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On meromorphic solutions of certain par-
tial differential equations
Feng Lü

Abstract. In this paper, we describe meromorphic solutions of certain partial differential equations,
which are originated from the algebraic equation 𝑃 ( 𝑓 , 𝑔) = 0, where 𝑃 is a polynomial on C2. As
an application, with the theorem of Coman-Poletsky, we give a proof of the classic theorem: Every
meromorphic solution 𝑢(𝑠) on C of 𝑃 (𝑢, 𝑢′ ) = 0 belongs to𝑊 , which is the class of meromorphic
functions onC that consists of elliptic functions, rational functions and functions of the form𝑅 (𝑒𝑎𝑠 ) ,
where 𝑅 is rational and 𝑎 ∈ C. In addition, we consider the factorization of meromorphic solutions
on C𝑛 of some well-known PDEs, such as Inviscid Burgers’ equation, Riccati equation, Malmquist-
Yosida equation, PDEs of Fermat type.

1 The meromorphic solutions of some PDEs

In this section, we consider meromorphic solution ℎ(𝑧) = ℎ(𝑧1, ..., 𝑧𝑛) of the following
partial differential equation

ℎ𝑧1 = 𝑅1 [𝜙1 (ℎ) + 𝑅2𝜙2 (ℎ)], (1.1)

where 𝑅1 (. 0), 𝑅2 are two rational functions on C𝑛, 𝜙1 and 𝜙2 are two meromorphic
functions on C. This PDE is originated from the algebraic equation 𝑃( 𝑓 , 𝑔) = 0, where
𝑃 is a polynomial on C2. Let 𝑃 be an irreducible polynomial mapping from C2 to a
plane algebraic curve𝐶 in C2. Then a theorem of Picard in [11] says that if the genus of
the Riemann surface associated with the closure of𝐶 in P2 is bigger than one, then any
such map is constant. One version of the Uniformization Theorem in [10] shows that
the curve 𝐶 of genus 𝑔 can be parameterized by (i) rational functions if 𝑔 = 0, and (ii)
by elliptic functions if 𝑔 = 1. In 2008, Coman-Poletsky [6, Theorem 5.2] obtained the
following theorem.

Theorem A. Two meromorphic functions 𝑓 and 𝑔 on C𝑛 satisfy 𝑃( 𝑓 , 𝑔) = 0, where 𝑃
is a polynomial on C2, if and only if one of the following holds:

(i) There exists a meromorphic function ℎ on C𝑛 and rational functions 𝑅1, 𝑅2 on C
so that 𝑓 = 𝑅1 (ℎ) and 𝑔 = 𝑅2 (ℎ).

(ii) There exists an entire function ℎ on C𝑛, and elliptic functions 𝜙1, 𝜙2 with the
same periods, so that 𝑓 = 𝜙1 (ℎ), 𝑔 = 𝜙2 (ℎ).

2020 Mathematics Subject Classification: 32A20, 35F20, 32A22, 30D30.
Keywords: Meromorphic solution, Factorization, Partial differential equations, Pseudo-prime.

2025/03/14 04:53

This is a ``preproof'' accepted article for Canadian Mathematical Bulletin
This version may be subject to change during the production process.
DOI: 10.4153/S0008439525000347

https://doi.org/10.4153/S0008439525000347 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439525000347


2 F. Lü

We assume that 𝑓 = 𝑢
𝑃1

and 𝑔 =
𝑢𝑧1
𝑃2

in equation𝑃( 𝑓 , 𝑔) = 0,where𝑢 = 𝑢(𝑧1, ..., 𝑧𝑛)
is a meromophic function on C𝑛, 𝑃1 (. 0) and 𝑃2 (. 0) are two rational functions on
C𝑛. Then,

𝑃

(
𝑢

𝑃1
,
𝑢𝑧1

𝑃2

)
= 0. (1.2)

Due to Theorem A, one gets that
𝑢

𝑃1
= 𝑓1 (ℎ),

𝑢𝑧1

𝑃2
= 𝑓2 (ℎ),

where 𝑓1, 𝑓2 and ℎ satisfy the conclusion of Theorem A. Suppose that 𝑓1 . 0. Then,
𝑢 = 𝑃1 𝑓1 (ℎ), 𝑢𝑧1 = 𝑃2 𝑓2 (ℎ) and

ℎ𝑧1 =
𝑃2 𝑓2 (ℎ) − 𝜕𝑃1

𝜕𝑧1
𝑓1 (ℎ)

𝑃1 𝑓
′
1 (ℎ)

= 𝑅1 [𝜙1 (ℎ) + 𝑅2𝜙2 (ℎ)], (1.3)

where 𝑅1 =
𝑃2
𝑃1
(. 0), 𝑅2 = − 𝜕𝑃1

𝜕𝑧1
1
𝑃2

are two rational functions on C𝑛, 𝜙1 =
𝑓2
𝑓 ′1
and

𝜙2 =
𝑓1
𝑓 ′1
are meromorphic functions on C. By Theorem A, one gets that both 𝜙1 and 𝜙2

are rational functions or elliptic functions. Therefore, (1.3) is a special case of (1.1).

Now, we consider the equation (1.1). For two functions 𝑓 , 𝑔 on C, we define a set
𝐸 ( 𝑓 , 𝑔) as 𝐸 ( 𝑓 , 𝑔) = {𝑧 ∈ C : 𝑓 (𝑧) = 𝑔(𝑧) = 0}. And ♯𝐸 ( 𝑓 , 𝑔) is the number of
elements in 𝐸 ( 𝑓 , 𝑔). More specifically, we obtain that

Theorem 1. Suppose that ℎ is a nonconstant meromorphic solution on C𝑛 of (1.1).

(1) If ♯𝐸 (𝜙1 − 𝑎, 𝜙2 − 𝑏) ≥ 5 for two constants 𝑎, 𝑏 ∈ C, then ℎ𝑧1 is a rational
function; In particularly, if ♯𝐸 (𝜙1 − 𝑎, 𝜙2 − 𝑏) = ∞, then ℎ𝑧1 = 𝑅1 [𝑎 + 𝑅2𝑏].

(2) If 𝜙2 is a rational function on C, then 𝜙1 is also a rational function on C.
Furthermore, if ℎ is transcendental, then

ℎ𝑧1 = 𝐵0ℎ
2 + 𝐵1ℎ + 𝐵2, (1.4)

where 𝐵𝑖 (𝑖 = 0, 1, 2) is a rational function on C𝑛.

Remark 1. If ℎ is an entire function in (1) of Theorem 1, then the condition
♯𝐸 (𝜙1 − 𝑎, 𝜙2 − 𝑏) ≥ 5 can be weakened to ♯𝐸 (𝜙1 − 𝑎, 𝜙2 − 𝑏) ≥ 3. Meanwhile, ℎ𝑧1
reduces to a polynomial on C𝑛.

