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Abstract
Missed detection probability is a critical metric for the integrity performance of receiver autonomous integrity
monitoring (RAIM) in the presence of faults. The traditional missed detection probability evaluation method for
RAIM is limited by impractical time consumption because of the absence of accurate searching interval for the
magnitude of a worst-case fault. To address this issue, the searching interval for the magnitude of a worst-case fault
is constructed by the combination of minimum detectable magnitude and minimum hazardous magnitude, and the
searching interval adjustment is designed to avoid the absence of worst-case fault magnitude so that the maximum
missed detection probability can be accurately evaluated. The simulation result indicates that the proposed method
can achieve higher accuracy for the worst-case fault magnitude searching. Furthermore, the accuracy of worldwide
evaluated missed detection rate can achieve an improvement of 57·66% at most by the proposed method for the
different classical RAIM algorithms.

1. Introduction

Global navigation satellite system (GNSS)-based positioning is vulnerable to infrequent observation
faults, such as satellite failures, which trigger potential integrity threats for the reliability of aircraft
navigation. As a user terminal integrity monitoring approach, receiver autonomous integrity monitoring
(RAIM) is consistently acknowledged as the ultimate safeguard for ensuring the integrity of satellite
navigation services. RAIM is deployed to monitor and assess the impact of potential threats on satellite
signals, contributing to the real-time reliability of aircraft navigation (Li et al., 2017). The classical
RAIM algorithm is designed to satisfy the required navigation performance (RNP) of en route and the
non-precision approach phase defined in civil aviation (Li et al., 2012). With the full deployment of a
BeiDou navigation satellite system (BDS) and Galileo, an increased number of redundant observation
signals becomes available. A renewed interest has been drawn to expand RAIM to satisfy the more
demanding RNP, e.g. LPV-200 (Kaleta and Skorupski, 2019).

With this goal, many forms of RAIM algorithms have been developed to support worldwide LPV-
200 service (Milner and Ochieng, 2011; Li et al., 2017). The probabilities of false alarm and missed
detection must be evaluated to verify the performance of RAIM (Milner et al., 2020). False alarm events
are the major source of continuity risk defined in the averaging sense, which is not the focus of this
contribution. The probability of missed detection determines the integrity performance in the presence
of a fault, which can be translated from the integrity risk of the RNP (Li et al., 2017). The hazardous
events caused by the satellite failures can bring catastrophic consequences for the safety of satellite-based
navigational applications. Therefore, it is crucial to utilise the missed detection probability evaluation
(MDPE) for RAIM algorithms for safety of navigation services.
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The MDPE is designed to evaluate the missed detection probability by artificially injecting an
observation fault into the RAIM algorithm (Blanch and Walter, 2020). The observation fault should
be specific with respect to the faulty satellite and the fault magnitude, which can also be called a fault
mode. Correspondingly, the rigorous MDPE is defined as whether or not the maximum missed detection
probability of the RAIM algorithm can be obtained by injecting the specific observation fault, because
the maximum missed detection probability is conservatively assumed as the truth of the integrity
capability of the RAIM algorithm. The faulty satellite can be obtained from exhaustive testing of all the
available satellites. Currently, most studies focus on the determination of fault magnitude, which can be
categorised into at least two groups.

The first group is the brute-forcing method. Theoretically, sufficient fault modes and sufficient
collected samples can be simulated to carry out the evaluation with adequate precision. For example,
Lee et al. (2021) analysed the sensitivity performance of advanced RAIM to the parameters of integrity
support message by the brute-forcing simulation. Wang et al. (2023) verified the missed detection
performance of the RAIM algorithm with different grades of integrity parameters based on the brute-
forcing method. The advantage of the brute-forcing method is that a priori statistical distribution of
the samples is not needed. However, the exhaustive testing of the fault mode is impractical for the time
consumption due to the absence of the interval for the fault magnitude, particularly when there are
different fault modes to be considered (Milner and Ochieng, 2009).

The second group is the MDPE based on the worst-case fault (WCF) magnitude. The WCF magnitude
maximise the missed detection probability. Therefore, the concept of a WCF magnitude can be used
to speed up the MDPE. For example, Joerger et al. (2014) used the WCF magnitude to compare the
integrity performance of RAIM algorithms based on the fault detector of residual and solution separation,
respectively. Blanch and Walter (2020) used the WCF magnitude searching method to estimate the
maximum missed detection probability for the advanced RAIM stress testing. Zhu et al. (2023) tested the
integrity performance of a multi-sensor navigation system against the WCF. Nevertheless, the searching
interval of the WCF magnitude has not yet been clarified. An over-tight searching interval may exclude
the WCF magnitude for a given fault mode, whilst an over-loose searching interval will introduce heavy
computational burden and reduce the search efficiency. Ober (2003) and Milner and Ochieng (2011)
introduced the concepts of minimum hazardous magnitude (MHM) and minimum detectable magnitude
(MDM) to construct the searching interval of the WCF magnitude. Furthermore, Jiang and Wang (2014)
proposed an optimised searching interval construction method to improve the WCF magnitude searching
efficiency. However, the proposed searching interval construction is challenged by the absence of the
WCF magnitude when the searching interval is over-tight. Therefore, the searching interval for the fault
magnitudes must be clarified when confronting the demanding required performance requirement.

