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Abstract

We propose a novel time-asymptotically stable, implicit–explicit, adaptive, time
integration method (denoted by the θ-method) for the solution of the fractional
advection–diffusion-reaction (FADR) equations. The spectral analysis of the method
(involving the group velocity and the phase speed) indicates a region of favourable
dispersion for a limited range of Péclet number. The numerical inversion of the
coefficient matrix is avoided by exploiting the sparse structure of the matrix in
the iterative solver for the Poisson equation. The accuracy and the efficacy of the
method is benchmarked using (a) the two-dimensional fractional diffusion equation,
originally proposed by researchers earlier, and (b) the incompressible, subdiffusive
dynamics of a planar viscoelastic channel flow of the Rouse chain melts (FADR
equation with fractional time-derivative of order α = 1/2) and the Zimm chain solution
(α = 2/3). Numerical simulations of the viscoelastic channel flow effectively capture the
nonhomogeneous regions of high viscosity at low fluid inertia (or the so-called “spa-
tiotemporal macrostructures”), experimentally observed in the flow-instability transition
of subdiffusive flows.

2020 Mathematics subject classification: 65D30.

Keywords and phrases: Caputo derivative, implicit–explicit time integration, upwind
difference scheme, Rouse polymer melt, Zimm chain solution.

1. Introduction

Fractional partial differential equations (FPDEs) have emerged as a powerful tool for
modelling the multiphysics and multiscale processes in numerical simulations ranging
from physics [20–22] and biology [30] to quantitative finance [13]. For example,
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some of the most significant and profoundly published experimental results in random
flow environments, such as the cytosol and the plasma membrane of biological cells
[38], crowded complex fluids and polymer solutions [32], dense colloidal suspensions
[29], and single-file diffusion in colloidal systems [28], are better rationalized within
the fractional calculus framework. The growing number of applications of fractional
derivatives in various fields of science and engineering indicate that there is a
significant demand for better numerical algorithms. However, such algorithms are
predominantly designed for one-dimensional (1D) problems [34], due to the severe
memory restrictions imposed by these derivatives, a challenge that we alleviate in
Section 2.2.

The individual physics or scale components in FPDE have very different properties
that are reflected in their discretization, for example, in fractional advection diffusion
reaction (FADR) systems [23], the discrete advection has relatively slow (or “nonstiff”)
dynamics while the diffusion is a fast (or “stiff”) evolving process. Implicit–explicit
(IMEX) integrators have been proposed as an attractive alternative (compared with
the fully explicit or fully implicit time integration methods), where one combines the
explicit (implicit) integration for the slow (fast) scale [14]. In an IMEX scheme, the
system of equations assumes the form [2],

∂αΦ

∂tα
= f(Φ) + ηg(Φ), (1.1)

where the superscript, α, denotes order of the fractional derivative and η is a
nonnegative parameter. In (1.1), the terms collected in f(Φ) are on a slow time
scale. Because they are (possibly) nonlinear, the implementation of a fully implicit
integration scheme faces performance challenges, either from a poor performance
of iterative solvers or from a complex Jacobian matrix associated with the problem.
Therefore, it makes sense to solve this term explicitly. The terms in g(Φ), however,
are on a fast time scale, and their explicit solution may require excessively small time
steps to maintain numerical stability. Being usually linear in nature, they can be solved
implicitly without further complications. The stability of such methods is still bounded
by the Courant–Friedrichs–Lewy (CFL) condition [31], but because the fast terms are
treated implicitly, these conditions are less strict when compared with a fully explicit
scheme of similar formal order of accuracy. A class of such a time-asymptotically
stable IMEX method is introduced in Section 2.

We have limited our focus in this work on the development, analysis and appli-
cability of a novel spatiotemporal discretization method for the numerical solution
of the 1D and two-dimensional (2D) FADR systems. To the best knowledge of the
authors, a detailed analysis of the numerical methods for the FADR equation, in
the finite-difference framework, does not exist. Such analysis is available for the
fraction-diffusion equation [10] and the advection–diffusion equation [1]. Section
2 describes this method. Using the 1D linear FADR equation, the time-asymptotic
stability analysis and the spectral analysis for the method is outlined in Section 3.
In Section 4, the numerical method is benchmarked using the test cases for the 2D
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fraction diffusion equation, which was proposed by Brunner et al. [10]. The numerical
results of the subdiffusive dynamics of the viscoelastic channel flow are delineated
in Section 5. Section 6 concludes with a brief discussion of the implication of these
results in future studies.

2. Methodology

Let χ be a bounded domain in R2 with a sufficiently smooth boundary ∂χ.
We present the numerical method for an initial-boundary value problem for the
time-dependent FADR equation with fractional time-derivative of order α ∈ (0, 1), as
follows:

∂αu(x, t)
∂tα

+ K1(x, t)∇ · u(x, t) = K2(x, t)∇2u(x, t) + f (x, t), x ∈ χ, t ∈ (0, T),

u(x, 0) = u0(x), x ∈ χ,

α1u(x, t) + α2
∂u(x, t)
∂n

= g0(x, t), x ∈ ∂χ, t ∈ (0, T), (2.1)

where (∂αu(x, t))/(∂tα) denotes the Caputo fractional derivative of the variable, u(x, t),
of order α [35] with respect to t defined by

∂αu(x, t)
∂tα

=
1

Γ(1 − α)

∫ t

0

dt′

(t − t′)α
∂u(x, t′)
∂t′

, 0 < α < 1, (2.2)

and the operators ∇(·) and ∇2(·) in (2.1) are the (integer order) gradient and the
Laplacian operator in R2, respectively. Here, K1(x, t), K2(x, t) and g0(x, t) are con-
tinuous real valued functions of (x, t), and α1,α2 are constants in R. Additionally,
Γ(·) is the standard Γ-function. The FADR equation is related to the non-Markovian
continuous-time random walk and is a model for anomalous diffusional flow-fields
such as polymer melts [4–6, 11, 12], flows of liquid crystals [33, 46, 49, 50] as well
as biological flows including mucus [42, 45, 47, 48, 51] and cartilage [43]. In the next
three sections, we propose the numerical method for the spatiotemporal discretization
of (2.1).