Remark 2. If 𝜙2 is a transcendental meromorphic function and 𝜙1 is a rational
function on C, then the same argument as in the proof of (2) yields that 𝑅2 = 0. Fur-
thermore, if ℎ is transcendental, then (1.4) also holds. Unfortunately, for the case that
both 𝜙1 and 𝜙2 are transcendental meromorphic functions on C the method in the
proof of Theorem 1 does not work. We leave this case for further study.

From Theorem 1, we prove the following result.
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On meromorphic solutions 3

Corollary 1. Suppose that ℎ is a nonconstant meromorphic solution of (1.1). If 𝜙1 and
𝜙2 are two nonconstant meromorphic periodic functions onCwith the same periods 𝜏.
Then, 𝑅2 reduces to a constant 𝐴, 𝜙1 + 𝐴𝜙2 also reduces a constant 𝐶 , and ℎ𝑧1 = 𝐶𝑅1
is a rational function on C𝑛.

Below, we turn attention to meromorphic solutions of (1.2). By combining Theorem
1 and Corollary 1, we immediately get the following result.

Corollary 2. Suppose that 𝑢 is a nonconstant meromorphic solution of (1.2). Then, 𝑢
can be written as 𝑢 = 𝑃1 𝑓 (ℎ), where 𝑓 and ℎ satisfy one of the following assertions.

(i) 𝑓 is an elliptic function onC, ℎ is an entire function and ℎ𝑧1 is a polynomial onC𝑛;

(ii) 𝑓 is a rational function on C, ℎ is a meromorphic function on C𝑛, and ℎ𝑧1 is a
rational function or ℎ𝑧1 satisfies the following equation

ℎ𝑧1 = 𝐵0ℎ
2 + 𝐵1ℎ + 𝐵2, (1.5)

where 𝐵𝑖 (𝑖 = 0, 1, 2) is a rational function on C𝑛.

Remark 3. In [30], Saleeby described meromorphic solutions of 𝑃(𝑢, 𝑢𝑧1 ) = 0,
where 𝑃 is a polynomial on C2. Meanwhile, Saleeby gave an outline of an algorithm for
finding meromorphic solutions of 𝑃(𝑢, 𝑢𝑧1 ) = 0 of genus 0. Some ideas of our theo-
rems are based on Saleeby’s results. And some related results can be found in [22, 23, 24].

Remark 4. It should be emphasized that if 𝑃1 and 𝑃2 are constants in (1.2), then
the coefficient 𝐵𝑖 (𝑖 = 0, 1, 2) of (1.5) in (ii) of Corollary 2 reduces to a constant. In
[30], Saleeby obtained the forms of meromorphic solutions on C2 to (1.5) when 𝐵𝑖 is a
constant.

Below, we give an application of the above results. Let us denote by𝑊 the class of
meromorphic functions on C that consists of elliptic functions, rational functions and
functions of the form 𝑅(𝑒𝑎𝑠), where 𝑅 is rational and 𝑎 ∈ C. Consider a Briot-Bouquet
differential equation

𝑃(𝑢, 𝑢′) = 0, (1.6)

where 𝑃 is a polynomial on C2. We state the following result, which can be found in [8].

Theorem B. Every meromorphic solution 𝑢 = 𝑢(𝑠) on C of (1.6) belongs to𝑊 .

In [8], it says that Theorem B was known to Abel and Liouville, but probably it was
stated for the first time in the work of Briot and Bouquet in [3, 4]. Some further studies
which are related with Theorem B can be found in [7, 8, 15, 16, 17]. Below, due to the
theorem of Coman-Poletsky(Theorem A), Corollary 2 and Remark 4, we offer a proof
of Theorem B.
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4 F. Lü

Proof of TheoremB. Suppose that 𝑢(𝑠) is transcendental. FromCorollary 2, Theorem
A and Remark 4, we get that 𝑢 = 𝑓 (ℎ), 𝑢′ = 𝑔(ℎ), where 𝑓 , 𝑔, ℎ are three functions on
C which satisfy one of the following assertions.

(1) 𝑓 , 𝑔 are two elliptic functions with the same periods and ℎ′ is a polynomial;

(2) 𝑓 , 𝑔 are two rational functions, ℎ is a transcendental meromorphic function and
satisfies the following equation

ℎ′ = 𝐵0ℎ
2 + 𝐵1ℎ + 𝐵2, (1.7)

where 𝐵𝑖 (𝑖 = 0, 1, 2) is a constant.

We firstly consider (1). It is easy to get ℎ′ =
𝑔 (ℎ)
𝑓 ′ (ℎ) = 𝛼(ℎ), where 𝛼 =

𝑔

𝑓 ′ is also
an elliptic function. Note that ℎ′ is a polynomial. Therefore, 𝛼 is a constant and ℎ is a
linear function, which implies that 𝑢 = 𝑓 (ℎ) is also an elliptic function, so 𝑢 ∈ 𝑊 .

Next, we deal with (2). Suppose 𝐵0 = 0. Solve the differential equation ℎ′ = 𝐵1ℎ+𝐵0
yields that ℎ(𝑠) = 𝐴𝑒𝐵1𝑠 + 𝐵, where 𝐴(≠ 0), 𝐵 are constants. Then 𝑢 = 𝑓 (ℎ) ∈ 𝑊 ,
since 𝑓 is a rational function.

Below, assume that 𝐵0 ≠ 0. Rewrite (1.7) as

ℎ′ = 𝐵0 (ℎ − 𝑎) (ℎ − 𝑏) (1.8)

where 𝑎, 𝑏 are two constants. It is easy to see that 𝑎 and 𝑏 are Picard exceptional values
of ℎ. Suppose that 𝑎 = 𝑏. Solve the differential equation (1.8) leads to ℎ(𝑠) = 𝑎− 1

𝐵0𝑠+𝐶 ,
where𝐶 is a constant. So, 𝑢 = 𝑓 (ℎ) is a rational function, a contradiction. Thus, 𝑎 ≠ 𝑏.
By the fact that 𝑎 and 𝑏 are Picard exceptional values of ℎ, we can set ℎ−𝑎

ℎ−𝑏 = 𝑒𝛾 , where
𝛾 is an entire function. Rewrite it as

ℎ =
𝑏𝑒𝛾 − 𝑎
𝑒𝛾 − 1

. (1.9)

Substitute (1.9) into (1.8) yields that 𝛾′ = −𝐵0 (𝑏 − 𝑎) is a constant. So, 𝛾 is a linear
function, which together with (1.9) implies that 𝑢 ∈ 𝑊 .

Thus, we finish the proof of Theorem B.

Before the proofs of main results, we assume that the reader is familiarity with the
basic notations of Nevanlinna theory, and we utilize four results of a meromorphic
function 𝑓 on C𝑛 (see e.g., [33, 34]).

