — cr)

Ie7 q€7
= Z Z BDv(q)[—b'(0)p(£ — Icosf — qsind — cr)
I€7 q€’
+ b(p(€ — Icost — gsinf — cr))}
=: R(9)(&),
we obtain
(2.3) A, VIOV = / e VR)(7)dy.

It is easily seen that the left-hand side of (2.3) is analytic for A € (0,v), where v =
min{p, \*}. According to (H3), for any i > 0, there exists @ > 0 such that b(u)
b'(0)u—au’,Yu € [0, a], where 4 := max{a, 67 max,¢c(s a{b'(0)u—b(u)}}. Thus,

v
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—aY ey quz B)v(q)¢? (€& —1cos@ —qsinh —cr) < R(¢)(€) < 0. Choose vy > 0
such that 2 < pand v + v, < M. Then for any A € (0, v + v;), we have

o—1

‘ / NR(szb)(y)dy‘

< d/ eV Z Z B)y(q)¢° (y — lcosO — gsin@ — cr)dy
> IeZ q€Z

—a Z Z 6(l)v(q)efA(lcos€+q sin O+cr) / e*/\yd)a(y)dy

IeZ q€Z -

. vy o—1

S a Z Z B(Z)V(q)ef)\(lcosﬂ-%—q sin 9+cr)L(>\ _ Vl) (sup d)(g)e—f_i)

1€7, g€l §ER

< +00.

We now use a property of the Laplace transform ([20, p. 58]). Since ¢ > 0, there
exists a real B such that L(\) is analytic for 0 < ReA < B, and L(A) has a singularity
at A = B. Hence for ¢ > ¢.(0), L(\) is analytic for A € (0, ;) and L(\) has a
singularity at A = A;.

We rewrite (2.3) as

0 —\0 0o
/ o) = S ROOB Ai(‘i))w)de - / $(B)e .
—00 ’ 0

Note that fooo #(0)e*d0 is analytic for ReA > 0. Also, A(c, \) = 0 does not have
any solution with ReA = \; other than A = A;. Indeed, let A = A; + i\, then

(2.4)
0=c)\ — D[eA‘ 050 05X cos 0) + e cos(\ cos 0)

+e" 5% cos(Asin ) + e cos(Asin ) — 4]

—b'(0)> ) B)y(gre st asintD cog(N(Icos 6+ qsin 6 + cr)) +d

€7 q€Z
and

(25) 0=ch\— D[eAl 030 sin(A cos 0) — e~ <% sin(\ cos 6)
+ M0 sin(Asin @) — e 5% sin(\ sin 0)]

+b'(0) > By(gle Mo Pasint D sin(} (Icos + qsin 6 +cr)) .

€7, q€7.
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Thus, according to (2.4) and A(c, A;) = 0, we have
0= D[e’\1 001 — cos(Acosh)) +e M1 — cos(\cosh))
+ 01 — cos(Asin0)) + e M Y(1 — cos(\ sin 9))]
+1'(0) Z Z B(I)y(q)e U cosbrasinbeen)
I€7 q€7

X (1 — cos(A\(Icosf + qsinf + cr))) ,
which implies that
(2.6) cos(\ cos @) = cos(Asin0)) = cos(\(Icos 6 + qsinf +cr)) = 1.

Combining (2.5) and (2.6), we obtain A = 0.
Assume that ¢(€) is increasing for large —& > 0. Then we can choose a translation
of ¢ such that it is increasing for & < 0. Letting u(§) = ¢(—¢) and

T(u)(§) := Z Z ﬁ(l)’y(q)[—b’(O)u(E +1lcosf +gsinf + cr)
e + b(u(€ +1cosf + gsinf + cr))] ,

it is clear that u(&) is decreasing £ > 0 and
00 A0 0
Ny S €T (u)(0)do B / N g h(\)
/0 u(0)e’do = —A(c, N u(0)edo = 7(/\ EpWITE
where k = 0 for ¢ > ¢,(0), and k = 1 for ¢ = ¢,(#), and
(A — Akt Ja T (u)(0)do L /0
Ale, \)

By Lemma 2.1, limy_, 5, h(\) exists. Therefore, h(\) is analytic for all 0 < ReA < A;.
Then Lemma 2.2 implies that

— 00

h(\) = u(0)eMdo.

