

An *E*₈ Correspondence for Multiplicative Eta-Products

C. J. Cummins and J. F. Duncan

Abstract. We describe an E₈ correspondence for the multiplicative eta-products of weight at least 4.

There are two E_8 correspondences due to McKay. The first is part of the well-known McKay correspondence [15], linking finite subgroups of SU(2), Coxeter–Dyn-kin diagrams, and Kleinian singularities. The second correspondence is known as McKay's Monstrous E_8 observation [2, p. 528]. This second correspondence is a link between certain rational conjugacy classes of the Monster finite simple group and the nodes of the affine E_8 diagram. The Monstrous classes concerned are those which consist of elements that arise as the product of two involutions of type 2A in the monster. Glauberman and Norton [7] extended McKay's observation to the diagrams obtained by deleting one node of the E_8 diagram. Lam, Yamada, and Yamauchi [13, 14] and Lam and Yamauchi [12] made a connection between McKay's second correspondance and certain coset subalgebras of the lattice vertex operator algebra $V_{\sqrt{2}E_8}$. The second author [6] has also recently shown that the discrete groups associated by moonshine with McKay's monstrous classes may be associated with the affine E_8 diagram.

In this note we provide a variation on this theme, showing that the 9 multiplicative η -products of weight at least 4 may be associated with the nodes of the affine E_8 diagram. These 9 classes naturally correspond to 9 conjugacy classes in the Mathieu group M_{24} and we observe that, as for the monster, the 9 classes concerned are those whose elements arise as the product of two involutions of a certain conjugacy class of elements of order 2 in M_{24} , viz., the class consisting of permutations of cycle shape 2^81^8 . We also show how McKay's Monstrous E_8 observation may be recovered from the correspondence presented here via a "super-theta" construction.

Recall that a sequence $\lambda=(\lambda_1,\ldots,\lambda_k), \lambda_1\geq \lambda_2\geq \cdots \geq \lambda_k$, is called a *partition* of the number $N=\lambda_1+\lambda_2+\cdots+\lambda_k$. The numbers $\lambda_1,\lambda_2,\ldots,\lambda_k$ are called the *parts* of the partition λ . The number of parts, k, of λ is called the *length* of the partition. For example $\lambda=(8,8,4,4)$ is a partition of 24 into 4 parts. This partition may conveniently be denoted 8^24^2 in an obvious exponential notation. To each partition λ we can associate an η -product, $\eta_{\lambda}(z)=\prod_i \eta(\lambda_i z)$. So that, for example, the η -product associated with the partition 8^24^2 is $\eta(8z)^2\eta(4z)^2$.

Dummit, Kisilevsky, and McKay [5] have classified all the multiplicative η -products. There are 9 such products of weight at least 4. These are listed in Table 1, which is taken from [5].

Received by the editors January 27, 2009. Published electronically April 14, 2011. The work was supported in part by NSERC AMS subject classification: 11F20, 11F12, 17B60.

Partition	Weight	Level	χ
62322212	4	6	
5414	4	5	
4^42^4	4	8	
38	4	9	
$4^42^21^4$	5	4	$\left(\frac{-1}{d}\right)$
3616	6	3	
212	6	4	
2818	8	2	
1 ²⁴	12	1	

Table 1: Multiplicative η -products of weight at least 4

For any partition λ , let $n(\lambda)$ be the largest part of λ , and let $h(\lambda)$ be the smallest part. Set $N(\lambda) = n(\lambda)h(\lambda)$. Then each η -product η_{λ} in Table 1 is a modular form on $\Gamma_0(N(\lambda))$ with some character χ . (See [5] for details.)

For each positive integer m, let $\omega(m)$ be the number of distinct prime divisors of m. Then for any λ such that $h(\lambda)$ divides $n(\lambda)$, define the *valence* $v(\lambda)$ to be $\omega(n/h)+1$, and define the *parity* $p(\lambda)$ to be $(-1)^{n/h+h}$. It will be convenient to identify the η -product $\eta_{\lambda}(z)$ with the partition λ , so that we may write $n(\eta_{\lambda})$ for $n(\lambda)$, and similarly for h, v, and p.