2.1. Time integration The Caputo fractional time derivative in (2.1)–(2.2) is
discretized using the difference approximation and studied by Podlubny [35]. Suppose
the time interval [0, T] is discretized uniformly into n subintervals; we define
tk = kΔt, k = 0, 1, . . . , n, where Δt = T/n is the time step. Let u(x, tk) be the exact
value of a function u(x, t) at time step tk. Then, the fractional derivative can be
approximated as

∂αu(x, t)
∂tα

∣∣∣∣∣
t=tk+1

≈ 1
Γ(1 − α)

k∑
j=0

u(x, tj+1) − u(x, tj)
Δt

∫ (j+1)Δt

jΔt

dt′

(tk+1 − t′)α

=
1

Γ(1 − α)

k∑
j=0

u(x, tj+1) − u(x, tj)
Δt

∫ (k−j+1)Δt

(k−j)Δt
t′−α dt′
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=
1

Γ(1 − α)

k∑
j=0

u(x, tk+1−j) − u(x, tk−j)

Δt

∫ (j+1)Δt

jΔt
t′−α dt′

=
(Δt)1−α

Γ(2 − α)

k∑
j=0

u(x, tk+1−j) − u(x, tk−j)

Δt
rαj ,

where the weight, rαj = [(j + 1)1−α − j1−α]. Following an earlier work by the authors
that used standard integer-order advection–diffusion-reaction (ADR) equations [41],
we retain the “IMEX method philosophy” by explicitly discretizing the advection and
the reaction terms (that is, the “K1∇ · u(x, t)” term and “f (x, t)” term, respectively, in
(2.1)), while the diffusive term (that is, the “K2(x, t)∇2u(x, t)” term in (2.1)) is treated
semi-implicitly as follows:

K2(x, t)∇2u(x, t) ≈ θK2(x, t)∇2u(x, t)|tk + (1 − θ)K2(x, t)∇2u(x, t)|tk−1 .

This time integration method (referred to as the θ-method in the subsequent discussion)
generalizes the computationally explicit L1-method by Brunner et al. [10] as well as
the fully implicit method recently proposed by Jannelli [23].

2.2. Adaptive time stepping When the simulation time is long, the size of the
“memory” in the fractional derivative approximation becomes enormously large.
However, according to the “fading memory property” [16], for long times, the solution
of the FADR systems changes slower than the standard integer-order ADR processes.
Hence, it makes sense to employ a large time step at longer times. Let ũ(·, tk) be
the numerical approximation for u(·, tk). To detect this change, we define a measure
between the numerical solutions of two consecutive time steps by

Δutk =
‖ũ(·, tk) − ˜u(·, tk−1)‖l2
|| ˜u(·, tk−1)||l2

, k = 1, . . . , n.

For some user-defined relaxation parameter δ, if Δutk < δ, then the time spacing is
geometrically increased (that is, Δt → 2Δt), up to some prefixed value Δtmax.

2.3. Spatial approximation The gradients and Laplacian in (2.1) are spatially
approximated using the upwind difference scheme (UDS) [36] and the second-order
central difference scheme (CDS), respectively. Recall that the CDS approximation
of the convective terms in (2.1) does not model the flow-physics accurately [41].
Furthermore, a first-order upwind scheme is too diffusive, thereby necessitating the
use of higher order upwind schemes. For example,

K1(x, t)
∂u
∂x
≈ K1ij

(uk
i+1,j − uk

i−1,j

2Δx

)
+ q(K+1 u−x + K−1 u+x ),
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where

K−1 = min(K1ij, 0), K+1 = max(K1ij, 0),

u−x =
uk

i−2,j − 3uk
i−1,j + 3uk

i,j − uk
i+1,j

3Δx
, u+x =

uk
i−1,j − 3uk

i,j + 3uk
i+1,j − uk

i+2,j

3Δx
.

Here the parameter q = 0.5 represents the third-order accurate upwind formula (UD3)
that is used for the interior stencil points. The use of ghost points is avoided by setting
q = 0 for grid points immediately adjacent to the boundary, leading to a second-order
accurate method (UD2) at these points. Since the focus of the present work is on the
development of the time integration method, we retain the same spatial approximation
outlined above in all the subsequent test cases.

3. Time-asymptotic stability and spectral analysis: linear 1D FADR equation

The linear 1D FADR equation (2.1) (with K1 = c, K2 = γ, f (x, t) = λu(x, t) for
x ∈ (−∞,∞), where c, γ and λ are constants specifying the advection speed, coefficient
of diffusion and coefficient of reaction, respectively) serves as a model for the FPDE
replicating multiscale processes.

3.1. Time-asymptotic stability analysis First, we show that the solution of the
linear 1D FADR equation, coupled with periodic boundary conditions and discretized
using the numerical method outlined in Sections 2.1–2.3, is time-asymptotically stable
for a limited range of CFL and Péclet numbers [39]. The discretization of the linear
1D FADR equation, using the θ-method, is as follows:

(Δt)−α

Γ(2 − α)

{ n∑
j=1

(j(1−α) − (j − 1)(1−α))(un−j+1
i − un−j

i )
}

+ c
(un−1

i+1 − un−1
i−1

2Δx

)
+ qc
(un−1

i−2 − 3un−1
i−1 + 3un−1

i − un−1
i+1

3Δx

)

= γθ
un

i+1 − 2un
i + un

i−1

(Δx)2 + γ(1 − θ)
un−1

i+1 − 2un−1
i + un−1

i−1

(Δx)2 + λun−1
i , (3.1)

where n/i denotes the temporal/spatial index, and we set the parameter q = 0.5. We
introduce the following nondimensional parameters: the fractional CFL number Nc,
fractional Péclet number Pe and fractional Damköhler number Da, as

Nc =
c(Δt)α

Δx
, Pe =

γ(Δt)α

(Δx)2 , Da =
λ(Δx)

c
.