— 00

lim Lﬁ) exists, i.e. lim & exists
oo Eke=MiE ’ Y S |€|ke)\1f ’
that is,
lim @ exists for ¢ > ¢, (0), lim (&) exists for ¢ = ¢, ().
{——o0 eMié {——o0 |§|€/\*£

4D+d

Now we assume that ¢(§) is not monotone for large —§ > 0. Letting p = ==

and ¢(&) = ¢(£)ePs > 0, it follows that
c§'(€) = D[ (& + cos B)e " + §(& — cos B "
+G(€ +sin0)e P50 + G(& — sin@)er "]
+(cp — 4D — d)$(&)
+> > BOY@b($(E —Icosd —gsin — cr)ef®,

I€Z q€Z
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which implies that $’(§) > 0 for any £ € R. Letting u(§) = $(—§), it is obvious
that u(¢) is decreasing on £ > 0. Let f()\) = ffooo e Np(&)de. Noting that f()\) =
L(X — p) and repeating the above argument, we have

im O 9

Y — m
£ +00 fke*(P"')\l)f ¢——o00 |£‘ke/\1£

Thus, it follows that

52‘3100 i(\i) exists for ¢ > ¢, (6), ﬁiil;noo |§|$\th exists for ¢ = ¢, ().
This completes the proof. ]

3 Uniqueness of Travelling Waves

In this section, we investigate the uniqueness of travelling waves for (1.1).

Theorem 3.1 Assume that (H1)-(H3) hold and the functions 3 and ~y are compact
supported. For any given 6 € [0, 31, let ¢, 1) be two travelling waves of (1.1) with
direction 0 and speed ¢ > ¢, (0). Then ¢ is a translation of 1; more precisely, there exists

€ € R such that (&) = (& +£).

Proof Let ¢, v be two travelling waves for ¢ > c¢.(#). According to Theorem 2.3,
there exist some positive numbers #; and 6, such that

im o(8) =wk and lim vie) =k
e—oo [¢[keME T gm—oo [EfkeME T T

where k = 0 for ¢ > ¢,.(0), and k = 1 for ¢ = ¢, (). For € > 0, define

w(g) = M_A—W for ¢ > c.(6),
e 1
AO) —P(E+E)

W((g) = (€|§| n 1)e/\*£

for c¢=c.(60),

where £ = /\—ll In ‘:—E Then w(£o0) = 0 and w.(d+o00) = 0.

First, we consider ¢ > c¢,(f). Since w(§) is continuous and w(d+occ) = 0,
supecp{w(§)} and infeer{w(§)} are finite. Without loss of generality, we assume
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supecp{w(§)} > |infeer{w(§)}| (otherwise, we may take w(¢) := W). If
w(&) # 0, there exists &, such that

w(&o) = max{w(§)} = sup{w(§)} >0 and w'(&) = 0.
¢ER ¢eR

We claim that w(§y & cos ) = w(§) for any 6 € [0, 7]. If this does not hold, either
w(&o +cosbly) < w(&o) or w(&o — cos ) < w(&o) for some 6 € [0, 5]. According to
(1.2) and (H3), we have

0=cw' (&) = —caw(&) + D[W(fo +cosbp)e™ % 4 w(gy — cosfy)e M costo
+ w(&o + sin Bp)e™ % + w(&y — sin Bp)e ™ P — 4w(&y)]

—dw(&) + >3 B0 [b(¢(go — Icosfy — qsin 6 — cr))

leZ q€l
_ b(w(&) + E — lcos 90 — qsin 90 — CT))] e—/\lfo
< W(go) [—C)\l +D(e)\1 cos bty + e*)\l cos Oy + e/\l sin 0y + 67)\1 sinfy 4)

—d+ b/(o) Z Z ﬁ(l)’}/(q)e_/\l(lcos Bo+q sin 00+cr)}
leZ q€l

= —w(&)Alc, A1) =0,

which is a contradiction. Again by bootstrapping, w(§o £ jcost) = w(&) for all
j € Zand 6 € [0,Z], and since w(+00) = 0, we get ¢(§) = P(E + &) for € € R,

7
which contradicts w(§) # 0.