(a). The Nevanlinna second fundamental theorem

(𝑞 − 2)𝑇 (𝑟, 𝑓 ) ≤
𝑞∑︁
𝑗=1

𝑁 (𝑟, 1
𝑓 − 𝜔 𝑗

) + 𝑆(𝑟, 𝑓 )
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On meromorphic solutions 5

for any 𝑞 distinct complex numbers 𝜔1, · · · , 𝜔𝑞 ∈ C ∪ {∞}, where 𝑆(𝑟, 𝑓 ) denotes
any quantity satisfying that 𝑆(𝑟, 𝑓 ) = 𝑜{𝑇 (𝑟, 𝑓 )} as 𝑟 → ∞ outside a set of 𝑟 of finite
Lebesgue measure.

(b). Suppose that 𝑓 and 𝑔 are two meromorphic functions on C𝑛. Then, 𝑇 (𝑟, 1
𝑓
) =

𝑇 (𝑟, 𝑓 )+𝑂 (1),𝑇 (𝑟, 𝑓 𝑔) ≤ 𝑇 (𝑟, 𝑓 )+𝑇 (𝑟, 𝑔) and𝑇 (𝑟, 𝑓 +𝑔) ≤ 𝑇 (𝑟, 𝑓 )+𝑇 (𝑟, 𝑔)+𝑂 (1).
(c). Suppose that 𝑎 is a rational function on C𝑛, 𝑓 is a transcendental meromorphic

function on C𝑛. Then, 𝑇 (𝑟, 𝑎) = 𝑆(𝑟, 𝑓 ).
(d). The logarithmic derivative lemma 𝑚(𝑟,

𝑓𝑧 𝑗

𝑓
) = 𝑆(𝑟, 𝑓 ), 𝑗 = 1, ..., 𝑛.

2 Proofs of the Theorem 1 and Corollary 1

ProofofTheorem1.Wefirstly consider the case (1). Assume that 𝑧0 ∈ 𝐸 (𝜙1−𝑎, 𝜙2−𝑏).
Then, 𝜙1 (𝑧0) = 𝑎 and 𝜙2 (𝑧0) = 𝑏. If ℎ(𝛼) = 𝑧0, then, substituting𝛼 into (1.1) yields that

ℎ𝑧1 (𝛼) = 𝑅1 (𝛼) [𝜙1 (ℎ(𝛼)) + 𝑅2 (𝛼)𝜙2 (ℎ(𝛼))] = 𝑅1 (𝛼) [𝜙1 (𝑧0) + 𝑅2 (𝛼)𝜙2 (𝑧0)]
= 𝑅1 (𝛼) [𝑎 + 𝑅2 (𝛼)𝑏],

(2.1)
which implies that 𝛼 is a zero of ℎ𝑧1 −𝑅1 [𝑎+𝑅2𝑏]. For each 𝑧0 ∈ 𝐸 (𝜙1−𝑎, 𝜙2−𝑏), the
above discussion shows that all the zeros of ℎ−𝑧0 are zeros of ℎ𝑧1−𝑅1 [𝑎+𝑅2𝑏]. Suppose
that ℎ𝑧1 is transcendental. Then, ℎ𝑧1 − 𝑅1 [𝑎 + 𝑅2𝑏] . 0. Obviously, ℎ is transcendental
and 𝑇 (𝑟, 𝑅1 [𝑎 + 𝑅2𝑏]) = 𝑆(𝑟, ℎ). Suppose that 𝑞 = ♯𝐸 (𝜙1 − 𝑎, 𝜙2 − 𝑏) ≥ 5. Observe
that all the poles of ℎ𝑧1 are poles of ℎ and ℎ𝑧1 just has multiple poles. Suppose that 𝛽 is
a pole of ℎ𝑧1 with multiplicity 𝑚. Then 𝑚 ≥ 2 and 𝛽 is a pole of ℎ with multiplicity at
least𝑚 − 1. So, 𝑁 (𝑟, ℎ𝑧1 ) ≤ 2𝑁 (𝑟, ℎ). Together with the second fundamental theorem,
one obtains that

(𝑞 − 2)𝑇 (𝑟, ℎ) ≤
∑︁

𝑧0∈𝐸 (𝜙1−𝑎,𝜙2−𝑏)
𝑁 (𝑟, 1

ℎ − 𝑧0
) + 𝑆(𝑟, ℎ)

≤ 𝑁 (𝑟, 1
ℎ𝑧1 − 𝑅1 [𝑎 + 𝑅2𝑏]

) + 𝑆(𝑟, ℎ) ≤ 𝑇 (𝑟, ℎ𝑧1 − 𝑅1 [𝑎 + 𝑅2𝑏]) + 𝑆(𝑟, ℎ)

≤ 𝑇 (𝑟, ℎ𝑧1 ) + 𝑆(𝑟, ℎ) = 𝑚(𝑟, ℎ𝑧1 ) + 𝑁 (𝑟, ℎ𝑧1 ) + 𝑆(𝑟, ℎ)

≤ 𝑚(𝑟,
ℎ𝑧1

ℎ
) + 𝑚(𝑟, ℎ) + 2𝑁 (𝑟, ℎ) + 𝑆(𝑟, ℎ) ≤ 2𝑇 (𝑟, ℎ) + 𝑆(𝑟, ℎ),

(2.2)
which is a contradiction since 𝑞 ≥ 5. Therefore, ℎ𝑧1 must be a rational function.

In particularly, suppose 𝑞 = ♯𝐸 (𝜙1−𝑎, 𝜙2−𝑏) = ∞. Observe that ℎ𝑧1−𝑅1 [𝑎+𝑅2𝑏]
is a rational function. Without loss of generality, we assume that

𝑇 (𝑟, ℎ𝑧1 − 𝑅1 [𝑎 + 𝑅2𝑏]) ≤ 𝐴 log 𝑟, 𝑎𝑠 𝑟 → ∞, (2.3)

where 𝐴 is a positive constant. For each 𝑧0 ∈ 𝐸 (𝜙1 − 𝑎, 𝜙2 − 𝑏), the above discussion
shows that all the zeros of ℎ−𝑧0 are the zeros of ℎ𝑧1−𝑅1 [𝑎+𝑅2𝑏]. If ℎ𝑧1−𝑅1 [𝑎+𝑅2𝑏] .
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6 F. Lü

0, then,

𝑇 (𝑟, ℎ𝑧1−𝑅1 [𝑎 + 𝑅2𝑏]) ≥ 𝑁 (𝑟, 1
ℎ𝑧1 − 𝑅1 [𝑎 + 𝑅2𝑏]

)

≥
∑︁

𝑧0∈𝐸 (𝜙1−𝑎,𝜙2−𝑏)
𝑁 (𝑟, 1

ℎ − 𝑧0
) ≥ (𝐴 + 1) log 𝑟, 𝑎𝑠 𝑟 → ∞,

since 𝑞 = ♯𝐸 (𝜙1 − 𝑎, 𝜙2 − 𝑏) = ∞. This contradicts (2.3). Therefore, one gets that

