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Effective Hasse principle for the intersection of two quadrics

Tony Quertier

Abstract

We consider a smooth system of two homogeneous quadratic equations over Q in n > 13
variables. In this case, the Hasse principle is known to hold, thanks to the work of Mordell
in 1959. The only local obstruction is over R. In this paper, we give an explicit algorithm to
decide whether a nonzero rational solution exists and, if so, compute one.

1. Introduction

Let F1, . . . , Fm be polynomials in the variables x1, . . . , xn with coefficients in Q. In the study
of the rational solutions of the system F1(x1, . . . , xn) = . . . = Fm(x1, . . . , xn) = 0, four very
natural and well-studied problems are:

– LS (= local solutions): for a completion of Q, decide if there exist solutions;
– ELS (= everywhere locally solvable): decide whether the system is everywhere locally

solvable;
– HP (= Hasse principle): show that the property ELS implies the existence of a global

solution in Q;
– EGS (= efficient global solution): if solutions exist in Q, give an efficient algorithm to

compute one.
In this paper, we consider a smooth system of two homogeneous quadratic equations over

K = Q in n > 13 variables. Before studying the case of two equations, it is worth recalling
what is known in the case of a single quadratic equation.

Let q(x1, . . . , xn) be a homogeneous quadratic form over Q and q(x1, . . . , xn) = 0 the
associated quadratic equation. For n 6 4, the LS question is usually solved by computation of
the Legendre or Hilbert symbol. The Hasse–Minkowski theorem asserts that a quadratic form
with n > 5 variables is ELS except maybe over R and that HP holds for a single quadratic
equation for any n > 1.

To solve EGS, Simon [8] and Castel [2] have written algorithms that quickly compute an
explicit rational solution of q(x1, . . . , xn) = 0. Consequently, for a single quadratic equation,
we consider the four problems solved and now focus on the case of two quadratic equations.

Let q0(x1, . . . , xn), q1(x1, . . . , xn) be two quadratic forms over Q. Demyanov [4] and Birch
et al. [1] solved ELS except over R for n > 9, and gave a way to compute such a p-adic
solution. Many people have worked on the HP problem for two quadratic forms. Let us mention
the most general results. Mordell settled the case n > 13 in 1959 [6]. His result was lowered to
n > 11 by Swinnerton-Dyer in 1964 [9] and later to n > 9 by Colliot-Thélène et al. in 1987 [3].
In 2006, Wittenberg [10] proved that, if we assume Schinzel’s hypothesis and the finiteness
of Tate–Shafarevich groups of elliptic curves over number fields, then HP holds as soon as
n > 6.
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It is well known that there exists a real solution of such a system if and only if there is no
form λq0 + µq1 which is definite for λ, µ ∈ R. I am not aware of any algorithms that decide if
a system has a real solution; then we give an explicit algorithm which makes it.

Assume now that we know that there exists a nonzero rational solution. We could use an
exhaustive search by ascending height to find it. We can imagine a bound on the size of the
smallest solution as a power of the size of the coefficients of the quadratic forms. Then, an
exhaustive search would have an exponential complexity. To our knowledge, no work exists on
the EGS problem for two quadratic equations. In this paper, we describe a complete algorithm
including low-level steps to solve EGS for n > 13. A nonnegligible part of our work is based
on [6]. We have to study more precisely the real precision necessary to the computation, but
if we use the program of Castel [2] to compute a solution of a quadratic form, we suspect that
the complexity of this program is polynomial.

The outline of the article is as follows. In § 2, we fix the notation and recall the notion of
smoothness. In § 3, we study the different signatures of the forms in the pencil, which govern
the existence of a real solution. This leads to a simple algorithm that decides the existence
of a real solution. In § 4, we give some low-level algorithms to split off a quadratic form into
hyperbolic planes over R or Q. These rely on the ability to compute a solution for a single
quadratic equation. Over Q, as already mentioned, we may use the algorithm of Castel [2].
Section 5 is devoted to the computation of an explicit nontrivial real solution of the system.
In § 6, using this real solution, we can construct a rational totally isotropic subspace for q0(x)
such that q1(x) is indefinite over this subspace. In the last § 7, we use this subspace to derive
a nontrivial rational solution of the system.