In the subsequent discussion, we drop the prefix “fractional” in these nondimensional
parameters. Rearranging the terms in (3.1), we arrive at the following equation:

{1+2PeθΓ(2−α)}un
i −PeθΓ(2−α)un

i+1−PeθΓ(2−α)un
i−1

= {1 − qNcΓ(2−α) − 2Pe(1−θ)Γ(2−α) + DaNcΓ(2 − α)}un−1
i
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+

{
− Nc
Γ(2 − α)

2
+ qNc

Γ(2 − α)
3

+ Pe(1−θ)Γ(2−α)
}
un−1

i+1

+

{
Nc
Γ(2−α)

2
+ qNcΓ(2−α)+Pe(1 − θ)Γ(2 − α)

}
un−1

i−1

− qNc
Γ(2 − α)

3
un−1

i−2 +

n∑
j=2

{j(1−α) − (j − 1)(1−α)}(un−j+1
i − un−j

i ). (3.2)

If ũn
i is the (numerically) approximate solution of (3.2), then the round-off error,

εn
i = un

i − ũn
i (i = 0, . . . , M), identically satisfies the same equation. Due to periodic

boundary conditions,

εn
0 = ε

n
M , n = 1, 2, . . . , T .

Assume the round-off error has the form

εn
i = ξneIk(ih),

where ξn = |εn
i |, I =

√
−1, h = Δx and k = 2πl/L (l, index and L, spatial domain

length). We substitute the above relation in the equation for the round-off error to
arrive at the form

μ1ξn = μ2ξn−1 +

n∑
j=2

rαj (ξn−j+1 − ξn−j), (3.3)

where

μ1 = 1 + 2PeθΓ(2 − α)(1 − cos(kh)),

μ2 = 1 −
{
Ncq
(
1 − 2

3
cos(kh)

)
+ 2Pe(1 − θ)(1 − cos(kh)) − DaNc + INc sin(kh)

− Ncq
3

(2e−Ikh − e−2Ikh)
}
Γ(2 − α),

rαj = j(1−α) − (j − 1)(1−α). (3.4)

Next, we prove the result that the finite difference scheme in (3.3)–(3.4) is time-
asymptotically stable in the following theorem.

THEOREM 1. The approximate solution to the 1D linear FADR equation using the
θ-method in (3.3) with α ∈ (0, 1), on the finite domain x ∈ [−L, L] with periodic
boundary conditions, is time-asymptotically stable for all t ≥ 0.

PROOF. It suffices for us to show that the time-amplification factor, ξn in (3.3), obeys
the inequality,

ξn ≤ ξn−1 ≤ ξn−2 ≤ · · · ≤ ξ1 ≤ ξ0.
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• For n = 1 in (3.3)–(3.4), we observe the μ1 ≥ 1 while μ2 ≤ 1 for sufficiently small
Nc and Pe, thereby leading us towards the conclusion that ξ1 ≤ ξ0.

• Using the induction hypothesis, we assume that ξn−1 ≤ ξn−2 ≤ · · · ≤ ξ1 ≤ ξ0. Next
we show that ξn ≤ ξn−1.

• Since μ1 ≥ 1 and μ2 ≤ 1, (3.3) can be replaced with the following inequality:

ξn ≤ ξn−1 +

n∑
j=2

rαj (ξn−j+1 − ξn−j) ≤ ξn−1. (3.5)

The second inequality in (3.5) occurs because:

(i) rαj is positive;
(ii) rαj > rαj+1;

(iii) ξn−j+1 − ξn−j ≤ 0 (via the induction hypothesis).

This completes the proof. �

We emphasize that while the θ-method is not unconditionally stable, it is
time-asymptotically stable for a restricted range of Nc and Pe.

3.2. Spectral analysis Although the θ-method is time-asymptotically stable, the
presence of dispersion errors (through negative group velocity and large phase speed
errors) would invalidate the long time integration results [40]. Hence, we couple the
result in Section 3.1 along with the toolset of spectral analysis to deduce the relevant
range of the parameters, Nc, Pe and Da, for an accurate representation of the numerical
solution of the 1D FADR equation.

Using the spectral (Fourier) representation of the approximate solution of (3.2), we
have ũn

i = ξ
′
neI(ikh) (I =

√
−1, k = 2πlL). We define the numerical time-amplification

factor

Gnum =
ũn

i

ũn−1
i

=
ξ′n
ξ′n−1

.

Dividing (3.2) by ũn−1
i , we arrive at the equation governing Gnum,

C0Gn
num + C1Gn−1

num +

n∑
j=2

rαj (Gn−j+1
num − Gn−j

num) = 0, (3.6)

where the coefficients,

C0 = 1 + 2PeθΓ(2 − α)(1 − cos(kh)),

C1 = −1 + qNcΓ(2 − α)
(
1 − 4

3
cos(kh) +

1
3

cos(2kh)
)

+ 2Pe(1 − θ)Γ(2 − α)(1 − cos(kh)) − DaNcΓ(2−α)

+ INcΓ(2 − α)
(
sin(kh) +

2
3

q sin(kh) − q
3

sin(2kh)
)
.
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We remark that the order “n” of the polynomial in (3.6) is fixed at n = 75 in the
subsequent analysis, since our numerical studies have shown that an increase in the
polynomial order by one shifts the contours of the spectral variables by less than
0.001%.

Next, transforming the exact solution of the linear 1D FADR equation, using the
Fourier–Laplace transform as

u(x, t) =
�

Û(k,ω)eI(kx−ωt),

we arrive at the exact dispersion relation,

ωexact = ω = I(λ − γk2 − cIk)1/α.

Similarly, we have a corresponding numerical dispersion relation for the approximate
equation (3.2),

ωnum = I(λN − γNk2 − cNIk)1/α,

where the superscript “N” denotes the corresponding numerical values of the param-
eters, and the subscripts “exact” and “num” indicate the exact (analytical) and the
numerical value of the variable, respectively. Since

Gnum =
u(k, t + Δt)

u(k, t)
=

eI(kx−ωnum(t+Δt))

eI(kx−ωnumt) = e−IωnumΔt = eIβ,

and the numerical phase speed is given by cnum = ωnum/k,

cnum = −
β

kΔt
= − 1

kΔt
tan−1

( (Gnum)Im

(Gnum)Re

)
,

where the subscript “Im” and “Re” denote the imaginary and real values, respec-
tively. Using the expression for the exact phase speed, cexact = ωexact/k and the
non-dimensional parameters described in (3.2), we find the ratio of the phase speeds,

cnum

cexact
=

−Iβ
(DaNc − (kh)2Pe − I(kh)Nc)1/α .