Let \mathcal{M} be the set of multiplicative η -products of weight at least 4. The significance of the parameters n and h for the η -products of \mathcal{M} is given by the following proposition.

Proposition 1 Suppose that η_{λ} is an element of \mathfrak{M} . Then the subgroup of $SL(2,\mathbb{R})$ which fixes η_{λ} up to a 24-th root of unity is the group $\Gamma_0(n(\lambda)|h(\lambda))^+$ in the notation of Conway and Norton [4].

Proof Let $n = n(\lambda)$, $h = h(\lambda)$, and $f(z) = \eta_{\lambda}(z)$. By [5], f is a modular form on $\Gamma_0(N)$, where N = nh. (See also Newman [16].) Let G be the subgroup of $SL(2, \mathbb{R})$ which fixes f as a modular form. Since f, or its square, is of even weight and is not a polynomial, it follows from a result of Knopp [10] that G is a discrete subgroup of $SL(2, \mathbb{R})$.

Now by a result of Siegel [17], the area of a fundamental domain of G is bounded below by $\pi/21$ and hence the index of $\Gamma_0(N)$ in G is finite. It follows that G is commensurable with $SL(2,\mathbb{Z})$. By a result of Helling [8,9] (see also [3]), every subgroup of $SL(2,\mathbb{R})$, which is commensurable with $SL(2,\mathbb{Z})$, is conjugate to a subgroup of a group of the form $\Gamma_0(K)^+$ for some square-free integer K. The notation is that of Conway and Norton where $\Gamma_0(K)^+$ is $\Gamma_0(K)$ extended by all the Atkin–Lehner elements. We will call these groups *Helling groups*. Since K is square-free, $\Gamma_0(K)^+$ is the normalizer of $\Gamma_0(K)$ in $SL(2,\mathbb{R})$ [1,4]. In the notation of Conway and Norton, if h

divides *n*, then the group $\Gamma_0(n|h)^+$ is the conjugate $A^{-1}\Gamma_0(n/h)^+A$, where

$$A = h^{-1/2} \begin{pmatrix} h & 0 \\ 0 & 1 \end{pmatrix}.$$

By Helling's theorem, these groups are maximal discrete subgroups of $SL(2, \mathbb{R})$.

We consider first the cases for which $h \neq 1$. The two partitions 2^{12} and 3^8 correspond to $\eta(2z)^{12}$ and $\eta(3z)^8$, respectively. By the transformation properties of the eta function, these are fixed, up to 24-th roots of unity, by two conjugates of the modular group, viz., $\Gamma_0(2|2)$ and $\Gamma_0(3|3)$, respectively. Since these are maximal discrete groups, they are the groups which fix these forms up to 24-th roots of unity.

The partition 4^42^4 corresponds to $\eta(4z)^4\eta(2z)^4$, which is a form on $\Gamma_0(8)$. This group is a subgroup of $\Gamma_0(4|2)^+$, which is generated over $\Gamma_0(8)$ by the following two matrices.

$$\begin{pmatrix} 1 & 1/2 \\ 0 & 1 \end{pmatrix}, \quad 2^{-3/2} \begin{pmatrix} 0 & -1 \\ 8 & 0 \end{pmatrix}.$$

It is straightforward to verify that $\eta(4z)^4\eta(2z)^4$ is invariant up to 24-th roots of unity under these transformations. Thus the group which fixes this form up to 24-th roots of unity is $\Gamma_0(4|2)^+$, as again this group is a maximal discrete subgroup of $SL(2,\mathbb{R})$ by Helling's result.