According to this analysis, the traditional MDPE methods for the RAIM integrity performance
evaluation are restricted by the absence of accurate searching interval for the WCF magnitude. In order
to achieve the rigorous MDPE, we must speed up the evaluation process by imposing an accurate
searching interval for the WCF magnitude for a given fault mode. We construct the searching interval
of the WCF magnitude by combination of the MHM and MDM. Furthermore, the searching interval
adjustment strategy is designed to improve the searching accuracy of the WCF magnitude. Section 2
provides the simulation results and summarises the research findings.

2. Missed detection probability evaluation for RAIM

In this section, the MDPE method for RAIM is described, and the necessity of constructing the WCF
magnitude searching interval is discussed. The probability of missed detection is the likelihood of the
position error (PE) beyond the specified alarm limit (AL) or user-calculated protection level (PL), whilst
the test statistic is less than the detection threshold. Without losing generality, the probability of missed
detection can be expressed as (Zhai et al., 2020),

𝑝md = 𝑃(|𝜀 | > 𝑙 ∩ 𝑞 < 𝑇 |𝐻𝑖) (1)
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where 𝜀 = 𝒉∗T(𝒗 + 𝒇 𝑖) is least squares (LS) state estimate error, and 𝒉∗ = 𝜶T(𝑯T𝑯)−1𝑯T. Here, 𝜶
is the m× 1 vector used to extract the interest state out of the full state vector. For example, using
𝜶 =

[
0 0 1 0T

(𝑚−3)×1
]T to extract the vertical PE (VPE). Since the VPE is more difficult to satisfy than

the horizontal direction, we focus on the vertical performance in this contribution (Milner and Ochieng,
2011). H is the n×m normalised observation matrix; n denotes the number of elements of the state
vector; m is the number of observations collected in an epoch; and v is the n× 1 normalised observation
noise vector composed of zero-mean, unit-variance independent and identically distributed random
variables. The detailed calculation process of normalised observation matrix can be referred to (Joerger
et al. (2014), where f 𝑖 is the n× 1 fault vector, and H𝑖 is the hypothesis of ith satellite fault (Angus,
2007). Note that we consider the single satellite fault in this contribution because it has been widely
proven that the traditional RAIM algorithm is limited in capability to detecting only a single satellite
fault. Furthermore, l represents AL or PL, depending on whether the AL of navigation operations is
known or not; q represents the residual-based (RB) test statistic and is equal to the norm of the residual
vector 𝒓 = (𝑰𝑛 − 𝑯(𝑯T𝑯)−1𝑯T)𝒛, where z is the n× 1 normalised observation vector. Note that we
will denote the (𝑰𝑛 − 𝑯(𝑯T𝑯)−1𝑯T) as M in the following to simplify notation. If f= 0𝑛 × 1, q follows
a chi-squared distribution with n–m degrees of freedom. Otherwise, q follows a noncentral chi-squared
distribution with n–m degrees of freedom and noncentrality parameter 𝜆2 (Zhao et al., 2020). The
detection threshold T is obtained from the inverse chi-square distribution when the required false alarm
probability under the fault-free hypothesis is given (Joerger et al., 2014).

Based on the LS estimator and the RB detector, the PE and the test statistic follow the normal
distribution and the noncentral chi-square distribution, respectively. Furthermore, it has been proven
that the PE and the constructed test statistic are independent of each other (Ober, 2003). Therefore,
Equation (1) can be written as,

𝑝md = 𝑝pf × 𝑝nd = 𝑃{|𝜀 | > 𝑙 |𝐻𝑖} × 𝑃{𝑞 < 𝑇 |𝐻𝑖} (2)

where ppf is the probability of positioning failure; pnd is the probability that test statistic is less than the
detection threshold; and ppf and pnd can be expressed as (Blanch and Walter, 2020),

𝑝pf = 𝑃{|𝜀 | > 𝑙 |𝐻𝑖} = Φ

[
𝑙 + 𝜂𝑖
𝜎

]
+Φ

[
𝑙 − 𝜂𝑖
𝜎

]
(3)

𝑝nd = 𝑃{𝑞 < 𝑇 |𝐻𝑖} = 𝜒
2
𝑇 ,𝑛−𝑚 [𝜆

2
𝑖 ] (4)

where Φ is the tail cumulative distribution function (CDF) of a standard normal distribution; 𝜒2
𝑝1, 𝑝2 [ · ]

is the CDF of a noncentral chi-squared with the detection threshold p1 and degrees of freedom
p2; and 𝜂𝑖 and 𝜆2

𝑖 correspond to the VPE and noncentrality parameter under the H𝑖 hypothesis,
respectively, and can be expressed as,{

𝜂𝑖 = 𝒉∗T 𝒇 𝑖 = 𝒉∗T𝑭𝑖𝑏

𝜆2
𝑖 = 𝒇 T

𝑖 𝑴 𝒇 𝑖 = 𝑭T
𝑖 𝑴𝑭𝑖𝑏

2 (5)

where F𝑖 is 𝑛 × 1 vector to indicate the faulty satellite in fault vector f 𝑖 . For example, F1 = [1 0 . . . 0]𝑇
represents the failure that occurred on the first satellite, and b is the fault magnitude of satellite i and is
the norm of fault vector f 𝑖 .

Since the rigorous MDPE needs to obtain the maximum probability of missed detection given the
WCF 𝒇 𝑖 ,

𝑝𝑚𝑑 = 𝑃(|𝜀 | > 𝑙 |𝐻𝑖 ∩ 𝒇 𝑖) × 𝑃(𝑞 < 𝑇 |𝐻𝑖 ∩ 𝒇 𝑖) (6)

The maximum probability of missed detection can be accurately calculated when the WCF is provided.
The posterior probability of missed detection 𝑝𝑚𝑑 can be calculated by collecting the cases that the PE
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is larger than l whist the test statistic is less than the threshold. The calculated 𝑝𝑚𝑑 is compared with the
predefined PMD to verify whether the missed detection probability of the RAIM is satisfied. Therefore,
it is necessary to obtain the WCF for the rigorous MDPE.