Finally, the expression for the numerical and the exact group velocities Vg are
given by

Vgnum =

[
∂

∂k
(ωnum)

]
Re
=

[
∂

∂k

(
β

Δt

)]
Re
=

[ h
Δt

dβ
d(kh)

]
Re

,

Vgexact =

[
∂

∂k
(ωexact)

]
Re
=

[
∂

∂k
(I(λ−γk2−cIk)1/α)

]
Re
=

[ 1
α

(c−2kγI)(−Iω)1−α
]

Re
.

Hence,
(Vg)num

(Vg)exact
=

(
α

Nc(r1−α(Δt)1−α cos (1 − α)φ)+2kh(r1−α(Δt)1−α sin (1 − α)φ)Pe

)( dβ
d(kh)

)∣∣∣∣∣
Re

,

where ω = reI(φ+π/2).
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FIGURE 1. Group velocity ratio contours in the Nc–kh plane (Nc plotted on the x-axis), Vg, at
θ = 0.5, α = 0.9 and (a) Pe = 0.001, Da = −0.01, (b) Pe = 0.001, Da = 0.0, (c) Pe = 0.001, Da = 0.01,
(d) Pe = 0.01, Da = −0.01, (e) Pe = 0.01, Da = 0.0, (f) Pe = 0.01, Da = 0.01, (g) Pe = 1.0, Da = −0.01,
(h) Pe = 1.0, Da = 0.0 and (i) Pe = 1.0, Da = 0.01.

The contour plots for the group velocity ratio, Vg = [Vg,num/Vg,exact]Re, for Péclet
numbers, Pe = 0.001, 0.01 and 1.0, and Damköhler numbers, Da = −0.01, 0.0 and
0.01, are presented for two values of θ, namely, θ = 0.5 (in Figure 1) and θ = 1.0
(in Figure 2) in the (Nc, kh)-plane. The corresponding contour plots for the absolute
phase speed error, Δc = |1 − cnum/cexact|, are shown in Figures 3 and 4 for θ = 0.5 and
θ = 1.0, respectively. Regions of favourable spectral properties (Vg > 0 and Δc ≤ 0.1)
are highlighted with grey colour.

We outline the spectral properties, namely, the group velocity ratio and the absolute
phase speed error, for a specific case of the fractional order, α = 0.9. In general, we find
that in the limit of vanishingly small values of kh, the numerical method has favourable
spectral properties (that is, Vg > 0 and Δc ≤ 0.1 in the limit, kh→ 0). The region
of positive group velocities (Vg > 0) indicate a region where the numerical solution
travels in the correct direction and the numerical instabilities in the form of q-waves are
avoided [41]. Figures 1 and 2 indicate that this favourable region is restricted to smaller
values of kh with larger values of Pe as well as with smaller values of θ. While the
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FIGURE 2. Group velocity ratio contours in the Nc–kh plane (Nc plotted on the x-axis), Vg, at
θ = 1.0, α = 0.9 and (a) Pe = 0.001, Da = −0.01, (b) Pe = 0.001, Da = 0.0, (c) Pe = 0.001, Da = 0.01,
(d) Pe = 0.01, Da = −0.01, (e) Pe = 0.01, Da = 0.0, (f) Pe = 0.01, Da = 0.01, (g) Pe = 1.0, Da = −0.01,
(h) Pe = 1.0, Da = 0.0 and (i) Pe = 1.0, Da = 0.01.

former observation can be attributed to the fact that a stiff diffusive term (that is, larger
“K2(x, t)∇2u(x, t)” term in (2.1)) can be correctly approximated with smaller grid-size,
h; the latter observation can be explained through a numerical stabilization due to the
implicit treatment of fast time scale term (in this case, the diffusive term). Both of
these observations are in congruence with the corresponding analysis of the integer
order ADR equations [41]. Similarly, the absolute phase error contours highlight a
spectrally favourable region (Δc ≤ 0.1, equivalently the phase errors are restricted to
10% of the exact phase speed, see Figures 3 and 4) at lower values of Pe and at lower
values of θ, indicating that the phase errors in this numerical method can be reduced
by introducing finer grids [24, 25].

We summarize our discussion by indicating two sources of error that are particularly
perplexing in the direct numerical simulation (DNS) of FADR equations. The first
source of error is the existence of q-waves for those set of numerical parameters
for which the spatiotemporal discretization is time-asymptotically stable. In such a
situation, the q-waves do not attenuate and have to be eliminated by deploying an
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FIGURE 3. Absolute phase speed error contours in the Nc–kh plane (Nc plotted on the x-axis), Δc at
θ = 0.5, α = 0.9 and (a) Pe = 0.001, Da = −0.01, (b) Pe = 0.001, Da = 0.0, (c) Pe = 0.001, Da = 0.01,
(d) Pe = 0.01, Da = −0.01, (e) Pe = 0.01, Da = 0.0, (f) Pe = 0.01, Da = 0.01, (g) Pe = 1.0, Da = −0.01,
(h) Pe = 1.0, Da = 0.0 and (i) Pe = 1.0, Da = 0.01.

explicit filter [54]. Another aspect of spectral error is related to Gibbs’ phenomenon
that occurs as a consequence of sharp discontinuity in the solution and that causes
fictitious oscillations, a problem that can be remedied using high accuracy dispersion
relation preserving schemes (which has at least shown promise in integer order partial
differential equations) [40].

4. Method validation: 2D fractional diffusion equation

Using the spectrally relevant parameter values discussed in Section 3.2, the
θ-method is verified by solving the 2D fractional diffusion equation (K1 = f = 0 and
K2 = 1 in (2.1)), originally proposed by Brunner et al. [10], for the case of (a) zero
Dirichlet boundary conditions (α1 = 1,α2 = 0, g0(x, t) = 0) and (b) zero Neumann
conditions (α1 = 0,α2 = 1, g0(x, t) = 0), over the square domain, (x, y) ∈ Γ = [−1, 1]2.
The initial condition for the two test cases can be outlined as follows:
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FIGURE 4. Absolute phase speed error contours in the Nc–kh plane (Nc plotted on the x-axis), Δc at
θ = 1.0, α = 0.9 and (a) Pe = 0.001, Da = −0.01, (b) Pe = 0.001, Da = 0.0, (c) Pe = 0.001, Da = 0.01,
(d) Pe = 0.01, Da = −0.01, (e) Pe = 0.01, Da = 0.0, (f) Pe = 0.01, Da = 0.01, (g) Pe = 1.0, Da = −0.01,
(h) Pe = 1.0, Da = 0.0 and (i) Pe = 1.0, Da = 0.01.