ℎ𝑧1 − 𝑅1 [𝑎 + 𝑅2𝑏] = 0. (2.4)

Below, we consider case (2). Rewrite (1.1) as
1
𝑅1
ℎ𝑧1 − 𝑅2𝜙2 (ℎ) = 𝜙1 (ℎ). (2.5)

On the contrary, suppose that 𝜙1 is a transcendental function. Note that 𝜙2 is a rational
function. It follows from (2.5) that ℎ is transcendental. By [5, Theorem 4.1], we have

lim
𝑟→∞

𝑇 (𝑟, 𝜙1 (ℎ))
𝑇 (𝑟, ℎ) = ∞. (2.6)

Suppose that deg 𝜙2 = 𝑑. Then, (2.5) yields that

𝑇 (𝑟, 𝜙1 (ℎ)) = 𝑇 (𝑟,
1
𝑅1
ℎ𝑧1 − 𝑅2𝜙2 (ℎ))

≤ 𝑇 (𝑟, 𝑅1) + 𝑇 (𝑟, 𝑅2) + 𝑇 (𝑟, ℎ𝑧1 ) + 𝑇 (𝑟, 𝜙2 (ℎ)) +𝑂 (1)
≤ 𝑇 (𝑟, ℎ𝑧1 ) + 𝑇 (𝑟, 𝜙2 (ℎ)) +𝑂 (log 𝑟)
= 𝑚(𝑟, ℎ𝑧1 ) + 𝑁 (𝑟, ℎ𝑧1 ) + 𝑑𝑇 (𝑟, ℎ) + 𝑆(𝑟, ℎ)

≤ 𝑚(𝑟,
ℎ𝑧1

ℎ
) + 𝑚(𝑟, ℎ) + 2𝑁 (𝑟, ℎ) + 𝑑𝑇 (𝑟, ℎ) + 𝑆(𝑟, ℎ)

≤ (𝑑 + 2)𝑇 (𝑟, ℎ) + 𝑆(𝑟, ℎ) = 𝑂 (𝑇 (𝑟, ℎ)),

which contradicts (2.6). Thus, 𝜙1 is also a rational function.

Note that 𝜙1 and 𝜙2 are rational functions. We rewrite (1.1) as

ℎ𝑧1 = 𝑅1𝜙1 (ℎ) + 𝑅1𝑅2𝜙2 (ℎ) = 𝑅(ℎ), (2.7)

where 𝑅(ℎ) is a rational function in ℎ, whose coefficients are rational functions. If ℎ
is transcendental, then, either [30, Proposition 1] or [32, Corollary 3] yields that (2.7)
becomes the following equation

ℎ𝑧1 = 𝐵0ℎ
2 + 𝐵1ℎ + 𝐵2,

where 𝐵𝑖 (𝑖 = 0, 1, 2) is a rational function on C𝑛.

This finishes the proof of Theorem 1.

Proof of Corollary 1.We know that 𝜙1 and 𝜙2 are two nonconstant periodic functions
on Cwith the same period. Suppose that 𝑧0 ∈ C is not a pole of 𝜙1 and 𝜙2. And assume
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that 𝜙1 (𝑧0) = 𝑎 and 𝜙2 (𝑧0) = 𝑏. Then ♯𝐸 (𝜙1 − 𝑎, 𝜙2 − 𝑏) = ∞. It follows from (1) of
Theorem 1 that

ℎ𝑧1 − 𝑅1 [𝑎 + 𝑅2𝑏] = 0. (2.8)
Because 𝜙2 is nonconstant, there must exist a point 𝑡0 such that 𝜙2 (𝑡0) = 𝑑 ≠ 𝑏 and
𝜙1 (𝑡0) = 𝑐 ≠ ∞. Then ♯𝐸 (𝜙1−𝑐, 𝜙2−𝑑) = ∞. The same argument as above yields that

ℎ𝑧1 − 𝑅1 [𝑐 + 𝑅2𝑑] = 0. (2.9)

Combining (2.8) and (2.9) leads to that 𝑅2 = 𝑐−𝑎
𝑏−𝑑 = 𝐴, a constant. Rewrite (1.1) as

ℎ𝑧1 = 𝑅1 [𝜙1 (ℎ) + 𝐴𝜙2 (ℎ)] = 𝑅1𝜙3 (ℎ), (2.10)

where 𝜙3 = 𝜙1 + 𝐴𝜙2 is also a periodic function. Furthermore, 𝜙3 is a constant.
Otherwise, the left side of (2.10) is a rational function and the right side of (2.10)
is a transcendental meromorphic function, which is impossible. Let 𝜙3 = 𝐶 . Then,
ℎ𝑧1 = 𝐶𝑅1.

This finishes the proof of Corollary 1.

3 The factorization of meromorphic functions on C𝑛

In this section, we turn attention to the factorization of meromorphic solutions of some
certain PDEs. If ℎ = 𝑓 (𝑔) is a meromorphic function on C𝑛, where 𝑔 : C𝑛 → C is an
entire function and 𝑓 : C → P = C ∪ {∞} is a meromorphic function, then ℎ is said
to have a factorization with right factor 𝑔 and left factor 𝑓 (𝑔 may be a meromorphic
function on C𝑛 when 𝑓 is a rational function from C to P). A meromorphic function ℎ
is said to be prime if every such factorization implies that either 𝑓 or 𝑔 is linear. Fur-
thermore, ℎ is said to be pseudo-prime if every factorization of the above form implies
that either 𝑓 is a rational function or 𝑔 is a polynomial.

The first prime function 𝑒𝑠 + 𝑠 on C was introduced by Rosenbloom in [27]. Some
further results on the factorization of meromorphic functions on C can be found in
[12, 13, 26]. Observe that 𝑒𝑠 + 𝑠 is a solution of the following equation

𝑓 (𝑛) (𝑠) + 𝑎𝑛−1 (𝑠) 𝑓 (𝑛−1) (𝑠) + · · · + 𝑎0 (𝑠) 𝑓 (𝑠) = 𝑎(𝑠), (3.1)

where 𝑎(𝑠), 𝑎0 (𝑠), · · · , 𝑎𝑛−1 (𝑠) are rational functions on C. Therefore, it is natural to
consider the primeness or pseudo-primeness of meromorphic solutions of (3.1). It is
pointed out that the meromorphic solutions of (3.1) maybe not prime. Steinmetz in
[33] proved that any meromorphic solution on C of (3.1) is pseudo-prime. Later on,
Chang-Li-Yang generalized this result from one variable to several variables as follows.