For the cases with h=1, it is straightforward to verify that each f is invariant, up to 24-th roots of unity, under the appropriate Atkin–Lehner elements, using the known transformation properties of $\eta(z)$. This shows that f is fixed up to 24-th roots of unity by $\Gamma_0(n)^+$. With one exception, all the n arising are square-free. So these are maximal discrete subgroups of $SL(2,\mathbb{R})$, and hence are the groups fixing the corresponding η_λ up to 24-th roots of unity. The exception is $\lambda = 4^42^21^4$. The corresponding f is fixed by $\Gamma_0(4)^+$, which is $\Gamma_0(4)$ extended by the element

$$\begin{pmatrix} 0 & -1/2 \\ 2 & 0 \end{pmatrix}.$$

The question then is whether or not f is fixed by a larger group in this case.

The group $\Gamma_0(4)^+$ is conjugate in $SL(2,\mathbb{R})$ to $\Gamma_0(2)$. For $\Gamma_0(2)$ to be a subgroup of a Helling group $\Gamma_0(K)^+$ say, the area of a fundamental domain of $\Gamma_0(K)^+$ must be an integral multiple of π , since the area of a fundamental domain of $\Gamma_0(2)$ is π . The only possibilities for K then are K=1,2,5,6. For K=5 or 6 the ratio is 1, but this is impossible since $\Gamma_0(2)$ has cusp number equal to 2, while $\Gamma_0(5)^+$ and $\Gamma_0(6)^+$ have cusp number equal to 1. Thus $\Gamma_0(2)$ can only be a subgroup of a conjugate of $SL(2,\mathbb{Z})$ or $\Gamma_0(2)^+$, with index 3 or 2, respectively. So the only larger groups which are candidates to be the fixing groups up to 24-th roots of unity of f are conjugates of $SL(2,\mathbb{Z})$ and conjugates of $\Gamma_0(2)^+$. These groups have cusp number equal to 1. This would imply for a suitable choice of local parameter that f would have the same Fourier coefficients at each cusp. However, an explicit calculation of the expansions of f at, say, 1/2 and ∞ shows that this is not the case. We conclude that the fixing group is $\Gamma_0(4)^+$, as required.

We next show that there is an affine E_8 diagram associated with the elements of \mathfrak{M} . The main ideas of the proof follow [6].

Proposition 2 Let M_1 be the nodes of parity 1 and M_{-1} be the nodes of parity -1. Then there is a unique graph with vertex set M, such that

- the valence of the node η_{λ} is $v(\lambda)$;
- for each node $x \in \mathcal{M}$, we have $2n(x) = \sum_{y \in \mathrm{Adj}(x)} n(y)$, where $\mathrm{Adj}(x)$ is the set of nodes adjacent to x;
- *if* $x \in \mathcal{M}_{-1}$, then the nodes adjacent to x are in \mathcal{M}_1 .

The graph is the affine E_8 graph shown in Figure 1.

We call the second condition here *condition L*. We call the third condition the *parity condition*.

Proof The node 1^{24} has $\nu(1^{24}) = 1$ and $n(1^{24}) = 1$, and so its adjacent node is either 2^{12} or 2^81^8 . However, $\nu(2^{12}) = 1$ and $n(2^{12}) = 2$, which would give a single component of the graph that would not satisfy condition L. Thus the node adjacent to 1^{24} is 2^81^8 . A similar argument resolves the placement of the nodes 3^8 and 3^61^6 . The only remaining ambiguity is the placement of the nodes 4^42^4 and $4^42^21^4$, but this is resolved by the parity condition.

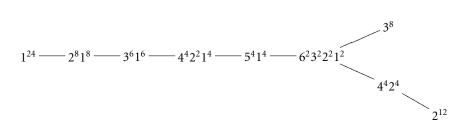


Figure 1

Associated with each η -product in \mathcal{M} is a conjugacy class in M_{24} whose cycle type is λ . The associated classes share a property similar to the monstrous classes of McKay's monstrous E_8 correspondence.

Proposition 3 The conjugacy classes of M_{24} of cycle type λ , where η_{λ} is a multiplicative η -product of weight at least 4, are those classes whose elements are the product of two involutions of cycle shape 2^81^8 .

Proof This is a character calculation.