2. General notation

Let K ⊃ Q be a field. Let q0 and q1 be two quadratic forms over K in n variables. Using
the canonical basis of Kn, we have q0(x) =

∑n
i,j=1 aijxixj and q1(x) =

∑n
i,j=1 bijxixj with

aij = aji and bij = bji. We write Q0 = (aij), Q1 = (bij), the associated symmetric matrices.
For x = (x1, . . . , xn), we have q0(x) = xQ0

tx and q1(x) = xQ1
tx. We also use the notation

q0(x, y) = xQ0
ty for the associated bilinear form.

Let Vq0,q1 = {x ∈ Pn−1(K) | q0(x) = q1(x) = 0} be the projective variety defined by the two
quadrics associated to q0 and q1. To study the intersection of two quadrics, it is necessary to
study the pencil of quadrics through Vq0,q1 . We denote by PK the pencil of quadrics associated
to the pair (q0, q1), that is, the family of quadrics a0q0 + a1q1 = 0 with (a0 : a1) ∈ P1(K). In
practice, we will mainly consider this pencil for K = Q and K = R. If det(Q0) = 0, we replace
q0 by a0q0 + a1q1 for some (a0 : a1) 6= (0 : 1) to assure that det(Q0) 6= 0 and similarly for Q1.
From now on, we can set λ = a0/a1 and ∆(λ) = det(λQ0 +Q1): this is a polynomial of degree
exactly n in λ.

Let q be a quadratic form in n variables and Q the associated matrix. Let P be a transition
matrix such that PQ(tP ) = D, where D is diagonal. We denote by [r, s] the signature of Q,
where r is the number of positive coefficients of D and s the number of negative coefficients
of D. If det(Q) 6= 0, we have r + s = n, otherwise we have r + s < n.

We denote by ⊕ the traditional orthogonal sum for quadratic forms. Moreover, for two
matrices A and B, we define A⊕B as the block diagonal matrix

(
A 0
0 B

)
.

The variety Vq0,q1 is smooth if the rank of the Jacobian of q0 and q1 is equal to 2 at every
point of Vq0,q1 .

Condition 1. We say that two symmetric matrices Q0 and Q1, defined over K, satisfy the
condition 1 if det(Q0) 6= 0, det(Q1) 6= 0, and Vq0,q1 is smooth over K.
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We know, for example from [5], that we have the equivalent formulation, as follows.
We say that two symmetric matrices Q0 and Q1, defined over K, satisfy the condition 1 if

det(Q0) 6= 0, det(Q1) 6= 0, and ∆(λ) has only simple roots in K.

3. Real quadratic forms

3.1. Simultaneous diagonalization

We will not talk about precision in the next sections. In practice, we set the precision to 10−38

and we run the program. If that is not enough we double the precision and restart the program.

Proposition 3.1. Let Q0 and Q1 be two symmetric matrices of size n satisfying condition 1
over R. Let m be the number of real roots of ∆(λ). There exists a matrix P ∈ GLn(R) such
that PQ0(tP ) is diagonal, with only ±1 on the diagonal, and PQ1(tP ) is a block diagonal
matrix, with m first blocks of size 1 and then (n −m)/2 blocks of size 2 of the form

(
a b
b −a

)
.

Furthermore, each such block in PQ1(tP ) is face to face with a block
(
1 0
0 −1

)
in PQ0(tP ).

Algorithm 1 computes such a matrix P .

Algorithm 1. Let Q0 and Q1 be two matrices of size n satisfying condition 1 over R.
This algorithm computes a matrix P ∈ GLn(R) using floats satisfying the conclusion of
Proposition 3.1.
(1) Let ∆(λ) = det(λQ0 + Q1) and Λ = {λ1, . . . , λn} be the list of the roots of

∆(λ) such that λ1, . . . , λm ∈ R and λm+i = λm+i+1 for i > 1 odd.

(2) For i from 1 to n, find a generator vi of ker(λiQ0 +Q1) such that, for i6m,

vi ∈ Rn.

(3) Set j = m+ 1. While j < n, set wj = Re(vj), wj+1 = Im(vj), and j = j + 2.
(4) For i from 1 to m, set wi = vi.
(5) Let P be the square matrix of size n whose the ith row is wi for 16 i6n.

Set Q′0 = PQ0(tP ).
(6) For i odd from 1 to n − m − 1, set a = Q′m+i,m+i, b = Q′m+i,m+i+1, and µ =

sign(b)
√
a2 + b2. Set P ′m+i =

(√
(1 + a/µ)/2

√
(1− a/µ)/2√

(1− a/µ)/2 −
√

(1 + a/µ)/2

)
.