Theorem C. Let 𝑚 be a positive integer and

𝐷 (𝑚)𝐹 (𝑧) + 𝐴𝑚 (𝑧)𝐷 (𝑚−1)𝐹 (𝑧) + · · · + 𝐴1 (𝑧)𝐹 (𝑧) + 𝐴0 (𝑧) = 0

be a differential equation, where the coefficients 𝐴 𝑗 (𝑧), 0 ≤ 𝑗 ≤ 𝑚, 𝑧 = (𝑧1, ..., 𝑧𝑛),
are rational functions in C𝑛 and the operator 𝐷 (𝑙) = 𝜕𝑙1+···+𝑙𝑛

𝜕𝑧
𝑙1
1 · · ·𝜕𝑧𝑙𝑛𝑛

, 𝑙 = 𝑙1 + · · · 𝑙𝑛, (1 ≤
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𝑙 ≤ 𝑚). Then any meromorphic solution 𝐹 (𝑧) of finite order must be pseudo-prime
provided that 𝐹 (𝑧) is not a constant along each 𝑧 𝑗-axis (1 ≤ 𝑗 ≤ 𝑛).

Here, for a meromorphic function 𝑓 on C𝑛, the order of 𝑓 is defined as

𝜌( 𝑓 ) = lim sup
𝑟→∞

log𝑇 (𝑟, 𝑓 )
log 𝑟

.

If 𝜌( 𝑓 ) is finite (respectively infinite), then 𝑓 is of finite order (respectively infinite
order).

In [5], Chang-Li-Yang offered an example to show that in contrast to the case of one
complex variable, the condition “finite order” in Theorem C can not be dropped.

Below, we continue to study the pseudo-primeness of entire solutions to certain
PDEs. Consider 𝑃(𝑢, 𝑢𝑧1 ) = 0, where 𝑢 is an entire function on C𝑛 and 𝑃 is a polyno-
mial on C2. From Theorem A, we see that 𝑢 has a factorization 𝑢 = 𝑓 (𝑔), where 𝑓 , 𝑔
satisfy some conditions. So, it’s natural to ask whether 𝑢 is pseudo-prime or not? In this
section, we consider this question and obtain the following result.

Theorem 2. Suppose that an entire function 𝑢 = 𝑢(𝑧1, ..., 𝑧𝑛) onC𝑛 is a solution of the
following PDE

𝑃(𝑧, 𝑢, 𝑢𝑧1 ) =
∑︁
𝜆∈𝐼

𝑎𝜆 (𝑧)𝑢𝜆0𝑢𝜆1𝑧1 = 0, (3.2)

where 𝐼 is a finite set of multi-indices (𝜆0, 𝜆1) with nonnegative integers 𝜆0, 𝜆1, and
𝑎𝜆 (𝑧) (. 0) is a rational function on C𝑛. If 𝑢 is of finite order and 𝑢𝑧1 . 0 , then 𝑢 is
pseudo-prime.

Remark 5. For the case 𝑛 = 1, Liao-Yang in [21, Theorem 2] proved that any entire
solution of (3.2) must be pseudo-prime. The main theorems in this section are inspired
by Liao-Yang’s result. Below, we offer two examples to show that the conditions “finite
order” and 𝑢𝑧1 . 0 are necessary.

Example 1. Consider

𝑢(𝑧) = 𝑒𝑧1+𝜙 (𝑧2 ,...,𝑧𝑛 ) ,

where 𝜙 (𝑧2, . . . , 𝑧𝑛) is a transcendental entire function onC𝑛. Obviously, 𝑢 is an entire
solution of infinite order to 𝑃(𝑧, 𝑢, 𝑢𝑧1 ) = 𝑢𝑧1 − 𝑢 = 0. But 𝑢 is not pseudo-prime,
since 𝑢 = 𝑓 (𝑔), where 𝑓 = 𝑒𝑠 on C and 𝑔 = 𝑧1 + 𝜙 (𝑧2, . . . , 𝑧𝑛) on C𝑛.

Example 2. Suppose that 𝑓 (𝑠) is an entire function of finite order onCwhich is not
pseudo-prime. Let 𝑢(𝑧) = 𝑓 (𝑧2). Obviously, 𝑃(𝑧, 𝑢, 𝑢𝑧1 ) = 𝑢𝑧1 = 0, and 𝑢 is of finite
order but not pseudo-prime.

It is pointed out that Examples 1-2 can be found in [5], given by Chang-Li-Yang.
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Let 𝐼 and 𝐽 be finite sets of multi-indices as in Theorem 2. Next, we consider more
general PDEs

𝑃(𝑧, 𝑢, 𝑢𝑧1 , 𝑢𝑧2 ) =
∑︁
𝜆∈𝐼

𝑎𝜆 (𝑧)𝑢𝜆0𝑢𝜆1𝑧1 +
∑︁
𝜇∈𝐽

𝑏𝜇 (𝑧)𝑢𝜇0𝑢𝜇1𝑧2 = 0, (3.3)

where 𝑎𝜆 (𝑧) (. 0), 𝑏𝜇 (𝑧) (. 0) are rational functions on C2, and 𝑧 = (𝑧1, 𝑧2). Then,
we obtain the following result.

Theorem 3. Suppose that 𝑢 = 𝑢(𝑧1, 𝑧2) on C2 is a nonconstant entire solution of (3.3).
If 𝑢 is of finite order and 𝑢𝑧1 . 0, 𝑢𝑧2 . 0, then one of the following assertions holds.

(1) 𝑢 is pseudo-prime;

(2) 𝐼 = 𝐽 , and 𝑢 has the form 𝑢 = 𝑓 (𝑔), where 𝑓 is transcendental meromorphic
function on C with at most one pole, 𝑔 is a transcendental entire function on C2 satis-
fying that for any 𝜆 = (𝜆0, 𝜆1) ∈ 𝐼 there exist co-prime polynomials 𝑐𝜆, 𝑑𝜆 such that
𝑐𝜆𝑔𝑧1 + 𝑑𝜆𝑔𝑧2 = 0 and [ 𝑐𝜆 (𝑧)

𝑑𝜆 (𝑧) ]
𝜆1 = − 𝑎𝜆 (𝑧)

𝑏𝜆 (𝑧) .

Remark 6. Suppose that 𝑎𝜆 (𝑧) = 𝛼(𝑧2) and 𝑏𝜆 (𝑧) = 𝛽(𝑧1) are two polynomials on
C for some 𝜆 ∈ 𝐼 . Then, 𝑐𝜆 (𝑧) = 𝑃1 (𝑧2) and 𝑑𝜆 (𝑧) = 𝑄1 (𝑧1) reduce to a function of
one variable. And 𝑐𝜆𝑔𝑧1 + 𝑑𝜆𝑔𝑧2 = 0 becomes

𝑃1 (𝑧2)𝑔𝑧1 +𝑄1 (𝑧1)𝑔𝑧2 = 0.

Solving the above PDE yields that 𝑔 = 𝛾(𝑄(𝑧1) − 𝑃(𝑧2)), where 𝑃(𝑧2) =
∫
𝑃1 (𝑧2)𝑑𝑧2,

𝑄(𝑧1) =
∫
𝑄1 (𝑧1)𝑑𝑧1 are two polynomials on C, and 𝛾 is an arbitrary entire function

on C. Furthermore, 𝑢(𝑧1, 𝑧2) = 𝑓 (𝛾(𝑄(𝑧1) − 𝑃(𝑧2))).