(i) Dirichlet case: u0(x, y) = cos(π/2x) cos(π/2y);
(ii) Neumann case: u0(x, y) = sin(π/2x) sin(π/2y),

and the exact solution for both cases is given by

uExact(x, y, t) = Eα
(− 1

4π
2tα
)
u0(x, y),

where Eα(z) =
∑∞

k=0(zk/Γ(αk + 1)),α > 0, is the one-parameter Mittag–Leffler
function [15].

The domain, Γ ∪ ∂Γ, is discretized using 51 × 51 points and the relative error in
l2-norm, (‖̃u − uExact‖2/‖uExact‖2), versus discretization time, Δt, is shown in Figure 5.
The total computation time is fixed at T = 0.35 for all cases. We note that slope of
the error curves at α = 1.0 is one (highlighted with solid curves in Figure 5(a),(b)).
This observation can be explained since at this value of α, the θ-method reduces
to the standard, integer order, Euler method, which is first-order accurate. Further,
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FIGURE 5. Relative error for the solution of the 2D fractional diffusion equation at simulation time
T = 0.35, at α = 1.0, θ = 1.0 (�); α = 0.9, θ = 1.0 (�); α = 0.67, θ = 1.0 (◦); α = 0.5, θ = 1.0 (�); α = 1.0,
θ = 0.6 (∗); α = 0.9, θ = 0.6 (�); α = 0.67, θ = 0.6 (•); α = 0.5, θ = 0.6 (+); and for (a) Dirichlet boundary
conditions and (b) Neumann boundary conditions.

note that the slope of the error curves for α < 1.0 is sub-linear, indicating that for the
fractional-order diffusion equation, the θ-method has sub-linear order of accuracy.

5. Numerical simulation: 2D fractional viscoelastic channel flow

Next, we describe the incompressible, subdiffusive dynamics of a planar viscoelas-
tic channel flow for polymer melts and present the numerical solution using the
θ-method described in Section 2. Using the following scales for nondimensionalizing
the governing equations: the height of the channel H for length, the timescale T
corresponding to maximum base flow velocity (that is, T = (H/U0)1/α) for time and
ρU2

0 for pressure and stresses (where ρ,U0 is the density and the velocity scale,
respectively), we summarize the model in streamfunction-vorticity formulation as
follows:

Re
[
∂αΩ

∂tα
+ v · ∇Ω

]
= ν∇2Ω +

(1 − ν)
We

∇ × ∇ · C, (5.1a)

∇2ψ = −Ω, (5.1b)
∂αC
∂tα
+ v · ∇C − (∇v)TC − C∇v =

I − C
We

, (5.1c)

where the variables t,ψ, v = (u, v) = (∂ψ/∂y,−∂ψ/∂x), C,Ω = ∇ × v denote time,
streamfunction, velocity, polymer conformation tensor and vorticity, respectively.
The parameters η0 = ηs + ηp and ν = ηs/η0 are the total viscosity and the viscous
contribution to the total viscosity of the fluid, respectively. The dimensionless
groups characterizing inertia and elasticity are Reynolds number, Re = ρU0H/η0,
and Weissenberg number, We = λαU0/H, respectively. The parameter, λα, is the
polymer relaxation time. Note that (5.1c) represents a fractional version of the regular
Oldroyd-B model for viscoelastic fluids [44], derived in a recently reported work
[11]. Two specific cases of the fractional derivative are considered, namely, monomer
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diffusion in Rouse chain melts (α = 1/2) [37] and in Zimm chain solution (α =
2/3) [55].

5.1. Initial and boundary conditions Initial conditions: a rectilinear coordinate
system is used with x, y denoting the channel flow direction and the transverse
direction, respectively. The origin of this coordinate system is chosen at the left end of
the lower wall of the channel. The mean flow is assumed to be a plane Poiseuille flow
with its variation entirely in the transverse direction, namely,

U0 = (y − y2)ex,

where ex is the unit vector along the x-direction. The mean flow, U0, defines the mean
vorticity, Ω0 = 2y − 1, and the mean streamfunction, ψ0 = y2/2 − y3/3. The base state
polymer conformation tensor, C0 = [C0ij], is given by

C011 = 1,
C012 = C021 = We(1 − 2y),

C022 = 2We2(1 − 2y)2 + 1.

The initial condition comprises the mean flow superposed with a perturbed unstable
mode, as follows:

Ω|t=0 = Ω0 + εΩ1 = Ω0 + εR{Ω̃(y)|t=0eIkx},
ψ|t=0 = ψ0 + εψ1 = ψ0 + εR{ψ̃(y)|t=0eIkx},
C|t=0 = C0 + εC1 = C0 + εR{C̃1(y)|t=0eIkx}, (5.2)

where (Ω1,ψ1,C1) are the perturbations that are Fourier transformed in the x-direction.
Here, R{} denotes the real part of the complex valued function. The equations
governing the initial conditions in (5.2) are listed in Appendix A., whose solution
is found using a standard MATLAB boundary value solver.

Boundary conditions: to imitate an infinitely long channel, periodic boundary
conditions are assumed at the flow inlet and outlet. No-slip (that is, u = v = 0) and
zero tangential conditions (that is, ∂u/∂x = ∂v/∂x = 0) are imposed on the lower
wall (y = 0) and the upper wall (y = 1.0) of the channel, respectively. Further, the
incompressibility constraint provides an additional condition on the walls: ∂v/∂y = 0.
Since the flow is parallel to the channel walls, the walls may be treated as streamline.
Thus, the streamfunction value, ψ, on the wall is set as a constant. That constant (which
may be different on the lower and the upper wall) is found from the no-slip condition.
The zero tangential condition implies that all tangential derivatives of streamfunction
vanish on the wall. Thus, the boundary condition for vorticity is found from the Poisson
equation (5.1b),

∂2ψ

∂y2 |boundary = −Ωboundary,
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where the subscript “boundary” denotes the value of the variable at the boundary.
Finally, the boundary conditions for the elastic stress tensor are constructed from
(5.1c), coupled with the no-slip and zero tangential conditions, as follows:

C11 = 1,
C12

We
+
∂αC12

∂tα
− ∂u
∂y
= 0,

C22 − 1
We

+
∂αC22

∂tα
− 2

∂u
∂y
C12 = 0.