(7) Set P ′ = Id(m)⊕
⊕

i P
′
m+i. Set Q′′0 = P ′Q′0(tP ′) and P = P ′P.

(8) For i from 1 to n, divide the ith row of P by
√
|Q′′0ii |.

(9) Return P.

Proof. In Step 2, the dimension of each kernel is 1 because ∆(λ) has only simple roots. We
know that vi(λiQ0)+viQ1 = 0; then we deduce easily that q0(vi, vj) = q1(vi, vj) = 0. Since the
vi are orthogonal for q0 and q1, the wi are also pairwise orthogonal for q0 and q1, except maybe
wm+i and wm+i+1, for i odd. The matrices Q′0 and Q′1 are therefore block diagonal with blocks
of size 1 for each real root λ and of size 2 for each pair of conjugate complex roots. For i odd,
from the equality q0(vm+i, vm+i+1) = 0, we deduce q0(wm+i, wm+i) = −q0(wm+i+1, wm+i+1).
So, the shape of the blocks of size 2 associated to conjugate complex roots is

(
a b
b −a

)
. The same

is true for Q′1. In Step 8, we can easily check that P ′m+iAi(
tP ′m+i) is diagonal and P ′m+i is

orthogonal. We have again that trace(P ′m+iAi(
tP ′m+i)) = 0 and then the shape of the blocks

P ′m+iAi(
tP ′m+i) is always

(
a 0
0 −a

)
. Similarly, the shape of the P ′m+iBi(

tP ′m+i) is
(
c d
d −c

)
. At the

level of blocks, Step 8 divides the two rows of P ′m+i by the same constant |a|; therefore, the
trace of the blocks is always zero.
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3.2. Existence of a balanced quadratic form

Definition 1. We say that a quadratic form with signature [r, s] is balanced if |r− s| 6 1.

In this section, we want to determine if a pair of quadratic forms has nontrivial real solutions.
After this we study the existence of a balanced quadratic form in the pencil PR and compute
one if it exists.

Lemma 3.2 (Cauchy’s bound). Let P (x) = xn +an−1x
n−1 + . . .+a0 be a monic polynomial

of degree n. If x ∈ C is a root of P , then |x| 6 1 + max16i6n(|ai|).

The constant a = 1 + max16i6n(|ai|) is called Cauchy’s bound for P .

Definition 2. We define the function d : R→ Z by d(λ) = r−s, where [r, s] is the signature
of λq0 + q1.

Theorem 3.3. Let Q0 and Q1 be two matrices of size n satisfying condition 1 over R.
The function d is piecewise constant with discontinuities at the real roots of ∆(λ). The value

of d at a discontinuity is the average of the two limit values of d on the left and on the right
of this discontinuity. Moreover, if λ is a real root of ∆(λ), we have d(λ−i ) = d(λ+i )± 2.

Corollary 3.4. There exists λ ∈ Q such that λq0 + q1 is balanced.

Proof. Assume d(−∞) = −a and d(∞) = a. As Q0 and Q1 satisfy condition 1, d is piecewise
constant. Moreover, if λi is a real root of ∆(λ), we have d(λ−i ) = d(λ+i ) ± 2. So, there exists
an interval I such that |d(b)| < 1 for all b in I.

It is convenient for the next lemma to use the notation λ0 = −∞ and λn+1 = +∞.

Lemma 3.5. Let Q0 and Q1 be two matrices of size n satisfying condition 1 over R. Assume
that ∆(λ) has m 6 n real roots denoted by λ1 < . . . < λm. We have:

(i) if m 6= n, then λQ0 +Q1 is never definite;
(ii) if m = n, there exists at most one interval ]λi, λi+1[ over which λQ0 + Q1 is positive

definite. Moreover, this interval is ]λs, λs+1[, where [r, s] is the signature of Q0.

Proof. Assume d(−∞) = a; then d(∞) = −a. If there exists a real λ such that λQ0 + Q1

is positive definite, then we have d(λ) = n . Because d changes by ±2 through each λi, going
from a to n requires at least (n−a)/2 steps and going from n to −a requires at least (n+a)/2
steps. Since (n−a)/2+(n+a)/2 = n, we need exactly n real roots, otherwise λQ0+Q1 cannot
be definite. The observation that s = (n− a)/2 gives the conclusion. For the case of negative
definite, the proof is the same.