The WCF is obtained when the WCF satellite is determined and the WCF magnitude is provided.
It has been shown in Angus (2007) that the WCF satellite is the one that maximises the slope, which
is defined as the ratio between the estimated PE and the noncentrality parameter. Therefore, the WCF
satellite can be determined by comparing the slope of all potential faulty satellites. The determination
process of WCF satellite can be expressed as,

𝑭 = argmax
𝑭𝑖

𝑆𝑙𝑜𝑝𝑒𝑖 = argmax
𝑭𝑖

𝜂T
𝑖 𝜂𝑖
𝜆2
𝑖

= argmax
𝑭𝑖

𝑭T
𝑖 𝒉

∗𝒉∗T𝑭𝑖

𝑭T
𝑖 𝑴𝑭𝑖

(7)

The corresponding WCF magnitude �̄� can be obtained by searching the fault magnitudes through a
1D search process,

�̄� = argmax
𝑏

(
Φ

[
𝑙 + 𝒉∗T𝑭𝑏

𝜎

]
+ Φ

[
𝑙 − 𝒉∗T𝑭𝑏

𝜎

])
𝜒2
𝑇 ,𝑛−𝑚 [𝑭

T
𝑴𝑭𝑏2] (8)

where 𝜎 =
√
𝜶T(𝑯T𝑯)

−1
𝜶 is the standard deviation of the estimated state error. It is necessary to obtain

the WCF magnitude to ensure the rigorousness of MDPE. However, the search for the WCF magnitude
can introduce the impractical time consumption of the MDPE. Section 3 discusses the construction of
the searching interval for the WCF magnitude to implement the MDPE.

3. Searching interval of the WCF magnitude

This section describes a method to establish the searching interval for the WCF magnitude, and the
searching interval adjustment is designed to avoid the absence of WCF magnitude so that the maximum
missed detection probability can be accurately evaluated.

3.1. Searching interval construction

The concepts of MDM and MHM can be used for the construction of a searching interval of the
WCF magnitude (Jiang and Wang, 2014). MDM is the minimum fault magnitude to protect against
the observation fault given the probability pnd, and MHM is the minimum fault magnitude resulting in
positioning failure provided the probability ppf (Ober, 2003; Milner and Ochieng, 2011). They can be
written as,

𝑀𝐷𝑀 =
𝜆md,exp

| |𝑴�̄� | |
s.t. 𝑝nd = 𝑝md,exp (9)

𝑀𝐻𝑀 =
𝑙 − 𝐾md,exp𝜎

|𝒉∗T�̄� |
s.t. 𝑝pf = 𝑝md,exp (10)

where pmd,exp is the expected missed detection probability to construct the searching interval, and pmd,exp
is usually set up as equal to the preset requirement PMD (Milner and Ochieng, 2011). 𝜆md,exp is the
non-centrality parameter determined by the expected missed detection probability. Kmd,exp is defined as
the quantile of the pmd,exp based on tail cumulative distribution function of a normal distribution,

𝐾md,exp = Φ−1(𝑝md,exp/2) (11)

With the defined MDM and MHM, the searching interval of the WCF magnitude, which is denoted as
ℬ, can be divided into three cases:
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Case 1: MDM ≤ MHM, the missed detection probability based on Equation (2) for any fault magnitude
is smaller than pmd,exp, as demonstrated in Appendix A. Therefore, the WCF magnitude cannot be
obtained given the pmd,exp.

Case 2: MHM <MDM and the candidate searching interval ℬ∈(0, MHM)∪ (MDM, ∞), the missed
detection probability for the fault magnitude from the candidate searching interval ℬ is smaller than
pmd,exp. The proof can be found at Appendix B. Therefore, the WCF magnitude cannot be obtained for
the candidate searching interval ℬ in this case.

Case 3: MHM <MDM, when the candidate searching interval ℬ∈[MHM, MDM], the calculated
probability of missed detection for the magnitude from the candidate searching interval ℬ can be either
larger or smaller than pmd,exp.

The searching interval should be adjusted to obtain the WCF magnitude for either Case 1 or Case 2.
In contrast, the maximum missed detection probability pmd,max can be obtained from the candidate
searching interval ℬ for Case 3. Specifically, if pmd,max > pmd,exp, the WCF magnitude corresponds to
pmd,max in the candidate searching interval ℬ. Otherwise, the searching interval must also be adjusted to
obtain the WCF magnitude for Case 3. In general, the searching interval is driven by the pmd,exp given the
satellite geometry, the user range accuracy (URA) of observation and the faulty satellite. The improper
pmd,exp will cause the absence of WCF magnitude within the searching interval, which could increase
the calculation error of the MDPE. The valid searching interval is affected by the pmd,exp. Therefore, it
is necessary to analyse the impact of the pmd,exp on the searching interval.

