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An E8 Correspondence for Multiplicative
Eta-Products

C. J. Cummins and J. F. Duncan

Abstract. We describe an E8 correspondence for the multiplicative eta-products of weight at least 4.

There are two E8 correspondences due to McKay. The first is part of the well-

known McKay correspondence [15], linking finite subgroups of SU(2), Coxeter–Dyn-

kin diagrams, and Kleinian singularities. The second correspondence is known as

McKay’s Monstrous E8 observation [2, p. 528]. This second correspondence is a link

between certain rational conjugacy classes of the Monster finite simple group and the

nodes of the affine E8 diagram. The Monstrous classes concerned are those which

consist of elements that arise as the product of two involutions of type 2A in the

monster. Glauberman and Norton [7] extended McKay’s observation to the dia-

grams obtained by deleting one node of the E8 diagram. Lam, Yamada, and Yamauchi

[13, 14] and Lam and Yamauchi [12] made a connection between McKay’s second

correspondance and certain coset subalgebras of the lattice vertex operator algebra

V√
2E8

. The second author [6] has also recently shown that the discrete groups as-

sociated by moonshine with McKay’s monstrous classes may be associated with the

affine E8 diagram.

In this note we provide a variation on this theme, showing that the 9 multiplicative

η-products of weight at least 4 may be associated with the nodes of the affine E8

diagram. These 9 classes naturally correspond to 9 conjugacy classes in the Mathieu

group M24 and we observe that, as for the monster, the 9 classes concerned are those

whose elements arise as the product of two involutions of a certain conjugacy class of

elements of order 2 in M24, viz., the class consisting of permutations of cycle shape

2818. We also show how McKay’s Monstrous E8 observation may be recovered from

the correspondence presented here via a “super-theta” construction.

Recall that a sequence λ = (λ1, . . . , λk), λ1 ≥ λ2 ≥ · · · ≥ λk, is called a partition

of the number N = λ1 + λ2 + · · · + λk. The numbers λ1, λ2, . . . , λk are called

the parts of the partition λ. The number of parts, k, of λ is called the length of

the partition. For example λ = (8, 8, 4, 4) is a partition of 24 into 4 parts. This

partition may conveniently be denoted 8242 in an obvious exponential notation. To

each partition λ we can associate an η-product, ηλ(z) =
∏

i η(λiz). So that, for

example, the η-product associated with the partition 8242 is η(8z)2η(4z)2.

Dummit, Kisilevsky, and McKay [5] have classified all the multiplicative η-pro-

ducts. There are 9 such products of weight at least 4. These are listed in Table 1,

which is taken from [5].
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Table 1: Multiplicative η-products of weight at least 4

Partition Weight Level χ

62322212 4 6

5414 4 5

4424 4 8

38 4 9

442214 5 4
(

−1
d

)

3616 6 3

212 6 4

2818 8 2

124 12 1

For any partition λ, let n(λ) be the largest part of λ, and let h(λ) be the smallest

part. Set N(λ) = n(λ)h(λ). Then each η-product ηλ in Table 1 is a modular form on

Γ0(N(λ)) with some character χ. (See [5] for details.)

For each positive integer m, let ω(m) be the number of distinct prime divisors

of m. Then for any λ such that h(λ) divides n(λ), define the valence v(λ) to be

ω(n/h) + 1, and define the parity p(λ) to be (−1)n/h+h. It will be convenient to iden-

tify the η-product ηλ(z) with the partition λ, so that we may write n(ηλ) for n(λ),

and similarly for h, v, and p.

Let M be the set of multiplicative η-products of weight at least 4. The signifi-

cance of the parameters n and h for the η-products of M is given by the following

proposition.

Proposition 1 Suppose that ηλ is an element of M. Then the subgroup of SL(2, R)

which fixes ηλ up to a 24-th root of unity is the group Γ0(n(λ)|h(λ))+ in the notation of

Conway and Norton [4].

Proof Let n = n(λ), h = h(λ), and f (z) = ηλ(z). By [5], f is a modular form on

Γ0(N), where N = nh. (See also Newman [16].) Let G be the subgroup of SL(2, R)

which fixes f as a modular form. Since f , or its square, is of even weight and is not

a polynomial, it follows from a result of Knopp [10] that G is a discrete subgroup of

SL(2, R).