Theorem 3.6 [6, 9]. Let q0 and q1 be two quadratic forms of n variables. Then Vq0,q1(R) 6= ∅
if and only if all the forms in PR are indefinite.

Algorithm 2. Let Q0 and Q1 be two matrices of size n satisfying condition 1 over R. This
algorithm computes a rational number λ such that λQ0 +Q1 is definite if there exists one, and
returns a message otherwise.
(1) Let a be Cauchy’s bound of ∆(λ) = det(λQ0 +Q1). Set I = [−a− 1, a+ 1].
(2) Set m, the number of real roots of ∆. If m 6= n, return a message saying

that λQ0 +Q1 is never definite.

(3) Let λ1 < . . . < λn be the roots of ∆(λ) and [r, s] the signature of −aQ0+Q1.
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(4) Let λ and µ be two rational numbers such that λ∈ ]λr, λr+1[ and µ∈ ]λs, λs+1[.
(5) If λQ0 +Q1 is definite, return λ. If µQ0 +Q1 is definite, return µ.
(6) Return a message saying that λQ0 +Q1 is never definite.

This algorithm is an effective test of Theorem 3.6. We are able to decide whether Vq0,q1(R) 6=
∅ or equivalently q0 and q1 have a common nonzero real solution using this algorithm. The
explicit construction of a real solution will be done in Algorithm 11 when n > 3. The next
algorithm is also very useful.

Algorithm 3. Let Q0 and Q1 be two matrices of size n satisfying condition 1 over R. This
algorithm uses a bisection method to compute a rational number λ such that λQ0 + Q1 is
balanced and nondegenerate.
(1) Let a be Cauchy’s bound of ∆(λ) = det(λQ0 +Q1).
(2) Set λmax = a+ 1, λmin = −λmax, and λb = 0.
(3) If |d(λb)| 6 1 and ∆(λb) 6= 0, return λb.
(4) If d(λb) = 0, set λmax = λb and go to Step 6.
(5) If d(λb) and d(λmin) have opposite signs, set λmax = λb, else set λmin = λb.
(6) Set λb = (λmin + λmax)/2 and go to Step 3.

4. Reduction of a balanced quadratic form

Notation. We set K a field, with K = R or K = Q. We denote by H =
(
0 1
1 0

)
the matrix

associated to the quadratic form 2xy: we call it a hyperbolic plane.

Now, we are going to give a set of algorithms to compute some transition matrix P such
that PQ0(tP ) is the block diagonal matrix H⊕Q2. In this section, we only consider indefinite
quadratic forms over K of dimension n > 5.

Notation. In this section, most algorithms take as an input a matrix Q0 = (aij) associated
to a quadratic form

∑n
i,j=1 aijxixj defined over K and compute a matrix P ∈ GLn(K). We

denote by a′ij the entries of PQ0(tP ).

Algorithm 4. Let Q0 = (aij) be such that det(Q0) 6= 0 and y a nonzero vector in Kn

such that yQ0
ty = 0. This algorithm computes a matrix P ∈ GLn(K) such that a′12 = 1 and

a′1i = 0 for i 6= 2.
(1) Let P be a square matrix of size n having y as first row. Complete the

matrix P to have P ∈ GLn(K).

(2) Set Q
(1)
0 = PQ0(tP ). Let i > 2 be the smallest i such that (Q0(1))1i 6= 0, and

P ′ be the permutation matrix which exchanges the second and the ith rows.

(3) Set P = P ′P and Q
′′(2)
0 = P ′Q

(1)
0 (tP ′).

(4) Set R = Id(n) and divide the first row of R by (Q
(2)
0 )12.

(5) Set Q
(3)
0 = RQ

(2)
0 (tR).

(6) Set R′ = Id(n). For i = 3 to n, set R′i2 = −(Q
(3)
0 )i1.

(7) Set R = R′R and return P = RP.