3.2. Effect of expected missed detection probability

Two simulations will be carried out to analyse the effect of expected missed detection probability pmd,exp.
Firstly, numerical simulations are conducted to analyse the factors affecting the setting of pmd,exp.
Secondly, the impact of pmd,exp on the searching interval are examined. The single epoch geometry
matrix for dual constellations is used for the numerical simulation,

𝑮BDS =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · 4759 −0 · 5434 0 · 6914 1 0
−0 · 1045 −0 · 9643 0 · 2431 1 0

0 · 7822 0 · 3026 0 · 5445 1 0
−0 · 8056 0 · 1460 0 · 5741 1 0
−0 · 1112 0 · 6860 0 · 7190 1 0
−0 · 3826 −0 · 6408 0 · 6655 1 0
−0 · 8407 0 · 3867 0 · 3788 1 0

0 · 7375 0 · 5275 0 · 4216 1 0
0 · 2711 −0 · 9493 0 · 1593 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑮GPS =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · 3086 0 · 6870 0 · 6578 0 1
0 · 7837 −0 · 5887 0 · 1977 0 1

−0 · 0908 0 · 9269 0 · 3641 0 1
0 · 7090 −0 · 1221 0 · 6945 0 1

−0 · 2546 −0 · 6945 0 · 6729 0 1
0 · 1904 −0 · 9447 0 · 2669 0 1

−0 · 8137 0 · 4985 0 · 2988 0 1
−0 · 7261 0 · 0690 0 · 6840 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The PMD and PFA were set as 10−3 and 10−5, respectively. Furthermore, the satellite with the largest

slope was chosen as the faulty satellite, and the AL was set to 35 m.
The candidate searching interval is invalid when the pmd,max is smaller than pmd,exp. Since the pmd,exp

is usually set as equal to the preset required PMD, the impact of different parameters on the pmd,max is
investigated to attain the valid searching interval. It can be induced from Equation (2) that the URA, the
number of satellites (NSat) and the AL can impact the pmd,max. The AL is defined by RNP, which is not
the focus in this contribution. Figure 1 shows the difference between pmd,max and pmd,exp with respect to
the URA and the NSat. As seen in Figure 1, the difference between pmd,max and pmd,exp increases with
either a smaller URA or more available satellites. The pmd,exp must be adjusted to reduce the difference
between the pmd,exp and the pmd,max to acquire the valid searching interval.

The impact of pmd,exp on the searching interval construction is further analysed. The numerical
simulation result is shown in Figure 2. The pmd,exp is set up as equal to the preset requirement PMD
as 10−3. The green region in the figure indicates that the candidate searching interval is valid for the
WCF magnitude searching. The grey region represents when the candidate searching interval cannot be
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Figure 1. Effect of the URA and NSat on the pmd,max and pmd,exp.

Figure 2. Effect of the URA (top panel) and the NSat (bottom panel) on the searching interval
construction.

constructed because MDM is less than MHM. The red region shows the candidate searching interval can
be constructed whilst the WCF magnitude is absent. As seen from Figure 2, a tighter searching interval
is constructed with a smaller URA or more satellites, which may lead to the absence of WCF magnitude
within the searching interval, as shown in the subpanels at the top-right, top-middle and bottom-right of
the figure. Therefore, it is necessary to develop the searching interval adjustment by controlling pmd,exp
to improve the WCF magnitude searching accuracy.
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3.3. Searching interval adjustment

From this analysis, it can be found that the valid searching interval must be adjusted until the pmd,exp is
consistent with pmd,max. Since the WCF magnitude has a higher likelihood to be contained within a loose
searching interval, the pmd,exp should be reduced firstly to introduce a loose searching interval. However,
the computation burden will be unacceptable when an over loose searching interval is introduced by the
over-small pmd,exp. The counterbalance between the efficiency and the accuracy of the WCF magnitude
searching must be accounted for in the selection of pmd,exp.

For the implementation of the searching interval adjustment, the conditions that require searching
interval adjustment must be identified. As induced from these three cases for searching intervals, we can
summarise two conditions that initialise the searching interval adjustment. Firstly, MDM is smaller than
MHM. Secondly, MDM is larger than MHM when the maximum calculated missed detection probability
pmd,max for the candidate searching interval is smaller than the pmd,exp. Either of these two conditions
will initialise the searching interval adjustment.

The condition that terminates the searching interval adjustment and confirms the WCF magni-
tude must also be clarified. As the contrary to the conditions that initialise the searching interval
adjustment, the searching interval adjustment is terminated when MDM is larger than MHM and the
pmd,max in the candidate searching interval exceeds the pmd,exp. These two constraints must be sat-
isfied simultaneously to terminate the adjustment, in which the first constraint is to ensure that the
searching interval can be constructed, and the second constraint is set to ensure the capture of WCF
magnitude.

The flowchart of the proposed MDPE method is shown in Figure 3. The WCF magnitude is the
key parameter for the rigorous MDPE and is determined through a two-step search. Specifically, the
searching interval for the WCF magnitude is constructed by the combination of MDM and MHM
in the first step. To avoid the absence of a WCF magnitude due to a potential over-tight searching
interval, the searching interval adjustments are made in the second step by introducing the adjust-
ment conditions of initialisation and termination, so that the counterbalance between the searching
efficiency and the accuracy of the searching interval can be achieved. Through the WCF magnitude
searching interval construction and adjustment, the missed detection probability of RAIM can be
evaluated.

4. Experiment and analysis

To test the effectiveness of the proposed method in obtaining accurate WCF magnitudes and evaluat-
ing the missed detection probability performance, the simulation approach can be used to compare
the proposed method and the traditional searching method without a searching interval adjust-
ment. Firstly, the global WCF magnitude searching accuracy under different constellations and
different URAs is analysed. Secondly, the MDPE among the classical RAIM methods under dif-
ferent WCF magnitude searching methods is carried out to verify the rigorousness of the proposed
method.