5.2. Algorithmic details The size of the domain is chosen to be (x, y) ∈ [0, 5] ×
[0, 1]. The domain is discretized using 76 × 51 points, such that the discrete points are
equally spaced at Δx = 5/75 and Δy = 1/50 in the x- and the y-directions, respectively.
The variable in the θ-method is fixed at θ = 1.0. The minimum and the maximum time
steps are chosen as Δtmin = 10−3 and Δtmax = 1.6 × 10−2, respectively. The parameters
in the initial conditions in (5.2) are set at ε = 0.1, k = 0.1. The time step in the
simulation is increased adaptively using the technique outlined in Section 2.2. The
Poisson equation (5.1b) is iteratively solved using the Gauss–Seidel iteration technique
[3]. Assuming (N + 1) (or (M + 1)) points in the x- (or y-) direction, the size of
the coefficient matrix is N(M − 1) × N(M − 1). Hence, due to size constraints, the
numerical inversion of this coefficient matrix imposes severe memory restrictions.
Instead, we note that the coefficient matrix has the following block tridiagonal
structure with (M − 1) blocks:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D1 D2 0 · · · 0

D2
. . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . D2

0 · · · 0 D2 D1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.3)

where D1 (D2) are N × N tridiagonal (diagonal) matrices, such that D1 = Tridiag(r1,
R, r1), D2 = Diag (r2), r1 = (Δx)−2, r2 = (Δy)−2 and R = −2(r1 + r2). Since the exact
location of the nonzero entries is known, the invocation of the entire coefficient matrix
in the Guass–Siedel iteration is avoided. The solution is updated by using the nonzero
entries of each row on a case-by-case basis. The row diagonal dominance of the matrix
in (5.3) ensures that the iteration converges in a finite number of steps. Similarly, the
vorticity equation (5.1a) involves another Laplacian term and its discretization involves
a coefficient matrix identical to the form in (5.3) with

r1 = −νθ(dx)−2, r2 = −νθ(dy)−2, R = −2(r1 + r2) +
Re(Δt)−α

Γ(2 − α)
.

Thus, the Laplacian term in (5.1a) is treated identically as above.
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5.3. Numerical evolution of the conformation tensor equations The advection
term in the conformation tensor equation (5.1c) is second-order accurate in space with
the exception of a few points where it is only first-order accurate. This change in order
is due to the special treatment of the advection term in the conformation tensor that
is needed to avoid the Hadamard instabilities resulting in the loss of the symmetric,
positive definite (SPD) property of the conformation tensor [52]. The special treatment
is an efficient transformation of the slope-limiting approach of Vaithianathan et al.
[53], which requires the evaluation of three schemes: forward, backward and centred
stencils, to approximate the advective flux at each grid point and at each time step. The
resultant scheme that maximizes the eigenvalues of the conformation tensor at the grid
points is then chosen. Further, following Dubief et al. [18], we ensure that the polymer
does not exceed its maximum extensibility by using a semi-implicit approach for the
relaxation term in (5.1c).

5.4. Quantifying viscoelastic macrostructures via non-Euclidean metric The
statistics of polymer forces and torques have been used in previous methods to visu-
alize the dynamics of polymers in diluted liquids [18, 26]. However, the conformation
tensor, C, a second-order positive definite tensor that is generated by averaging the
dyad formed by the polymer end-to-end vector over all molecular realizations, is a
better indicator of the polymer deformation history [9]. The trace of C (referred to
as trC from now on) is frequently used in the literature to analyse C, because (i)
it is proportional to the elastic energy in purely Hookean constitutive models of the
polymers [7] and (ii) it is equal to the sum of its principal stretches [52]. However, trC
does not provide a thorough enough description of polymer deformation. For instance,
Beris and Edwards [7] discovered that an increase in elasticity does not always result
in an equivalent change in the mean velocity profile, since the mean stress deficit does
not depend on any of the normal components of C. This illustration emphasizes the
significance of simultaneously taking into account all of the elements of C to fully
understand the polymer deformation and its impact on the velocity field. One way
to acquire pertinent higher-order statistical descriptions of C is to use the fluctuating
conformation tensor, C′ (obtained by deducting the mean conformation tensor, C, from
the instantaneous tensor, C). This fluctuating tensor, however, is not guaranteed to
be physically realizable, because (i) whenever trC′ ≤ 0, this implies negative material
deformation and this tensor loses positive-definiteness, and (ii) equally probable states
of contraction and expansion (trC′ ∈ (0, 1)) would be described by fluctuations of
very different magnitudes. Because the logarithm of a positive definite matrix is a
symmetric matrix and the collection of symmetric matrices forms a vector space [8],
using logC to assess fluctuations in C is more appealing. The Riemannian manifold of
positive definite, polymer conformation tensors forces us to use the following metric,
which is constructed as follows (see [8] for more information):

d(X, Y) =
[ 3∑

i=1

(logσi(X−1Y))2
]1/2

, (5.4)
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where σi are the eigenvalues of the matrix X−1Y. Using this metric, we define three
scalar measures used to quantify the fluctuating polymer conformation tensor, which
are enumerated as follows.

(i) Scalar Invariant δ1 is the volume ratio of fluctuations, defined as

δ1 = log
(detC
detC

)
. (5.5)

When δ1 = 0, the mean and the instantaneous conformation tensors have the
same volume and when δ1 is negative (positive), the instantaneous conforma-
tion tensor has a smaller (larger) volume than the mean volume.

(ii) Scalar Invariant δ2 is the measure of the shortest path between C and C,
defined as

δ2 = d2(C,C). (5.6)

Using (5.4), we can easily derive that d2(C,C) = d2(C−1
,C−1), which implies

that this squared geodesic treats both expansions and compressions identically.
(iii) Scalar Invariant δ3 is the squared geodesic distance between C and its closest

isotropic tensor,

δ3 = δ2 − 1
3δ

2
1. (5.7)

Notice that δ3 = 0 if and only if δ2
1 = 3δ2, in which case, C reduces to an

isotropic tensor.

Note that the metric in (5.4) along with the three scalar invariants are designed to
bypass the caveat of the regular invariants (such as trace and determinant) of the
polymer conformation tensor, namely, the fluctuating conformation tensor fields may
not retain positive definiteness in their standard arithmetic decomposition and hence,
may not retain their physical meaning.