Replacing each η -product with the discrete group of Proposition 1 gives rise to the E_8 diagram of Figure 2. (For convenience we omit the " Γ_0 " in the name of the group.) This diagram is remarkably similar to McKay's monstrous E_8 correspondence: the node $\Gamma_0(2|2)$ is replaced by $\Gamma_0(2)$ in McKay's correspondence, and for $h \neq 1$, the groups appearing in Figure 2 are what Conway and Norton call the "eigen-groups"

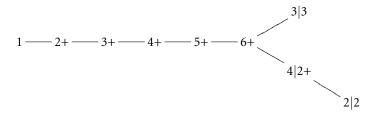


Figure 2

of the corresponding Hauptmodul, *i.e.*, the groups which fix the Hauptmodul up to a root of unity, rather than the fixing groups of these Hauptmoduls.

Note that the definition of the parity of a node used in [6] is based on whether or not the inequality $\operatorname{Index}(G \cap \Gamma_0(2) : \Gamma_0(2)) \leq 2$ is satisfied. As $\Gamma_0(2|2) \cap \Gamma_0(2) = \Gamma_0(2)$, this inequality is satisfied by both $\Gamma_0(2)$ and $\Gamma_0(2|2)$. However, although $\Gamma_0(2|2)$ contains $\Gamma_0(4)$ normally and $\Gamma_0(2)$ non-normally, the index is not a power of 2 and so the groups of Figure 2 are not a solution to the problem posed in [6] which requires the index to be a power of 2.

A second connection with McKay's monstrous E_8 can be made via a conjecture of Conway and Norton connecting elements of M_{24} with monstrous moonshine. For an element $m \in M_{24}$ considered as an automorphism of the Leech lattice, the conjecture, proved by Kondo and Tasaka [11], states that Θ_m/η_m is a Hauptmodul attached to a rational conjugacy class of the monster, where Θ_m is the theta function of the sublattice of the Leech lattice fixed by m, and η_m is the η -product attached to m.

Once again, the resulting labelling of the E_8 diagram is that of McKay's observation, except for the node corresponding to 2^{12} which is associated with the monstrous class 4A with fixing group $\Gamma_0(4)^+$. It is interesting to note that the only two partitions which give rise, in this construction, to the same Monstrous class are $4^42^21^4$ and 2^{12} . Both correspond to the Monstrous class 4A (see, for example, [11, Table 2]).

There is, however, a way of obtaining the "correct" monstrous class, 2B, for the 2^{12} node by the following "super" construction. The Hauptmoduls for the monstrous classes 2B and 4A have q-coefficients which are the same in absolute value. The coefficients for 4A are non-negative and those of 2B alternate in sign.

Suppose C_{λ} is the subcode of the Golay code invariant under the action of an element of class λ . We can ask if C_{λ} is a "blow-up" of some code of smaller length. More precisely, suppose D is a code of length m and k is a positive integer. Then we can consider the length mk code $D + \cdots + D$ (k times). Call the diagonal embedding of D in this code the k-fold blow-up of D. Then C_{λ} is an h-fold blow-up for $h = h_{\lambda}$ for each λ (and h is in each case the largest positive integer with this property).

Let $C' = C'_{\lambda}$ be the code from which $C = C_{\lambda}$ is obtained by h-fold blow-up. Then C' is doubly-even for all λ except when $\lambda = 2^{12}$. If h = 1, then C' = C which is certainly doubly-even, being a subcode of the Golay code. If h = 3, then $\lambda = 3^8$ and C' is the Hamming code. If h = 2 and $\lambda = 4^42^4$, then C' is a code with weight enumerator $1 + 7X^4 + 7X^8 + X^{12}$. Finally if h = 2 and $\lambda = 2^{12}$, then C' is the unique self-dual even code of length 12.

An even code admits a natural $\mathbb{Z}/2\mathbb{Z}$ -grading: the 0-graded part being the subcode consisting of doubly even codewords. The case $\lambda=2^{12}$ is just the case that C' is non-trivially $\mathbb{Z}/2\mathbb{Z}$ -graded.