The constellations of BDS and GPS were simulated to compute the WCF magnitude searching
performance via an almanac file, in which the BDS constellation consisted of 29 satellites (2 GEO+ 3
IGSO+ 24 MEO) and the GPS constellation of 24 satellites. The simulation software is based on the
MATLAB Algorithm Availability Simulation Tool (MAAST) provided by Stanford University. The
mask angle was set up as 5 degrees. The satellite geometry was simulated every 10 min over the course
of a day. The users were placed on a grid every 5 degrees in both latitude and longitude, for a total of
2,628 locations. Table 1 shows the parameters of the observation error model used in the simulation.
The observation error model 𝜎𝑖 for each satellite is constructed as,

𝜎2
𝑖 = 𝜎2

𝑈𝑅𝐴,𝑖 + 𝜎
2
𝑡𝑟𝑜𝑝,𝑖 + 𝜎

2
𝑢𝑠𝑒𝑟 ,𝑖 (12)
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Figure 3. Flowchart of the proposed MDPE implementation.

Table 1. Simulation parameters setting.

Parameters Value

PMD requirement 10−3

PFA requirement 2× 10−6

Mask angle 5 deg
Time step 10 min
Simulation duration 24 h
WCF magnitude searching step 10−3 m
VAL 35 m
Residual tropospheric error (𝜎𝑡𝑟𝑜𝑝) 0·12[m]× 1·001/(0·002001 + sin2((𝜋𝜃)/180))1/2

(Blanch et al., 2015) (Blanch et al., 2015)
Smoothed code multipath (𝜎MP) 0·13[m]+ 0·53[m]exp(−𝜃/10[deg]) (Blanch et al., 2015)
Smoothed code receiver noise (𝜎Noise) 0·15[m]+ 0·43[m]exp(−𝜃/6·9[deg]) (Blanch et al., 2015)
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The description of observation error model is given in Table 1, in which 𝜃 is the elevation in degree,
𝜎𝑢𝑠𝑒𝑟 ,𝑖 is the combination of the multipath and receiver noise as,

𝜎𝑢𝑠𝑒𝑟 ,𝑖 =

√√
𝑓 4
1 + 𝑓 4

2

( 𝑓 2
1 − 𝑓 2

2 )
2

√
(𝜎MP,𝑖)

2 + (𝜎Noise,𝑖)
2 (13)

Note that the first-order ionospheric delay is assumed to be removed by the combination of dual-
frequency observations.

4.1. WCF searching performance analysis

To sufficiently investigate the effect of satellite geometry on the accuracy of WCF magnitude searching,
a global WCF magnitude error analysis for the proposed method was conducted. The WCF magnitude
searching results were collected under the single BDS constellation and the BDS/GPS constellations,
respectively. Moreover, we studied the WCF searching performance under the URA values of 2 m, 2·4 m,
3 m for both BDS and GPS (Zhao et al., 2021; Blanch et al., 2022). Figure 4 presents the simulation
results. Two types of methods are compared, i.e. the WCF magnitude obtained from the proposed
method with the searching interval adjustment, denoted as ‘proposed method’, and the searching method
without searching interval adjustment, denoted as the ‘no-adjustment method’. It should be noted that
the reference of the WCF magnitude is obtained by the brute-forcing searching with a very loose
searching interval without considering the cost of higher computation time. At each user location, the
95th percentile searching error of WCF magnitude was selected to illustrate the accuracy of WCF
magnitude searching. The searching error is defined as the difference between the WCF magnitude
obtained from the candidate method and the reference.

Figure 4 shows the global WCF magnitude searching error for different simulation cases. It can
be found that the global WCF magnitude searching error of the no-adjustment method increases
with either a smaller URA or more satellites. Furthermore, the WCF magnitude searching error
based on the no-adjustment method in the Asia Pacific Region is larger than other locations. This
is because that the tighter searching interval will be obtained by the no-adjustment method with a
smaller URA or more available satellites, which may induce the absence of the WCF magnitude
within the searching interval. In contrast, the proposed method offers a remarkable reduction of the
global WCF magnitude searching error, regardless of the grade of URA and the number of satel-
lites. This is because the tightness of the WCF magnitude searching interval can be adjusted by
the proposed method. The difference between the proposed method and the no-adjustment method
demonstrates the superior performance of the proposed method in reducing the worldwide WCF
magnitude searching error. We further analyse the impact of the WCF magnitude searching error
on the MDPE error based on Equation (2). Note that the MDPE error is defined as the difference
between the maximum of the evaluated missed detection probability from the searching interval and the
reference.

The impacts of the WCF magnitude searching error on the MDPE error are shown by Figures 5 and 6.
The MDPE error increases with either a decrease of URA or an increase in the number of satellites, which
is consistent with the results of the WCF magnitude searching error. In the extreme case, the MDPE
can be more than 10−3 level by the no-adjustment method. It should be note that the MDPE error with a
10−3 level is unacceptable because the error is much larger than the preset missed detection probability
requirement PMD. In contrast, the MDPE by the proposed method is less than the no-adjustment
method. The worst MDPE from the proposed method can be maintained at 10−7 level, which is much
smaller than the preset missed detection probability requirement. The better MDPE performance can
be attributed as searching interval adjustment. The simulations results show that the higher accuracy of
both the WCF magnitude searching and the MDPE can be obtained by the proposed interval adjustment
method.
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Figure 4. Searching error of the WCF magnitude (m). The column panels from left to right represent
the URA of 3 m, 2·4 m and 2 m, respectively. The row panels from top to bottom represent the traditional
method with no adjustment for BDS, the traditional method for BDS/GPS, the proposed method with
searching interval adjustment for BDS, and the proposed method for BDS/GPS, respectively.
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Figure 5. Missed detection probability evaluation error under BDS constellation. The columns from
left to right represent different URA of 3 m, 2·4 m and 2 m, respectively. The row panels from top to
bottom represent the traditional method with no adjustment and the proposed method with searching
interval adjustment, respectively.