Next, we consider ¢ = ¢, (). Similarly to the above argument, we assume that
sup{w, > | inf {w, .
sup(w (O} = | inf(w(6))
If we(€) # 0, there exists £ such that

W (&) = max{w ()} = sup{w.(§)} >0 and w/(&) =0.
€eR ceR

We first suppose that £§ — oo as € — 0. Choose € > 0 sufficiently small such that

&6 > max{sup{;j: j € supp B(j)},sup{j: j € suppy(j)}} + max{1,c.(6)r}.

Note that

O (E5) — ' (€5 + &) = WL(E (€€ + 1)eM + w (£5)ee™ S + w, (€5)(e€§ + 1) A5,
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Thus, we get

(3.1) e (O)IWe(Ee + e (O)AMwe () (&5 + 1)
< D{w(& + cos 0) (&5 + cos ) + 1] <
+we (€5 — cos 0)[e(&5 — cos 0) + 1]e* ?
+ We(&5 + sin 0) [e(& + sin 0) + 1] 7
+ We(£5 — sin 0)[e(&§ — sin ) + 1]e~ "
— 4w (E) (€5 + 1)} — dw (£5)(e€5 + 1)
0SS B @)w(& — Lcosb — gsin — c.(6)r)] x

€7 q€Z

[5(56 —lcosO — qsine _ C*(Q)T’) + l]e—)\*(lcosH+qsin0+c*(9)r).
It follows from (3.1) and Lemma 2.1(i) that for any 6 € [0, ],
Ws(fg) = We(fé =+ cos 0)

Indeed, assume w,(£;) > we(&§ + cosby) or we(&5) > we(&§ — cosby) for some
th € [0, 5], then

ci(Bo)e + c.(Bo) A (e + 1)

< D{ [6(56 +cosfy) + 1] e)\* cos By + [6(55 — cosfy) + 1] 67)‘* cos g
+ [e(gg +sinfy) + 1} Pesinbo | [e(gg —sinfy) + 1] o~ Nesinfy _ A(e€s + 1)}

—d(e&5+1)+b'(0) > Y BY(g) [e(& — Lcos by — qsin by — c.(Bo)r) + 1]
€7 q€Z
% e—/\*(lcos90+qsin00+c*(90)r)

)

which implies that

ce(00) < D(e™ % cos Oy — e % cos 0y + & 5% sin ) — e % sin )

—b'(0) Z Z By (g)e A+ cosborasinbore. (60 (] co5 0, + gsin by + ¢, (6o)r).
€7 q€Z

This contradicts Mé;"” le=c.®.2=r. = 0. Repeating the above arguments, we have

We(&5) = we(&§ £ jcosf) for j € Zand 0 € [0, %], which implies that w, is a
constant. Since w.(+00) = 0, we get ¢(§) = Y(€ + &) for £ € R. This contradicts
we(§) #0.
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Next we assume £§ — —oo as € — 0, then w.(£]) — 0, as ¢ — 0. Since

_M*A—M forall ¢ € R,
w

(3.2) 11_133) we(&) = wo(§) =

and we(x) < we(&f), we have wy(€) < 0 for all £ € R. Note that w(£5) > 0 implies
B(E5) — (&5 + €) > 0 .and hence wy(£5) > 0, which gives a contradiction.

Last we assume that {£§} is bounded, then we can take a subsequence £§ — &;
as € — 0 for some finite £;. From uniform convergence of w, to w on compact
sets, we(&) — w(&) as € = 0, where wp(€) is defined by (3.2). Thus, we(§) =
lim._o we (&) < lime_yo we () = wo(&;) forall € € Rand wy(&;) > 0. This is similar
to the argument in the case ¢ > c.(#), and we can also get wy(£) = 0; that is, we have
d(€) = P(€ + €) for € € R. This completes the proof. [ |
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