It is pointed out that the case (2) indeed occurs in Theorem 3, which can be shown
by the following example.

Example 3. Consider that 𝑢(𝑧1, 𝑧2) = 𝑒sin(
𝑧12−𝑧22

2 ) . Then, 𝑢 is an entire solu-
tion of 𝑧2𝑢𝑧1 + 𝑧1𝑢𝑧2 = 0. It is easy to see that 𝑢 = 𝑓 (𝑔), where 𝑓 (𝑠) = 𝑒𝑠 and
𝑔(𝑧1, 𝑧2) = sin( 𝑧1

2−𝑧22
2 ) are two transcendental entire functions and 𝑧2𝑔𝑧1 + 𝑧1𝑔𝑧2 = 0.

So, the assertion (2) occurs.

In Theorem 3, if we add some conditions to guarantee that the assertion (2) cannot
occur, then entire solutions of (3.3) must be pseudo-prime. Inspired by this idea, we get
a corollary by Theorem 3.

Corollary 3. Suppose that entire function 𝑢 of finite order on C2 satisfies (3.3) and
𝑢𝑧1 . 0, 𝑢𝑧2 . 0. Then, 𝑢 is pseudo-prime if 𝑢 satisfies one of the following conditions.

(1) 𝐼 ≠ 𝐽;
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(2) There exists an index 𝜆 = (𝜆0, 𝜆1) ∈ 𝐼 ∩ 𝐽 such that 𝜆1 ≥ 2 and 𝑎𝜆 (𝑧)
𝑏𝜆 (𝑧) is a

nonconstant irreducible polynomial.

We pay attention to entire solutions of some well-known PDEs. From Theorems 2-3
and Corollary 3, we immediately get the following results. It is noted that some of them
may have been recorded in the literature, the author is not able to find such a reference.

Corollary 4. Suppose that 𝑢(𝑧) = 𝑢(𝑧1, 𝑧2) is an entire function of finite order on C2

and 𝑢𝑧1 . 0, 𝑢𝑧2 . 0. Then 𝑢 is pseudo-prime, if 𝑢 satisfies one of the following PDEs.

(1) Inviscid Burgers’ equation 𝑢𝑧1 + 𝑢𝑢𝑧2 = 0;

(2) Riccati equation 𝑢𝑧1 = 𝑎𝑢2 + 𝑏𝑢 + 𝑐, where 𝑎(. 0), 𝑏, 𝑐 are rational functions
on C2;

(3) Malmquist-Yosida equation 𝑢𝑚𝑧1 =
∑2𝑚

𝑖=0 𝑎𝑖𝑢
𝑖 , where 𝑚 is a positive integer,

𝑎2𝑚 (. 0),..., 𝑎0 are rational functions on C2;

(4) PDEs of Fermat type of 𝑎𝑢𝑚 + 𝑏𝑢𝑛𝑧1 = 1, where 𝑚, 𝑛 are two positive integers,
𝑎(. 0) and 𝑏(. 0) are two rational functions on C2.

In the above theorems and corollaries, the condition “finite order” is necessary.
Below, we omit this condition by considering a system of Malmquist-Yosida type
of partial differential equations, which is inspired by a theorem of Hu-Yang in [19,
Theorem 6.2]. In fact, we obtain the following result.

Theorem 4. If a transcendental meromorphic function 𝑢(𝑧) = 𝑢(𝑧1, ..., 𝑧𝑛) on C𝑛

satisfies the following system of partial differential equations

(𝑢𝑧𝑖 )𝑚𝑖 +
𝑚𝑖−1∑︁
𝑗=1

𝑎𝑖, 𝑗 (𝑢𝑧𝑖 ) 𝑗 =
2𝑚𝑖∑︁
𝑙=0

𝑏𝑖,𝑙𝑢
𝑙 , 𝑖 = 1, 2, . . . , 𝑛

where 𝑚𝑖 (𝑖 = 1, ..., 𝑛) is a positive integer and 𝑎𝑖, 𝑗 , 𝑏𝑖,𝑙 are rational functions on
C𝑛, then 𝑢 is of finite order. In particularly, if 𝑢 is an entire function on C𝑛, then 𝑢 is
pseudo-prime.

Remark 7. In [19, Theorem 6.2], Hu-Yang considered the pseudo-primeness of
meromorphic solutions of a certain system of partial differential equations. In Theorem
4, if 𝑢 is meromorphic function on C𝑛, we have not deduced that 𝑢 is pseudo-prime
and leave it for further study.

Remark 8. In [35], Zimogljad proved that every entire transcendental solution of a
second-order algebraic differential equation on C with rational coefficients has a posi-
tive order. Therefore, as Theorem 2-4, one can consider the pseudo-primeness of entire
solutions of some second-order PDEs, such as Burgers’ equation 𝑢𝑧1 + 𝑢𝑢𝑧2 = 𝑣𝑢𝑧1𝑧1 ,
One-dimensional diffusion equation 𝑢𝑧1 = 𝑣𝑢𝑧2𝑧2 and some generalizations of them,
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where 𝑣 is a constant.

4 Proofs of the Theorems 2-4

In order to prove the above theorems, we employ the following lemmas. The first one is
a theorem of Brownawell in [2], which is a generalization of the remarkable Steinmetz’s
Reduction Theorem in [33].

Lemma 1. Let

𝐹1, . . . , 𝐹𝑘 : C → P1, ℎ1, . . . , ℎ𝑘 : C𝑛 → P1

be meromorphic functions, none of which is identically zero. Also let 𝑔 : C𝑛 → C be a
nonconstant entire function. For some𝐶 > 0, suppose that the characteristic functions
satisfy

𝑘∑︁
𝑗=1
𝑇 (𝑟, ℎ 𝑗 ) ≤ 𝐶𝑇 (𝑟, 𝑔) + 𝑆(𝑟, 𝑔).

If

𝐹1 (𝑔)ℎ1 + 𝐹2 (𝑔)ℎ2 + · · · + 𝐹𝑘 (𝑔)ℎ𝑘 = 0,

then there exist polynomials𝑄1 (𝑧), . . . , 𝑄𝑘 (𝑧) not all identically zero inC[𝑧] such that

𝑄1𝐹1 +𝑄2𝐹2 + · · · +𝑄𝑘𝐹𝑘 = 0.

The second one is due to Strelitz in [31].

Lemma 2. Every entire transcendental solution of a first-order algebraic differential
equation with rational coefficients has an order no less than 1/2.

The last one is given by Chang-Li-Yang, which is contained in the proof of [5,
Theorem 3.1]. It also appears in [19]. For 𝑛 = 1, see Edrei-Fuchs in [9].