Kondo and Tasaka [11] explain how to compute Θ_{λ} using weight enumerators for $C(\lambda)$. Repeating this construction, but with the weight enumerators replaced by super-weight enumerators, now has the effect of replacing the monstrous class 4A with the class 2B and thus recovering McKay's monstrous E_8 correspondence exactly.

References

- [1] A. O. L. Atkin and J. Lehner, *Hecke operators on* $\Gamma_0(m)$. Math. Ann. **185**(1970), 134–160. doi:10.1007/BF01359701
- [2] J. H. Conway, A simple construction for the Fischer-Griess monster group. Invent. Math. 79(1985), no. 3, 513–540. doi:10.1007/BF01388521
- [3] _____, *Understanding groups like* $\Gamma_0(N)$. In: Groups, Difference Sets, and the Monster. Ohio State Univ. Math. Res. Inst. Publ. 4, de Gruyter, Berlin, 1996, pp. 327–343.
- [4] J. H. Conway and S. P. Norton, Monstrous moonshine. Bull. London Math. Soc. 11(1979), no. 3, 308–339. doi:10.1112/blms/11.3.308
- [5] D. Dummit, H. Kisilevsky, and J. McKay, *Multiplicative products of* η -functions. In: Finite groups—coming of age. Contemp. Math. 45, American Mathematical Society, Providence, RI, 1985, pp. 89–98. See Mathematical Reviews MR822235 (87j:11036) for an important correction of a typesetting error.
- [6] J. F. Duncan, Arithmetic groups and the affine E₈ Dynkin diagram. In: Groups and Symmetries. CRM Proc. Lecture Notes 47. American Mathematical Society, Providence, RI, 2009.
- [7] G. Glauberman and S. P. Norton, *On McKay's connection between the affine E*₈ *diagram and the Monster.* In: Proceedings on Moonshine and Related Topics. CRM Proc. Lecture Notes 30, American Mathematical Society, Providence, RI, 2001, pp. 37–42.
- [8] H. Helling, Bestimmung der Kommensurabilitätsklasse der Hilbertschen Modulgruppe. Math. Z. 92(1966), 269–280. doi:10.1007/BF01112194
- [9] _____, On the commensurability class of the rational modular group. J. London Math. Soc. 2(1970), 67–72. doi:10.1112/jlms/s2-2.1.67
- [10] M. I. Knopp, Polynomial automorphic forms and nondiscontinuous groups. Trans. Amer. Math. Soc. 123(1966), 506–520. doi:10.1090/S0002-9947-1966-0200447-7
- [11] T. Kondo and T. Tasaka, The theta functions of sublattices of the Leech lattice. Nagoya Math. J. 101(1986), 151–179.
- [12] C. H. Lam and H. Shimakura, *Ising vectors in the vertex operator algebra* V_{Λ}^{+} *associated with the Leech lattice* Λ . Int. Math. Res. Not. IMRN **2007**, no. 24.
- [13] C. H. Lam, H. Yamada, and H. Yamauchi, McKay's observation and vertex operator algebras generated by two conformal vectors of central charge 1/2. IMRP Int. Math. Res. Pap. 2005, no. 3, 117–181.
- [14] _____, Vertex operator algebras, extended E₈ diagram, and McKay's observation on the Monster simple group. Trans. Amer. Math. Soc. 359(2007), no. 9, 4107–4123. doi:10.1090/S0002-9947-07-04002-0
- [15] J. McKay, Graphs, singularities, and finite groups. In: The Santa Cruz Conference on Finite Groups Proc. Sympos. Pure Math. 37. American Mathematical Society, Providence, RI, pp. 183–186.
- [16] M. Newman, Construction and application of a class of modular functions. II. Proc. London Math. Soc. 9(1959), 373–387. doi:10.1112/plms/s3-9.3.373
- [17] C. L. Siegel, Some remarks on discontinuous groups. Ann. of Math. 46(1945), 708–718. doi:10.2307/1969206

Department of Mathematics and Statistics, Concordia University, Montréal, QC e-mail: cummins@mathstat.concordia.ca

Department of Mathematics, Case Western Reserve University, Cleveland, OH 44106, USA e-mail: john.duncan@case.edu