Now by a result of Siegel [17], the area of a fundamental domain of G is bounded

below by π/21 and hence the index of Γ0(N) in G is finite. It follows that G is com-

mensurable with SL(2, Z). By a result of Helling [8, 9] (see also [3]), every subgroup

of SL(2, R), which is commensurable with SL(2, Z), is conjugate to a subgroup of a

group of the form Γ0(K)+ for some square-free integer K. The notation is that of

Conway and Norton where Γ0(K)+ is Γ0(K) extended by all the Atkin–Lehner ele-

ments. We will call these groups Helling groups. Since K is square-free, Γ0(K)+ is the

normalizer of Γ0(K) in SL(2, R) [1, 4]. In the notation of Conway and Norton, if h
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divides n, then the group Γ0(n|h)+ is the conjugate A−1Γ0(n/h)+A, where

A = h−1/2

(

h 0

0 1

)

.

By Helling’s theorem, these groups are maximal discrete subgroups of SL(2, R).

We consider first the cases for which h 6= 1. The two partitions 212 and 38 corre-

spond to η(2z)12 and η(3z)8, respectively. By the transformation properties of the eta

function, these are fixed, up to 24-th roots of unity, by two conjugates of the mod-

ular group, viz., Γ0(2|2) and Γ0(3|3), respectively. Since these are maximal discrete

groups, they are the groups which fix these forms up to 24-th roots of unity.

The partition 4424 corresponds to η(4z)4η(2z)4, which is a form on Γ0(8). This

group is a subgroup of Γ0(4|2)+, which is generated over Γ0(8) by the following two

matrices.
(

1 1/2

0 1

)

, 2−3/2

(

0 −1

8 0

)

.

It is straightforward to verify that η(4z)4η(2z)4 is invariant up to 24-th roots of unity

under these transformations. Thus the group which fixes this form up to 24-th roots

of unity is Γ0(4|2)+, as again this group is a maximal discrete subgroup of SL(2, R)

by Helling’s result.

For the cases with h = 1, it is straightforward to verify that each f is invari-

ant, up to 24-th roots of unity, under the appropriate Atkin–Lehner elements, using

the known transformation properties of η(z). This shows that f is fixed up to 24-

th roots of unity by Γ0(n)+. With one exception, all the n arising are square-free. So

these are maximal discrete subgroups of SL(2, R), and hence are the groups fixing

the corresponding ηλ up to 24-th roots of unity. The exception is λ = 442214. The

corresponding f is fixed by Γ0(4)+, which is Γ0(4) extended by the element

(

0 −1/2

2 0

)

.

The question then is whether or not f is fixed by a larger group in this case.

The group Γ0(4)+ is conjugate in SL(2, R) to Γ0(2). For Γ0(2) to be a subgroup

of a Helling group Γ0(K)+ say, the area of a fundamental domain of Γ0(K)+ must be

an integral multiple of π, since the area of a fundamental domain of Γ0(2) is π. The

only possibilities for K then are K = 1, 2, 5, 6. For K = 5 or 6 the ratio is 1, but

this is impossible since Γ0(2) has cusp number equal to 2, while Γ0(5)+ and Γ0(6)+

have cusp number equal to 1. Thus Γ0(2) can only be a subgroup of a conjugate of

SL(2, Z) or Γ0(2)+, with index 3 or 2, respectively. So the only larger groups which

are candidates to be the fixing groups up to 24-th roots of unity of f are conjugates

of SL(2, Z) and conjugates of Γ0(2)+. These groups have cusp number equal to 1.

This would imply for a suitable choice of local parameter that f would have the same

Fourier coefficients at each cusp. However, an explicit calculation of the expansions

of f at, say, 1/2 and ∞ shows that this is not the case. We conclude that the fixing

group is Γ0(4)+, as required.
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We next show that there is an affine E8 diagram associated with the elements of

M. The main ideas of the proof follow [6].

Proposition 2 Let M1 be the nodes of parity 1 and M−1 be the nodes of parity −1.

Then there is a unique graph with vertex set M, such that

• the valence of the node ηλ is v(λ);
• for each node x ∈ M, we have 2n(x) =

∑

y∈Adj(x) n(y), where Adj(x) is the set of

nodes adjacent to x;
• if x ∈ M−1, then the nodes adjacent to x are in M1.

The graph is the affine E8 graph shown in Figure 1.

We call the second condition here condition L. We call the third condition the

parity condition.

Proof The node 124 has v(124) = 1 and n(124) = 1, and so its adjacent node is

either 212 or 2818. However, v(212) = 1 and n(212) = 2, which would give a single

component of the graph that would not satisfy condition L. Thus the node adjacent

to 124 is 2818. A similar argument resolves the placement of the nodes 38 and 3616.