Lemma 3. Let 𝑔 : C𝑛 → C be a transcendental entire function, and let 𝑓 : C → P1 be
a meromorphic function of positive order. Then, 𝐹 = 𝑓 (𝑔) is of infinite order.

Proof of Theorem 2. The following proof is relied heavily on the proof of Liao-Yang
in [21, Theorem 2]. Assume, to the contrary, that 𝑢 = 𝑓 (𝑔) where 𝑓 : C → P1 is
a transcendental meromorphic function and 𝑔 : C𝑛 → C is a transcendental entire
function. Substituting 𝑢 = 𝑓 (𝑔) into (3.2) yields that∑︁

𝜆∈𝐼
𝑎𝜆 (𝑧) [ 𝑓 (𝑔(𝑧))]𝜆0 [ 𝑓 ′ (𝑔(𝑧))]𝜆1 [𝑔𝑧1 (𝑧)]𝜆1 = 0. (4.1)

Obviously, 𝑔𝑧1 . 0, since 𝑢𝑧1 . 0. Since 𝑔 is transcendental, one gets that

𝑇 (𝑟, 𝑎𝜆 (𝑧) [𝑔𝑧1 (𝑧)]𝜆1 ) ≤ 𝐶𝑇 (𝑟, 𝑔) + 𝑆(𝑟, 𝑔),
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where𝐶 is a fixed positive constant. By Lemma 1, there exist polynomials𝑄𝜆 which are
not all identically zero such that∑︁

𝜆∈𝐼
𝑄𝜆 (𝑠) [ 𝑓 (𝑠)]𝜆0 [ 𝑓 ′ (𝑠)]𝜆1 = 0. (4.2)

In [21, Theorem 2], Liao-Yang proved that 𝑓 has positive order. For the sake of com-
pleteness, we will state their proof in all details. We know that 𝑢 = 𝑓 (𝑔) is an entire
function. If 𝛼 ∈ C is a pole of 𝑓 , then 𝛼 must be a finite Picard exceptional value of 𝑔.
Observe that 𝑔 is a transcendental entire function. Picard’s little theorem tells us that 𝑔
has at most one finite Picard exceptional value. So, 𝑓 has at most one pole on C. If 𝑓 is
an entire function, then, Lemma 2 yields the order 𝜌( 𝑓 ) > 0. If 𝑓 has one pole at 𝑎 with
multiplicity 𝑚, then we can write 𝑓 (𝑠) =

ℎ (𝑠)
(𝑠−𝑎)𝑚 , where ℎ is an entire function on C.

Taking derivative of 𝑓 yields that 𝑓 ′ (𝑠) = ℎ′ (𝑠) (𝑠−𝑎)−𝑚ℎ (𝑠)
(𝑠−𝑎)𝑚+1 . Substitute the forms of 𝑓

and 𝑓 ′ into (4.2) yields that∑︁
𝐽∈Λ

𝑃𝐽 (𝑠) [ℎ(𝑠)]𝐽0 [ℎ′ (𝑠)]𝐽1 = 0,

where 𝑃𝐽 (. 0) is a polynomial. Then again by Lemma 2 we get 𝜌(ℎ) > 0. So,
𝜌( 𝑓 ) = 𝜌(ℎ) > 0. The above discussion yields that 𝑓 is of positive order. By Lemma 3,
one can get a contradiction.

This finishes the proof of Theorem 2.

Proof of Theorem 3. Suppose that the conclusion (1) is invalid. Then, we can set 𝑢 =

𝑓 (𝑔), where 𝑓 : C → P1 is a transcendental meromorphic function and 𝑔 : C𝑛 → C is
a transcendental entire function. Substituting 𝑢 = 𝑓 (𝑔) into (3.3) yields that∑︁

𝜆∈𝐼
𝑎𝜆 (𝑧) [ 𝑓 (𝑔(𝑧))]𝜆0 [ 𝑓 ′ (𝑔(𝑧))]𝜆1 [𝑔𝑧1 (𝑧)]𝜆1

+
∑︁
𝜇∈𝐽

𝑏𝜇 (𝑧) [ 𝑓 (𝑔(𝑧))]𝜇0 [ 𝑓 ′ (𝑔(𝑧))]𝜇1 [𝑔𝑧2 (𝑧)]𝜇1 = 0.
(4.3)

Suppose that Λ = 𝐼 ∩ 𝐽 . Then, we rewrite (4.3) as∑︁
𝜆∈𝐼\Λ

𝑎𝜆 (𝑧) [ 𝑓 (𝑔(𝑧))]𝜆0 [ 𝑓 ′ (𝑔(𝑧))]𝜆1 [𝑔𝑧1 (𝑧)]𝜆1

+
∑︁

𝜇∈𝐽\Λ
𝑏𝜇 (𝑧) [ 𝑓 (𝑔(𝑧))]𝜇0 [ 𝑓 ′ (𝑔(𝑧))]𝜇1 [𝑔𝑧2 (𝑧)]𝜇1

+
∑︁
𝜆∈Λ

[ 𝑓 (𝑔(𝑧))]𝜆0 [ 𝑓 ′ (𝑔(𝑧))]𝜆1 [𝑎𝜆 (𝑧)𝑔𝑧1 (𝑧)𝜆1 + 𝑏𝜆 (𝑧)𝑔𝑧2 (𝑧)𝜆1 ] = 0.

(4.4)

Obviously,

𝑇 (𝑟, 𝑙 (𝑧)) ≤ 𝐶𝑇 (𝑟, 𝑔) + 𝑆(𝑟, 𝑔),
where 𝑙 (𝑧) ∈ {𝑎𝜆 (𝑧) [𝑔𝑧1 (𝑧)]𝜆1 , 𝑏𝜇 (𝑧) [𝑔𝑧2 (𝑧)]𝜇1 , 𝑎𝜆 (𝑧)𝑔𝑧1 (𝑧)𝜆1 + 𝑏𝜆 (𝑧)𝑔𝑧2 (𝑧)𝜆1 }.
If 𝐼 \ Λ ≠ ∅ or 𝐽 \ Λ ≠ ∅, then the same argument as the proof of Theorem 2 yields a
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contradiction. Below, we assume that 𝐼 \Λ = ∅ and 𝐽 \Λ = ∅. That is 𝐼 = 𝐽 = Λ. Then,
(4.4) becomes∑︁

𝜆∈Λ
[ 𝑓 (𝑔(𝑧))]𝜆0 [ 𝑓 ′ (𝑔(𝑧))]𝜆1 [𝑎𝜆 (𝑧)𝑔𝑧1 (𝑧)𝜆1 + 𝑏𝜆 (𝑧)𝑔𝑧2 (𝑧)𝜆1 ] = 0. (4.5)

If one of 𝑎𝜆 (𝑧)𝑔𝑧1 (𝑧)𝜆1 + 𝑏𝜆 (𝑧)𝑔𝑧2 (𝑧)𝜆1 (𝜆 ∈ Λ) is not identically zero, then the same
argument as the proof in Theorem 2 yields a contradiction. Therefore,

𝑎𝜆 (𝑧)𝑔𝑧1 (𝑧)𝜆1 + 𝑏𝜆 (𝑧)𝑔𝑧2 (𝑧)𝜆1 = 0, 𝜆 ∈ Λ. (4.6)

Rewrite (4.6) as [ 𝑔𝑧2
𝑔𝑧1

]𝜆1 = − 𝑎𝜆
𝑏𝜆
. Furthermore, we can derive that 𝑔𝑧2

𝑔𝑧1
=

𝑐𝜆
𝑑𝜆
, where

𝑐𝜆 (𝑧) and 𝑑𝜆 (𝑧) are two polynomials on C𝑛 and [ 𝑐𝜆
𝑑𝜆
]𝜆1 = − 𝑎𝜆

𝑏𝜆
.