Algorithm 5. Let Q0 = (aij) be such that a11 = 0, a12 = 1, and a1i = 0 for 3 6 i 6 n.
This algorithm computes P ∈ GLn(K) such that PQ0(tP ) is of the form H⊕Q2.
(1) Set P = Id(n) and S = Id(n).
(2) For i = 2 to n, set Pi1 = −ai2. Set Q3 = PQ0(tP ).
(3) For i = 1 to n, set S2i = 2S2i − (Q3)22S1i.
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(4) Set S11 = 1/2 and P = SP.
(5) Return P.

Algorithm 6. Let Q0 = (aij) and y be a nonzero vector in Kn such that yQ0
ty = 0. This

algorithm computes a matrix P ∈ GLn(K) such that PQ0(tP ) is of the form H⊕Q2.
(1) Apply Algorithm 4 to Q0 and y and denote by P the result.

(2) Apply Algorithm 5 to P ′Q′0(tP ′) and denote by P ′′ the result.

(3) Return P = P ′′P ′P.

Algorithm 7. Let Q0 = (aij) of size n > 5 be defined over Q and such that q0 is balanced.
This algorithm computes P ∈ GLn(Q) such that PQ0(tP ) is of the form H⊕ . . .H⊕Q2, where
Q2 is of size 3 if n is odd or of size 4 if n is even.
(1) Set P = Id(n) and i = 1.
(2) Extract the square submatrix (Q0jk)i6j,k6n and denote it by Q2.

(3) Compute a nonzero rational vector z such that zQ0
tz = 0.

(4) Apply Algorithm 6 to Q2 and z and denote by P ′ the result.

(5) Set C = Id(i− 1)⊕ P ′.
(6) Set P = CP, Q0 = CQ0(tC), i = i+ 2.
(7) If n− i+ 1 > 5, go to Step 2.
(8) Return P.

Step 3 can be done using the algorithm of Castel [2], which quickly computes a nonzero
rational solution of a rational indefinite quadratic form of dimension n > 5. The idea of
Algorithm 7 is based on [6]. The main idea is that after each loop the signature changes from
[r, s] to [r− 1, s− 1]. While the dimension of Q2 is greater than or equal to 5, we can continue
because an indefinite quadratic form in n > 5 variables has always a nonzero rational solution.

5. Computation of a nonzero real solution of the system

Obviously we consider that all the forms in PR are indefinite, otherwise Vq0,q1(R) is clearly
empty (see Theorem 3.6). In order to compute a real solution, we are going to first
simultaneously block diagonalize the two quadratic forms, and then find a solution using
simple algorithms, depending on the roots of ∆(λ). If ∆(λ) has only complex roots, we use
Algorithm 8; if it has only real roots, we use Algorithm 10. Otherwise, we use Algorithm 9.

Algorithm 8. Let q0(x, y, z, w) = x2−y2 + z2−w2 and q1(x, y, z, w) = ax2−2bxy−ay2 +
cz2 − 2dzw − cw2. This algorithm computes v ∈ R4\{0} such that q0(v) = q1(v) = 0.
(1) Set ε, the sign of b and ε′, the sign of d.
(2) Compute a nonzero solution (x1, w1) of |b|x2 − |d|w2 = 0.
(3) Return v = (x1, x1,−εε′w1, w1).

Algorithm 9. Let q0(x, y, z) = x2 +y2− z2 and q1(x, y, z) = λ1x
2 +ay2−2byz−az2. This

algorithm computes a nonzero vector v ∈ R3 such that q0(v) = q1(v) = 0.
(1) If a = λ1, return (1, 0, 1).
(2) Let us denote by y1,y2 the solutions of (a− λ1)y2 − 2by − (a− λ1) = 0.
(3) If −y21 + 1 > 0, return (

√
−y21 + 1, y1, 1), otherwise return (

√
−y22 + 1, y2, 1).

Lemma 5.1. Let q0(x) =
∑k

i=1 x
2
i −

∑n
j=k+1 x

2
j and q1(x) =

∑n
i=1 bix

2
i be two quadratic

forms satisfying condition 1 over R. Let us denote m− = min(bi | i ∈ {k + 1, . . . , n}) and
m+ = min(bi | i ∈ {1, . . . , k}).
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(i) There exists a real λ such that λq0 + q1 is a positive definite quadratic form if and only
if −m− < m+.

(ii) Let us denote M− = max(bi | i ∈ {k + 1, . . . , n}) and M+ = max(bi | i ∈ {1, . . . , k}).
Then Vq0,q1(R) is nonempty if and only if −m− > m+ and −M− 6M+.