The only remaining ambiguity is the placement of the nodes 4424 and 442214, but this

is resolved by the parity condition.

38

124 2818 3616 442214 5414 62322212

mmmmmmm

QQQQQQ

4424

MMMMM

212

Figure 1

Associated with each η-product in M is a conjugacy class in M24 whose cycle

type is λ. The associated classes share a property similar to the monstrous classes

of McKay’s monstrous E8 correspondence.

Proposition 3 The conjugacy classes of M24 of cycle type λ, where ηλ is a multiplicative

η-product of weight at least 4, are those classes whose elements are the product of two

involutions of cycle shape 2818.

Proof This is a character calculation.

Replacing each η-product with the discrete group of Proposition 1 gives rise to the

E8 diagram of Figure 2. (For convenience we omit the “Γ0” in the name of the group.)

This diagram is remarkably similar to McKay’s monstrous E8 correspondence: the

node Γ0(2|2) is replaced by Γ0(2) in McKay’s correspondence, and for h 6= 1, the

groups appearing in Figure 2 are what Conway and Norton call the “eigen-groups”
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Figure 2

of the corresponding Hauptmodul, i.e., the groups which fix the Hauptmodul up to

a root of unity, rather than the fixing groups of these Hauptmoduls.

Note that the definition of the parity of a node used in [6] is based on whether or

not the inequality Index(G ∩ Γ0(2) : Γ0(2)) ≤ 2 is satisfied. As Γ0(2|2) ∩ Γ0(2) =

Γ0(2), this inequality is satisfied by both Γ0(2) and Γ0(2|2). However, although

Γ0(2|2) contains Γ0(4) normally and Γ0(2) non-normally, the index is not a power of

2 and so the groups of Figure 2 are not a solution to the problem posed in [6] which

requires the index to be a power of 2.

A second connection with McKay’s monstrous E8 can be made via a conjecture of

Conway and Norton connecting elements of M24 with monstrous moonshine. For

an element m ∈ M24 considered as an automorphism of the Leech lattice, the conjec-

ture, proved by Kondo and Tasaka [11], states that Θm/ηm is a Hauptmodul attached

to a rational conjugacy class of the monster, where Θm is the theta function of the

sublattice of the Leech lattice fixed by m, and ηm is the η-product attached to m.

Once again, the resulting labelling of the E8 diagram is that of McKay’s observa-

tion, except for the node corresponding to 212 which is associated with the monstrous

class 4A with fixing group Γ0(4)+. It is interesting to note that the only two partitions

which give rise, in this construction, to the same Monstrous class are 442214 and 212.

Both correspond to the Monstrous class 4A (see, for example, [11, Table 2]).

There is, however, a way of obtaining the “correct” monstrous class, 2B, for the

212 node by the following “super” construction. The Hauptmoduls for the mon-

strous classes 2B and 4A have q-coefficients which are the same in absolute value.

The coefficients for 4A are non-negative and those of 2B alternate in sign.

Suppose Cλ is the subcode of the Golay code invariant under the action of an

element of class λ. We can ask if Cλ is a “blow-up” of some code of smaller length.

More precisely, suppose D is a code of length m and k is a positive integer. Then we

can consider the length mk code D + · · · + D (k times). Call the diagonal embedding

of D in this code the k-fold blow-up of D. Then Cλ is an h-fold blow-up for h = hλ

for each λ (and h is in each case the largest positive integer with this property).

Let C ′ = C ′
λ be the code from which C = Cλ is obtained by h-fold blow-up. Then

C ′ is doubly-even for all λ except when λ = 212. If h = 1, then C ′ = C which is

certainly doubly-even, being a subcode of the Golay code. If h = 3, then λ = 38

and C ′ is the Hamming code. If h = 2 and λ = 4424, then C ′ is a code with weight

enumerator 1 + 7X4 + 7X8 + X12. Finally if h = 2 and λ = 212, then C ′ is the unique

self-dual even code of length 12.
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An even code admits a natural Z/2Z-grading: the 0-graded part being the subcode

consisting of doubly even codewords. The case λ = 212 is just the case that C ′ is non-

trivially Z/2Z-graded.

Kondo and Tasaka [11] explain how to compute Θλ using weight enumerators

for C(λ). Repeating this construction, but with the weight enumerators replaced by

super-weight enumerators, now has the effect of replacing the monstrous class 4A

with the class 2B and thus recovering McKay’s monstrous E8 correspondence exactly.
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