This finishes the proof of Theorem 3.

Proof of Theorem 4. The following proof is based on the idea of Hu-Yang in [19,
Theorem 6.2]. We firstly prove that there exist two positive constants𝜎 and 𝑟0 such that
for |𝑧 | ≥ 𝑟0,

|𝑢𝑧𝑖 |2
(1 + |𝑢 |2)2 ≤ |𝑧 |𝜎 , 𝑖 = 1, ..., 𝑛. (4.7)

On the contrary, for any 𝑁 > 0, there exist an index 𝑖 ∈ {1, 2, ..., 𝑛} and a sequence
{𝜈𝑡 } ⊂ C𝑛 such that

|𝜈𝑡 | = 𝑟𝑡 → ∞, 𝑎𝑠 𝑡 → ∞,
|𝑢𝑧𝑖 (𝜈𝑡 ) |2

(1 + |𝑢(𝜈𝑡 ) |2)2
≥ 𝑟𝑁𝑡 . (4.8)

Without loss of generality, we assume that

𝑁 = 2(1 +max
𝑖, 𝑗 ,𝑙

{deg 𝑎𝑖, 𝑗 , deg 𝑏𝑖,𝑙}). (4.9)

From (4.8), one gets

|𝑢𝑧𝑖 (𝜈𝑡 ) | ≥ (1 + |𝑢(𝜈𝑡 ) |2)𝑟𝑁/2
𝑡 ≥ 𝑟𝑁/2

𝑡 → ∞, 𝑎𝑠 𝑡 → ∞.

Further, for 𝑡 large enough, we get that����(𝑢𝑧𝑖 )𝑚𝑖 +
𝑚𝑖−1∑︁
𝑗=1

𝑎𝑖, 𝑗 (𝑢𝑧𝑖 ) 𝑗
����
𝑧=𝜈𝑡

≥ |𝑢𝑧𝑖 (𝜈𝑡 ) |𝑚𝑖 [1 −
𝑚𝑖−1∑︁
𝑗=1

|𝑎𝑖, 𝑗 (𝜈𝑡 ) |
| (𝑢𝑧𝑖 )𝑚𝑖− 𝑗 (𝜈𝑡 ) |

]

≥ 1
2
(𝑢𝑧𝑖 )𝑚𝑖 (𝜈𝑡 ),

(4.10)

since |𝑎𝑖, 𝑗 (𝜈𝑡 ) |
| (𝑢𝑧𝑖 )𝑚𝑖− 𝑗 (𝜈𝑡 ) |

→ 0 as 𝑡 → ∞ for any 𝑗 = 1, ..., 𝑚𝑖 − 1. Meanwhile, we have����(𝑢𝑧𝑖 )𝑚𝑖 +
𝑚𝑖−1∑︁
𝑗=1

𝑎𝑖, 𝑗 (𝑢𝑧𝑖 ) 𝑗
����
𝑧=𝜈𝑡

=

���� 2𝑚𝑖∑︁
𝑙=0

𝑏𝑖,𝑙𝑢
𝑙

����
𝑧=𝜈𝑡

≤
2𝑚𝑖∑︁
𝑙=0

|𝑏𝑖,𝑙 (𝜈𝑡 ) | |𝑢𝑙 (𝜈𝑡 ) |. (4.11)
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For 𝑡 large enough, combining (4.10) and (4.11) yields that

|𝑢𝑧𝑖 (𝜈𝑡 ) |𝑚𝑖

(1 + |𝑢(𝜈𝑡 ) |2)𝑚𝑖
≤

2
∑2𝑚𝑖

𝑙=0 |𝑏𝑖,𝑙 (𝜈𝑡 ) | |𝑢𝑙 (𝜈𝑡 ) |
(1 + |𝑢(𝜈𝑡 ) |2)𝑚𝑖

≤ 2
2𝑚𝑖∑︁
𝑙=1

|𝑏𝑖,𝑙 (𝜈𝑡 ) | < 𝑟
𝑁
2
𝑡 , (4.12)

which implies that

|𝑢𝑧𝑖 (𝜈𝑡 ) |2
(1 + |𝑢(𝜈𝑡 ) |2)2

< 𝑟
𝑁
𝑚𝑖

𝑡 ≤ 𝑟𝑁𝑡 . (4.13)

By (4.8) and (4.13), we derive a contradiction. Thus, (4.7) is valid. Without loss of gener-
ality, we assume that (4.7) holds for any 𝑧 ∈ C𝑛. The same argument of Hu-Yang in [19,
Theorem 6.2] yields that 𝑢 is of finite order. For the sake of completeness, we give it in
all detail. So,

𝐴𝑢 (𝑟) =
𝑖

2𝜋
𝑟2−2𝑛

∫
𝐶𝑛 |𝑟 |

(
1 + |𝑢 |2

)−2
𝑑𝑢 ∧ 𝑑𝑢 ∧ 𝑣𝑛−1

= 𝑛−1𝑟2−2𝑛
∫
𝐶𝑛 |𝑟 |

{(
1 + |𝑢 |2

)−2 𝑛∑︁
𝑖=1

��𝑢𝑧𝑖 ��2} 𝑣𝑛
≤ 𝑟2−2𝑛+𝜎

∫
𝐶𝑛 |𝑟 |

𝑣𝑛 = 𝐾𝑟𝜎+2,

(4.14)

where𝐾 is a positive constant. By the definition of𝑇 (𝑟, 𝑢) (see e.g.,[20, 33]), one gets that

𝑇 (𝑟, 𝑢) =
∫ 𝑟

𝑟0

𝐴𝑢 (𝑡)
𝑑𝑡

𝑡
+𝑂 (1) ≤ 𝐾

(𝜎 + 2) 𝑟
𝜎+2 +𝑂 (1).

Therefore, 𝑢 is of finite order. Furthermore, if 𝑢 is a transcendental entire function,
then by Theorem 2, 𝑢 is pseudo-prime.

This finishes the proof of Theorem 4.
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