Proof. (i) Let us assume that there exists a real λ such that λq0 + q1 is a positive definite
quadratic form. This implies λ+ bi > 0 for all i 6 k and hence λ+m+ > 0. Similarly, we have
−λ+m− > 0, which implies −m− < m+. Conversely, for any λ satisfying −m− < −λ < m+,
λq0 + q1 is positive definite. The assertion (ii) just follows from the assertion (i).

Algorithm 10. Let q0 and q1 be two quadratic forms of the form q0(x) =
∑n

i=1 aix
2
i with

ai = ±1, and q1(x) =
∑n

i=1 bix
2
i satisfying condition 1 over R, and such that Vq0,q1(R) 6= ∅.

This algorithm computes a nonzero vector w ∈ Rn such that q0(w) = q1(w) = 0.
(1) Let v1 be the list of all the i such that ai = +1 and v2 containing the others.

(2) Search M such that bM = maxi∈v1(bi) and m such that bm = mini∈v1(bi).
(3) If for all k ∈ v2 we have −bk /∈ [bm, bM ], then set q0 = −q0 and go to

Step 1.
(4) Choose k ∈ v2 such that bm 6 −bk 6 bM.

(5) If bm = −bk, set xm = 1, xk = 1, and xi = 0 for the other i.
(6) Otherwise, set xM = 1, xm =

√
(−bM − bk)/(bm + bk), xk =

√
x2m + 1, and xi = 0

for the other i.
(7) Return (x1, . . . , xn).

The proof of this algorithm is an easy application of Lemma 5.1.

Algorithm 11. Let Q0 and Q1 be two matrices of size n satisfying condition 1 over R and
such that Vq0,q1(R) 6= ∅. This algorithm computes a y ∈ Vq0,q1(R).
(1) Set ∆(λ) = det(λQ0 +Q1).
(2) Set a, the number of real roots of ∆(λ).
(3) Apply Algorithm 1 to Q0 and Q1. Denote by P the result.

(4) Set Q′0 = PQ0(tP ) and Q′1 = PQ1(tP ).
(5) If a= 0, apply Algorithm 8 to (Q′0ij)16i,j64 and (Q′1ij)16i,j64. Denote by y the

result and set z = (y1, y2, y3, y4, 0, . . . , 0).
(6) If a = n, apply Algorithm 10 to Q′0 and Q′1. Denote by z the result.

(7) If 0 < a < n, apply Algorithm 9 to (Q′0ij )a6i,j6a+2 and (Q′1ij )a6i,j6a+2. Denote

by (za, za+1, za+2) the result. Set z = (0, . . . , 0, za, za+1, za+2, 0, . . . , 0).
(8) Return z · P.

6. A suitable change of basis

In this section, we give some algorithms to construct a rational totally isotropic subspace for
q0(x) such that q1(x) is indefinite over this subspace. We keep the notation of § 4 concerning
the inputs and outputs of the algorithms.

Algorithm 12. Let Q0 = (aij) be such that a11 = 0 and a13 6= 0. This algorithm computes
a matrix P ∈ GLn(K) such that a′13 = 1 and a′1i = 0 for i 6= 3. Moreover, the first two columns
of P are the same as in Id(n).
(1) Set P = Id(n) and divide the third row of P by a13.
(2) Set Q′0 = PQ0(tP ).
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(3) Set P ′ = Id(n). Set P ′23 = −(Q′0)12 and, for i 6= 3, P ′i3 = −(Q′0)i1.
(4) Return P = P ′P.

Algorithm 13. Let Q0 and Q1 be two matrices of size n > 3 satisfying condition 1 over R
and such that Vq0,q1(R) 6= ∅. Let a nonzero z ∈ Rn be such that q0(z) = 0 and q1(z) = 0. This
algorithm computes a matrix P ∈ GLn(R) such that the first row of PQ0(tP ) is (0, 1, 0, . . . , 0)
and the first row of PQ1(tP ) is (0, 0, 1, 0, . . . , 0).
(1) Apply Algorithm 4 to Q0 and z and denote by P the result.

(2) Set Q′0 = PQ0(tP ) and Q′1 = PQ1(tP ).
(3) Let i > 3 be the smallest index such that (Q′1)1i 6= 0, and P ′ be the permu-

tation matrix which exchanges the third and the ith rows. Set P = P ′P.
(4) Apply Algorithm 12 to P ′Q′1(tP ′) and denote by R the result. Set P = RP.
(5) Return P.