4.2. Simulation experiment result

The MDPE process is carried out using different RAIM algorithms. Specifically, the fault magnitude
determination methods are the proposed method with searching interval adjustment and the traditional
method with no adjustment. The RAIM algorithms are three types of PL computation methods: the
classic PL computation method can be seen from Milner and Ochieng (2011), denoted as ‘PLBC’; the
PL computation method proposed by Walter and Enge (1995), denoted as ‘PLWE’; and the method
proposed by Brown and Chin (1998), denoted as ‘PLBC+’. We strictly follow the integrity monitoring
evaluation process outlined in RTCA DO-229A (2006) to inject the WCF magnitude into the observation
of the WCF satellite. To evaluate the probability, the Monte Carlo iterations of 104 for an epoch is tried,
and the evaluated missed detection probability was compared with the predefined PMD to verify if the
missed detection probability of the RAIM algorithm was satisfied. A total of 3·7843× 109 space-time
samples were generated across all the satellite geometry. Note that the a posteriori missed detection

https://doi.org/10.1017/S0373463324000225 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463324000225


12 Ruĳie Li et al.

Figure 6. Missed detection probability evaluation error with BDS/GPS constellation. The columns from
left to right represent the URA values of 3 m, 2·4 m and 2 m, respectively. The row panels from top to
bottom represent the traditional method with no adjustment and the proposed method with searching
interval adjustment, respectively.

case is verified when the PE is more than the PL, whilst the test statistic is less than the detection
threshold (RTCA DO-229A, 2006; Li et al., 2016). The missed detection probability performance
among these three RAIM algorithms was compared with the metric of missed detection rate to verify
the rigorousness of the proposed method in obtaining maximum missed detection probability, in which
the missed detection rate is defined as the ratio between the epochs of missed detection and the total
number of epochs. The reference of missed detection rate was obtained from the a posteriori missed
detection rate by injecting the WCF magnitude resulting from a loose empirical searching interval.

To demonstrate the rigorousness of the proposed method, the averaged missed detection rate all
over the world is computed for different constellations, and URAs are shown in Table 2. It is observed
that the missed detection rate evaluated by the proposed method is closest to the reference of missed
detection rate, regardless of the types of RAIM algorithm, which demonstrates the rigorousness of the
proposed MDPE method. Furthermore, when compared with the reference, the missed detection rate
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Table 2. Comparison of missed detection rates from different RAIM algorithms.

Missed detection rate

Simulation parameters WCF searching method PLBC PLWE PLBC+

BDSURA= 3 m No adjustment 8·050× 10−3 1·262× 10−4 4·817× 10−7

Proposed 8·050× 10−3 1·265× 10−4 6·699× 10−7

Reference 8·050× 10−3 1·265× 10−4 6·699× 10−7

BDSURA= 2·4 m No adjustment 7·799× 10−3 1·373× 10−3 4·816× 10−7

Proposed 7·799× 10−3 1·373× 10−3 6·802× 10−7

Reference 7·799× 10−3 1·373× 10−3 6·802× 10−7

BDSURA= 2 m No adjustment 7·533× 10−4 1·495× 10−3 4·817× 10−7

Proposed 7·533× 10−4 1·495× 10−3 6·935× 10−7

Reference 7·533× 10−4 1·495× 10−3 6·935× 10−7

BDS/GPSURA= 3 m No adjustment 2·315× 10−2 1·302× 10−4 5·021× 10−7

Proposed 2·315× 10−2 1·304× 10−4 1·186× 10−6

Reference 2·315× 10−2 1·304× 10−4 1·186× 10−6

BDS/GPSURA= 2·4 m No adjustment 2·259× 10−2 1·325× 10−4 5·022× 10−7

Proposed 2·259× 10−2 1·325× 10−4 1·161× 10−6

Reference 2·259× 10−2 1·325× 10−4 1·161× 10−6

BDS/GPSURA= 2 m No adjustment 2·205× 10−2 1·345× 10−4 5·022× 10−7

Proposed 2·205× 10−2 1·347× 10−4 1·137× 10−6

Reference 2·205× 10−2 1·347× 10−4 1·137× 10−6

of PLBC and PLWE methods is much higher than with the PLBC+ method. As shown in Figures 4–6,
although the WCF searching accuracy of the proposed method is higher than the traditional method, the
reduction of missed detection rate error with a higher WCF searching accuracy can be disregarded when
the missed detection rate of RAIM is higher than 10−4. Correspondingly, the benefit of higher WCF
searching accuracy can be more for the RAIM with a much lower missed detection rate. Therefore, it
can be seen that the missed detection rate of the proposed method is comparable with the traditional
method for the RAIM with a higher missed detection rate. In contrast, the proposed method shows
better MDPE performance than the traditional method for the RAIM algorithms, with a lower missed
detection rate at the order of either 10−7 or 10−6. In addition, the proposed method can improve the
accuracy of the evaluated missed detection rate by at most 57·66% relative to the no-adjustment method
among the different classical RAIM algorithms, which illustrates the higher accuracy of WCF magnitude
searching. The proposed method can improve the accuracy of the evaluated missed detection rate by
at most 29·57% compared with the no-adjustment method when dual-constellations are introduced.
Moreover, the PLWE and PLBC+ method can satisfy the requirement PMD regardless of the grade of URA
and the constellation configuration, and the PLBC+ method can provide much better missed detection
rate performance than the other two RAIM algorithms because the PL of the PLBC+ method is the most
conservative of these three RAIM algorithms. The test result is consistent with the research findings in
Angus (2007) and Milner and Ochieng (2011).