5.5. Numerical results Next, the in silico studies for two specific cases of monomer
diffusion in Rouse chain melts (α = 1/2) [37] and in Zimm chain solution (α = 2/3) [55]
are reported. The Rouse model predicts that the viscoelastic properties of the polymer
chain can be described by a generalized Maxwell model, where the elasticity is
governed by a single relaxation time, which is independent of the number of Maxwell
elements (or the so-called “submolecules”). In contrast, the Zimm’s model predicts
the (“shear rate and polymer concentration independent”) viscosity of the polymer
solution by calculating the hydrodynamic interaction of flexible polymers (an idea
that was originally proposed by Kirkwood [27]) by approximating the chains using a
bead–spring setup.

The instantaneous principle invariant of the conformation tensor, trC, as well
as the new invariants, (5.5)–(5.7) for a specific set of parameters values, ν = 0.3,
Re = 70, We = 20, and simulation time, T = 7.15, are presented for both the Zimm’s
case (left column) and the Rouse case (right column) in Figure 6. Figure 6(a) (as well
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FIGURE 6. Contours of instantaneous (a, b) volume ratio, δ1, (c, d) shortest distance from the mean, δ2,
(e, f) anisotropy index, δ3, for the Zimm’s model (left column) and the Rouse model (right column) at
simulation time, T = 7.15. Other parameters are fixed at ν = 0.3, Re = 70, We = 20.

as Figure 6(b)) shows the logarithmic volume ratio, δ1. We find that in Figure 6(a),
we have predominantly negative values, indicating that the instantaneous volume is
smaller than the volume of the mean conformation. Further, we observe regions of very
high values of δ1 interspersed with regions of very low values, especially near the wall.
This observation is the result of the slow diffusion of polymers in subdiffusive flows
since there is no direct mechanism for smoothening out these “elastic shocks” in the
tensor field. Since these elastic shocks originate away from the flow inlet and outflow,
we conclude that these structures predominantly form due to the flow interaction with
the rigid walls.

The measure, δ1, does not distinguish between volume-preserving deformations.
For example, δ1 does not distinguish between C and det(C)C1 for any tensor C1 with
a unit determinant. In particular, δ1 = 0 does not imply C = C. To identify regions
where the instantaneous polymer conformation equals the mean conformation and
quantify the deviation when it is not, we use the squared geodesic distance away
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FIGURE 7. Contours of instantaneous volume ratio, δ1, for the elastic stress dominated Zimm’s model
(ν = 0.3,α = 2/3). Other parameters set at Re = 70, We = 15 (first row), Re = 1000, We = 15 (second row),
Re = 70, We = 20 (third row) and Re = 1000, We = 20 (fourth row).

from the mean along the Riemannian manifold, δ2 (Figures 6(c) and 6(d)). Figure 6(c)
indicates that the conformation tensor field, C, is significantly far away fromC, near the
wall. This deviation of δ2, in the near-wall region, can be explained via the “memory
effect”, previously observed in regular Oldroyd-B fluids [44]. Finally, Figure 6(e)–(f)
show the instantaneous contours of the anisotropy index, δ3. This index shows how
close the shape of instantaneous conformation tensor is to the shape of the mean
conformation tensor, irrespective of volumetric changes. The visual resemblance of
δ2 and δ3 suggests that deformations to the mean conformation are largely anisotropic
near the wall. Next, we limit our focus on the contours of the first invariant, δ1 (after
noting in Figure 6 that the contours of the other invariants are qualitatively similar)
and for two different values of ν: ν = 0.3 (elastic stress dominated case) and ν = 0.5
(viscous stress dominated case).

5.5.1. Elastic stress dominated case: ν < 0.5 Flows with parameter values, ν < 0.5
(or the elastic stress dominated case), are those associated with higher concentration of
polymers per unit volume. The contours of the first invariant, δ1, for the Zimm’s model
and the Rouse model are shown in Figures 7 and 8, respectively, at equal snapshots.
At lower values of elastic relaxation (represented by the parameter, We = 15), the
flow-macrostructure evolution in the Rouse model is slow, in comparison with the
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FIGURE 8. Contours of instantaneous volume ratio, δ1, for the elastic stress dominated Rouse model
(ν = 0.3,α = 1/2). Other parameters set at Re = 70, We = 15 (first row), Re = 1000, We = 15 (second row),
Re = 70, We = 20 (third row) and Re = 1000, We = 20 (fourth row).

Zimm’s model (that is, comparing the contour values in the first two rows in Figure 7
versus the first two rows in Figure 8). A reversal of this trend occurs at higher values of
elasticity (that is, the third and the fourth rows in Figures 7, 8 at We = 20). We attribute
this observation due to the following reasoning. The Rouse model represents a“thicker”
fluid, or fluids with slower diffusion than the Zimm’s solution, due to the smaller
fractional time derivative. Flows with smaller time derivative (or the thicker polymer
melt case) are those associated with higher concentration of polymers per unit volume
[9]. Physically, the formation of these “spatiotemporal macrostructures” are associated
with the entanglement of the polymer chains at microscale [38], leading to localized,
nonhomogeneous regions with higher viscosity. Experiments [19] have shown that
non-Newtonian fluids with a higher polymer concentration have a greater tendency
for the polymer strands to agglomerate (especially at higher elastic relaxation), or the
so-called “over-crowding effect” [17].

Further, notice the disappearance of the structures at larger values of Re (that is,
notice the time snippets at Re = 1000, the second and the fourth rows in Figures 7 and
8). This observation can be attributed to the fact that the macrostructures are “washed
out” of the channel at higher flow velocities. In an earlier work, we had indicated the
existence of “temporally stable regions at high fluid inertia” through a spatiotemporal
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FIGURE 9. Contours of instantaneous volume ratio, δ1, for the viscous stress dominated Zimm’s model
(ν = 0.5,α = 2/3). Other parameters set at Re = 70, We = 15 (first row), Re = 1000, We = 15 (second row),
Re = 70, We = 20 (third row) and Re = 1000, We = 20 (fourth row).

linear stability analysis [11]. In this work, we associate temporally stable regions with
regions devoid of flow structures.