Algorithm 14. Let Q0 = (aij) and Q1 = (bij) be two matrices of size n > 5 satisfying
condition 1 over R. Let a nonzero z ∈ Rn be such that q0(z) = 0 and q1(z) = 0. This algorithm
computes a nonzero z− ∈ Rn such that q0(z−) = 0 and q1(z−) < 0.
(1) Apply Algorithm 13 to Q0, Q1, and z. Denote by P the result and set Q′0 =

PQ0(tP ) and Q′1 = PQ1(tP ).
(2) Extract the submatrix (Q′0ij )26i,j6n of Q′0, denote it by F, and let f(x) be

the associated quadratic form.

(3) Extract the submatrix (Q′1ij )26i,j6n of Q′1, denote it by G, and let g(x) be

the associated quadratic form.

(4) If F22 = 0, set z = ((−1−G22)/2, 0, 1, 0, . . . , 0) and go to Step 8.
(5) Set ε = sign(F22). Set y1 = 1, y2 = ε and, for i = 3 to n− 1, set yi = 0.
(6) While g(y)− y2f(y) > 0, set y2 = 2y2.
(7) Set z = (−f(y)/2, y1, . . . , yn−1).
(8) Return z− = z · P.

Proof. At the end of Step 3, we have q′0(x) = 2x1x2 + f(x2, . . . , xn) and q′1(x) = 2x1x3 +
g(x2, . . . , xn). For Step 4, we have q′0(z) = 0 and q′1(z) = −1. Otherwise, we consider the
function h(x) = x2g(x) − x3f(x). This is a polynomial of degree 3 in x3 and the leading
coefficient is −F22. So, if we set xi = 0 for i > 3, h(x) is negative for x3 = εx′3 with x′3 > 0 large
enough. Setting y = (1, εx′3, 0, . . . , 0) and z = (−f(y)/2, 1, εx′3, 0, . . . , 0), we have q′0(z) = 0
and q′1(z) = −εx′3f(y) + g(y) < 0.

Algorithm 15. Let Q0 = (aij) and Q1 = (bij) be two matrices with rational inputs of size
n > 5 and a nonzero y ∈ Rn be such that q0(y) = 0 and q1(y) < 0. This algorithm computes
a z ∈ Qn such that q0(z) = 0, q1(z) < 0.
(1) Compute a rational solution w of q0(w) = 0. Apply Algorithm 6 over Q to Q0

and w; denote it by P ′. Set Q′0 =P ′Q0(tP ′), Q′1 =P ′Q1(tP ′), and y′= y ·P ′−1.
(2) If y′i = 0 for all i > 2, return (1, 0, . . . , 0)P ′.
(3) Denote by i> 2 the smallest index such that y′i 6= 0. We set P ′′, the permutation

matrix that exchanges the second row with the ith. Set P =P ′′P ′, y′′= y′ ·P ′′,
Q′′0 = P ′′Q′0(tP ′′), Q′′1 = P ′′Q′1(tP ′′), and ε = |y′′2 |/2.

(4) Extract the submatrix (Q′′0ij )36i,j6n of Q′′0, denote it by F, and let f(x) be

the associated quadratic form.

(5) For i= 1 to n, choose a rational number z′′i such that |y′′i −z′′i |<ε. If q′′1 (z′′) >
0, set ε = ε/2 and go to Step 5.

(6) Set u1 = −f(z′′3 , . . . , z
′′
n)/2z′′2 and u = (u1, z

′′
2 , . . . , z

′′
n).

(7) If q′′1 (u) < 0, return u · P. Otherwise, set ε = ε/2 and go to Step 5.
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Proof. After Step 4, we have q′′0 (y′′) = q0(y) = 0 and q′′1 (y′′) = q1(y) < 0 with Q′′0 = H⊕ F .
Step 5 is possible because the function q′′1 is continuous and the set Q is dense in R. Because
ε 6 |y′′2 |, we have z′′2 6= 0. Since Q′′0 = H⊕F , the formula in Step 6 gives q′′0 (u) = 0. As y′′ also
satisfies the relation y′′1 = −f(y′′3 , . . . , y

′′
n)/2y′′2 , by continuity we deduce that, when ε is small

enough, u1 is close to y′′1 , so that u is close to y′′ and q′′1 (u) < 0.