4.3. Positioning experiment result

We conducted a positioning experiment to further analyse the MDPE performance of the proposed
method utilising real-world data. The raw observation data came from the IGS and the time span of
data collection was five days with a sampling interval of 30 s. Four stations, i.e. JFNG, TLSG, GODS
and ZAMB, were selected for the experiment. The WCF obtained from the traditional no-adjustment
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Figure 7. Positioning error and test statistics in JFNG. The green crosses in the panels indicate the
missed detection samples.

method and the proposed method was injected to the raw observation to verify the performance of the
typical RAIM algorithms introduced at the previous section. The epoch that the test statistic is lower
than the detection threshold and the PE exceeds the PL is flagged as the missed detection sample.

The positioning result and the fault detection result of JFNG is shown in Figure 7. Note that the test
statistics and the detection threshold can be reference from Section 2. The PL is computed based on the
PLWE method. It can be seen from Figure 7 that lots of the positioning errors exceed the corresponding
PL because of the injected WCF. Furthermore, a few missed detection samples can be observed.
Most of the missed detection samples are present when the number of satellites is small because the
fault detection power of RAIM is undermined by the decreased observation redundancy. The missed
detection rate results based on the positioning experiments of different RAIM algorithms are listed in
Table 3. The table indicates that the MDPE of the traditional method is optimistic for different RAIM
algorithms regardless of location. In contrast, the proposed method is closer to the reference than the
traditional method for different RAIM algorithms, which proves the effectiveness of the proposed method
in MDPE.

5. Conclusions

To evaluate the performance of RAIM algorithms in the presence of a fault, a MDPE method is proposed
to evaluate the maximum missed detection probability based on the WCF magnitude searching. The
WCF magnitude searching interval is constructed by the combination of MDM and MHM. Based on the
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Table 3. Missed detection rate results of positioning experiment.

Missed detection rate

Station WCF searching method PLBC PLWE PLBC+

JFNG No adjustment 3·5× 10−3 6·25× 10−4 1·39× 10−4

Proposed 3·7× 10−3 6·94× 10−4 2·08× 10−4

Reference 3·7× 10−3 6·94× 10−4 2·08× 10−4

TLSG No adjustment 1·9× 10−3 4·86× 10−4 1·39× 10−4

Proposed 2·0× 10−3 4·86× 10−4 2·08× 10−4

Reference 2·0× 10−3 4·86× 10−4 2·08× 10−4

GODS No adjustment 1·7× 10−3 3·47× 10−4 6·94× 10−5

Proposed 1·8× 10−3 4·86× 10−4 2·08× 10−4

Reference 1·8× 10−3 4·86× 10−4 2·08× 10−4

ZAMB No adjustment 2·2× 10−3 2·08× 10−4 0·00
Proposed 2·3× 10−3 2·78× 10−4 6·94× 10−5

Reference 2·3× 10−3 2·78× 10−4 6·94× 10−5

sensitivity simulation of the expected missed detection probability with respect to the WCF magnitude
searching accuracy, it has been revealed that the expected missed detection probability impacted by the
URA and the number of satellites must be adjusted to contain the WCF magnitude within the searching
interval. To address this issue, the searching interval adjustment is designed to avoid the absence of the
WCF magnitude.

The simulation result has demonstrated that the proposed searching interval adjustment method can
obtain the accurate WCF magnitude. Furthermore, the accuracy of worldwide evaluated missed detection
rate can achieve an improvement of 57·66% at most by the proposed method for the different classical
RAIM algorithms, which demonstrates that a rigorous MDPE can be achieved. The accuracy of evaluated
missed detection rate can be further improved when the dual-constellations are introduced. Additionally,
a positioning experiment further verifies that the proposed method can achieve stricter MDPE than the
traditional method. It is noted that the single-satellite fault is considered in this contribution, which is
constrained by the construction of searching interval for the multiple-faults. Future work will extend to
the multiple-faults hypotheses.
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Appendix A: The missed detection probability analysis for Case 1

This section aims to prove that the missed detection probability for any fault magnitude is smaller than
the expected missed detection pmd,exp when MDM ≤ MHM.

Firstly, the missed detection probability based on Equation (2) can be bounded as,

𝑝md = 𝑃{|𝜀 | > 𝑙 |𝐻𝑖} × 𝑃{𝑞 < 𝑇 |𝐻𝑖} ≤ 𝑃{|𝜀 | > 𝑙∗ |𝐻𝑖} × 𝑃{𝑞 < 𝑇 |𝐻𝑖} (A1)

where l* is smaller than the specified alarm limit l.
When MDM ≤ MHM, we have l ≥ cd+Kmd,exp𝜎, where,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑐 =

𝜆md,exp

| |𝑴�̄� | |

𝑑 = |𝒉∗T�̄� |

(A2)

we can substitute l *= cd+Kmd,exp𝜎 and Equations (3) and (4) into Equation (A1),

𝑝md ≤

(
Φ

[
𝑙∗ + 𝒉∗T�̄�𝑏

𝜎

]
+ Φ

[
𝑙∗ − 𝒉∗T�̄�𝑏

𝜎

] )
𝜒2
𝑇 ,𝑛−𝑚 [𝜆

2]