5.5.2. Viscous stress dominated case: ν ≥ 0.5 Observe that the “flow structures”
for the Zimm’s model in the elastic stress dominated case (ν = 0.5, Figure 9) are
larger in size as well as in magnitude, in comparison with the Rouse model (Figure
10), at equal simulation times. Even within the respective models, we find that the
macrostructures are more prominent (both in size and magnitude) at higher values
of elastic relaxation (that is, at We = 20, third and fourth rows in Figures 9 and 10).
Again, note that the structure formation is conspicuously absent at larger values of Re
(the second and the fourth rows in Figures 9 and 10).

We summarize our discussion by noting that for the selected values of the
parameters, ν,α, Re and We: (a) the elastic stress dominated case (ν = 0.3 case) is
comparatively more unstable than the viscous stress dominated case; (b) the Rouse
model is comparatively more unstable than the Zimm’s model at low fluid inertia (or
lower values of Re) and higher elastic relaxation (or higher values of We); and (c)
temporal stability is achieved at higher values of Re, irrespective of the model or the
polymer concentration. Thus, our in silico studies not only corroborate the existence
of the previously established temporally stable region at high fluid inertia [11], but
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FIGURE 10. Contours of instantaneous volume ratio, δ1, for the viscous stress dominated Rouse model
(ν = 0.5,α = 1/2). Other parameters set at Re = 70, We = 15 (first row), Re = 1000, We = 15 (second row),
Re = 70, We = 20 (third row) and Re = 1000, We = 20 (fourth row).

also highlight the potential of fractional partial differential equations in effectively
capturing the flow-instability transition in subdiffusive flows.

6. Conclusion

This investigation addresses the development as well as the time-asymptotic
and spectral stability of a novel class of numerical method for the spatiotemporal
discretization of FPDE. Section 2 presented the method, including the time integration
(Section 2.1) and the spatial discretization (Section 2.3). Using the 1D linear FADR
equation, the time-asymptotic stability and spectral analysis were outlined in Section 3.
The method was validated using the test cases for the 2D fraction diffusion equation in
Section 4. Section 5 described the numerical results of the subdiffusive dynamics of
the viscoelastic channel flow. We conclude our discussion with a remark that the focus
of this present work was on the development of the numerical method and not on the
physical description of the subdiffusive flow dynamics. Hence, a comprehensive study
on the mechanics of subdiffusive channel flow, using the numerical method developed
in this work, is reported elsewhere1.

1Requisite data are available from the corresponding author upon reasonable request.
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Appendix A. Linearized system of equations governing
initial conditions for model 5.1

Assuming a normal mode expansion for the perturbed field, φ1 = φ̃1(y)eIkx (where
φ̃1 = (Ω1,ψ1,LG1 ), C = FeLGF

T
), (5.1) reduces to

Re((y − y2)Ω̃(ik) − 2ψ̃(ik)) = ν(Ω̃(ik)2 + Ω̃′′)+

1 − ν
We

(−k2F1F2L̃G11 − k2F2
2L̃G12 − k2F1F4L̃G12−

k2F2F4L̃G22 − F1
′′F2L̃G11 − F1F2

′′L̃G11 − F1F2L̃G11

′′

− F2
2
′′L̃G12 − F2

2L̃G12

′′
−F1

′′F4L̃G12 − F1F4
′′L̃G12−

F1F4L̃G12

′′
− F2

′′F4L̃G22 − F2F4
′′L̃G22 − F2F4L̃G22

′′
−

2F1
′F2
′L̃G11 − 2F1

′F2L̃G11

′
− 2F1

′F4
′L̃G12 − 2F1

′F4

L̃G12

′
− 2F1F2

′L̃G11

′
− 2F1F4

′L̃G12

′
− 2F2

′F4
′L̃G22−

2F2
′F4L̃G22

′
− 4F2F2

′L̃G12

′
− 2F2F4

′L̃G22

′
+ 2ikF2F2

′

L̃G11 + ikF2
2L̃G11

′
+ 2ikF2

′F4L̃G12 + 2ikF2F4
′L̃G12+

2ikF2F4L̃G12

′
+ 2ikF4F4

′L̃G22 + ikF2
4L̃G22

′
− 2ikF1

F1
′L̃G11 − ikF2

1L̃G11

′
− 2ikF1

′F2L̃G12 − 2ikF1F2
′L̃G12−

2ikF1F2L̃G12 − 2ikF2F2
′L̃G22 − ikF2

2L̃G22

′
),

ψ̃(ik)2 + ψ̃′′ = −Ω̃,

(y − y2)(ik)L̃G11 =
2
√

d
(F1F4ψ̃

′(ik) − F1F2ψ̃
′′ −F2

F4ψ̃(ik)2 + F2
2ψ̃
′(ik) − L̃G11 F1F2(1 − 2y) − F2

2L̃G12

(1 − 2y) − ψ̃(ik)(−F4F′1 + F2F′2)) −
L̃G11

We
,

(y − y2)(ik)L̃G12 =
1
√

d
(−2F1F2ψ̃

′(ik) + F2
1ψ̃
′′ + F2

2

ψ̃(ik)2 + L̃G11F
2
1(1 − 2y) + 2F2F4ψ̃

′(ik) − F2
2ψ̃
′′ − F2

4

ψ̃(ik)2 − L̃G22 F2
2(1 − 2y) − ψ̃(ik)(F2F′1 − F1F′2 − F4

F′2 + F2F′4)) −
L̃G12

We
,
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(y − y2)(ik)L̃G22 =
2
√

d
(L̃G12 F2

1(1 − 2y) − F2
2ψ̃
′(ik) + F1

F2ψ̃
′′ + F2F4ψ̃(ik)2 − F1F4ψ̃

′(ik) + L̃G22 F1F2(1 − 2y)

− ψ̃(ik)(F2F′2 − F1F′4)) −
L̃G22

We
,

where we denote d/dy( ) = ( )′ and

F =
[
F1 F2
F2 F4

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 +
√

d√
2d + 2

√
d

We(1 − 2y)√
2d + 2

√
d

We(1 − 2y)√
2d + 2

√
d

2d +
√

d − 1√
2d + 2

√
d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where

d = 1 +We2(1 − 2y)2.

The solution to the boundary value problem is found subject to the boundary
conditions, (ψ̃(y), ψ̃′(y)) = (0, 0) at the rigid walls y = 0, 1.
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