7. Computation of a nonzero rational solution

In this section, we compute a nonzero rational solution of q0(x) = q1(x) = 0.

Algorithm 16. Let Q0 and Q1 be two matrices of size n > 13 satisfying condition 1 over
Q and such that Vq0,q1(R) 6= ∅. This algorithm computes some x ∈ Vq0,q1(Q).
(1) Apply Algorithm 3 and find λ0 ∈ Q such that Q0 + λ0Q1 is balanced and has

nonzero determinant. Set Q0 = Q0 + λ0Q1.

(2) Compute a nonzero solution y ∈ Qn of q0(y) = 0.
(3) If q1(y) = 0, return y. If q1(y) < 0, set Q1 = −Q1.

(4) Apply Algorithm 11 to Q0 and Q1. Denote by u the result.

(5) Apply Algorithm 14 to (Q0,Q1,u) and denote by v the result.

(6) Apply Algorithm 15 to (Q0,Q1,v) and denote by z the result.

(7) While q0(y, z) = 0, do:

(i) choose y′ ∈ Qn randomly until q0(y, y′) 6= 0;
(ii) set w = y′ − (q0(y′)/2q0(y, y′))y;
(iii) if q1(w) = 0, return w;
(iv) if q1(w) > 0, set y = w, otherwise set z = w.

(8) Let P (1) be a matrix whose first n− 2 rows generate the solutions in x of

xQ0
ty = xQ0

tz = 0, and whose last two rows are y and z.

(9) Set Q
(1)
0 = P (1)Q0(tP (1)), Q

(1)
1 = P (1)Q1(tP (1)).

(10) Set P (2),the permutation matrix that exchanges the first row with the (n− 1)th
row and the second row with the nth row.

(11) Set Q
(2)
0 = P (2)Q

(1)
0 (tP (2)), Q

(2)
1 = P (2)Q

(1)
1 (tP (2)), and P = P (2)P (1).

(12) Extract the submatrix (Q
(2)
0ij

)36i,j6n of Q
(2)
0 and denote it by Q2.

(13) Apply Algorithm 7 to Q2 and denote by P ′ the result.

(14) Set P (3) = Id(2)⊕P ′, Q
(3)
0 =P (3)Q

(2)
0 (tP (3)), Q

(3)
1 =P (3)Q

(2)
1 (tP (3)), and P =P (3)P.

(15) If (Q
(3)
1 )33> 0, compute a nonzero rational solution of q

(4)
1 (x) = 0 of the form

x = (0, x2, x3, 0, x5, 0, x7, 0, x9, 0, 0, 0, . . .). Otherwise, compute a nonzero rational

solution of q
(4)
1 (x) = 0 of the form x = (x1, 0, x3, 0, x5, 0, x7, 0, x9, 0, 0, 0, . . .).

(16) Return xP.

Proof. After Step 1, q0(x) is balanced, so that in Step 2, such a rational y exists and, after
Step 3, we have q1(y) > 0. For Step 4, such a real solution exists because Vq0,q1(R) is nonempty.
Steps 4–6 compute a rational vector z such that q0(z) = 0 and q1(z) < 0. After Step 7, we have
that y and z are not orthogonal for q0; then the intersection of 〈y, z〉 and 〈y, z〉⊥q0 is nonzero.

Therefore, the matrix P (1) of Step 8 is invertible. Step 13 is possible because Q
(2)
0 = H⊕Q2 is

balanced with signature [r, s]; thus, Q2 is balanced with signature [r− 1, s− 1] and dimension
n−2 > 11. The subspaces of the elements of the form x = (0, x2, x3, 0, x5, 0, x7, 0, x9, 0, 0, 0, . . .)

and x = (x1, 0, x3, 0, x5, 0, x7, 0, x9, 0, 0, 0, . . .) are both totally isotropic for q
(4)
0 . To conclude,

we just need to compute a solution of q
(4)
1 (x) = 0 in one of these subspaces. Since (Q

(4)
1 )11 > 0
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and (Q
(4)
1 )22 < 0, the choice made in Step 15 assures that q

(4)
1 (x) is indefinite on this subspace.

Moreover, in this subspace q
(4)
1 (x) has at least five variables and, by the Hasse principle (cf. [7]),

has rational solutions. This concludes the proof.
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