≤ 2Φ
[
𝑙∗ − |𝒉∗T�̄� |𝑏

𝜎

]
𝜒2
𝑇 ,𝑛−𝑚 [𝜆

2]

≤ 2Φ
[
𝑑 (𝑐 − 𝑏)

𝜎
+ 𝐾md,exp

]
𝜒2
𝑇 ,𝑛−𝑚 [𝜆

2] (A3)
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When c−b ≥ 0, we can have

𝑝md ≤ 2Φ
[
𝑑 (𝑐 − 𝑏)

𝜎
+ 𝐾md,exp

]
𝜒2
𝑇 ,𝑛−𝑚 [𝜆

2]

≤ 2Φ[𝐾md,exp] = 𝑝md,exp (A4)

When c−b< 0, then, the expected missed detection pmd,exp can bound the probability of detection
failure because the actual noncentrality parameter 𝜆 = | |𝑴�̄� | |𝑏 > 𝜆md,exp (Angus, 2007),

𝑝md ≤ 2Φ
[
𝑑 (𝑐 − 𝑏)

𝜎
+ 𝐾md,exp

]
𝜒2
𝑇 ,𝑛−𝑚 [𝜆

2]

≤ 𝜒2
𝑇 ,𝑛−𝑚 [𝜆

2]

≤ 𝜒2
𝑇 ,𝑛−𝑚 [𝜆

2
md,exp] = 𝑝md,exp (A5)

From the combination of Equations (A4) and (A5), we demonstrate the missed detection probability for
any fault magnitudes is smaller than the expected missed detection pmd,exp when MDM ≤ MHM.

Appendix B: The missed detection probability analysis for Case 2

We will prove the missed detection probability based on Equation (10) for the fault magnitudes within
the candidate searching interval ℬ is smaller than the expected missed detection probability pmd,exp
when MHM <MDM and ℬ∈(0, MHM)∪(MDM, ∞).

When 0< b<MHM, the missed detection probability based on Equation (2) can be bounded as,

𝑝md = 𝑃(|𝜀 | > 𝑙 |𝐻𝑖) × 𝑃(𝑞 < 𝑇 |𝐻𝑖) ≤ 𝑃(|𝜀 | > 𝑙 |𝐻𝑖) (B1)

Because the probability of positioning failure increases with a larger b (Milner and Ochieng, 2011),
we can have,

𝑃(|𝜀 | > 𝑙 |𝐻𝑖) ≤ 2Φ
[
𝑙 − |𝒉∗T�̄� |𝑏

𝜎

]
≤ 2Φ

[
𝑙 − |𝒉∗T�̄� |𝑀𝐻𝑀

𝜎

]
= 𝑝md,exp (B2)

Therefore,

𝑝md = 𝑃(|𝜀 | > 𝑙 |𝐻𝑖) × 𝑃(𝑞 < 𝑇 |𝐻𝑖) ≤ 𝑃(|𝜀 | > 𝑙 |𝐻𝑖) ≤ 𝑝md,exp (B3)

For b>MDM, the missed detection probability based on (2) also can be bounded as,

𝑝md = 𝑃(|𝜀 | > 𝑙 |𝐻𝑖) × 𝑃(𝑞 < 𝑇 |𝐻𝑖) ≤ 𝑃(𝑞 < 𝑇 |𝐻𝑖) (B4)

When a noncentrality parameter 𝜆 is larger than 𝜆md,exp, the expected missed detection pmd,exp can
bound the probability of detection failure (Angus, 2007),

𝑃(𝑞 < 𝑇 |𝐻𝑖) = 𝜒
2
𝑇 ,𝑛−𝑚 [𝜆

2 = | |𝑴�̄�𝑏 | |
2
]

≤ 𝜒2
𝑇 ,𝑛−𝑚 [𝜆

2
md,exp = | |𝑴�̄�𝑀𝐷𝑀 | |

2
] = 𝑝md,exp (B5)
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Therefore,
𝑝md = 𝑃(|𝜀 | > 𝑙 |𝐻𝑖) × 𝑃(𝑞 < 𝑇 |𝐻𝑖) ≤ 𝑃(𝑞 < 𝑇 |𝐻𝑖) ≤ 𝑝md,exp (B6)

From the combination of Equations (B3) and (B6), we demonstrate the missed detection probability
for any fault magnitudes is smaller than the expected missed detection pmd,exp when MHM <MDM and
ℬ ∈ (0, MHM)∪ (MDM, ∞).

Cite this article: Li R, Li L, Wang L, Li M, Na Z (2024). Missed detection probability evaluation for the RAIM based on worst-case fault magnitude
searching. The Journal of Navigation 1–18. https://doi.org/10.1017/S0373463324000225

https://doi.org/10.1017/S0373463324000225 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463324000225
https://doi.org/10.1017/S0373463324000225

	1 Introduction
	2 Missed detection probability evaluation for RAIM
	3 Searching interval of the WCF magnitude
	3.1 Searching interval construction
	3.2 Effect of expected missed detection probability
	3.3 Searching interval adjustment

	4 Experiment and analysis
	4.1 WCF searching performance analysis
	4.2 Simulation experiment result
	4.3 Positioning experiment result

	5 Conclusions
	Appendix A: The missed detection probability analysis for Case 1
	Appendix B: The missed detection probability analysis for Case 2

