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We propose a data-driven methodology to learn a low-dimensional manifold of controlled
flows. The starting point is resolving snapshot flow data for a representative ensemble of
actuations. Key enablers for the actuation manifold are isometric mapping as encoder, and
a combination of a neural network and a k-nearest-neighbour interpolation as decoder.
This methodology is tested for the fluidic pinball, a cluster of three parallel cylinders
perpendicular to the oncoming uniform flow. The centres of these cylinders are the vertices
of an equilateral triangle pointing upstream. The flow is manipulated by constant rotation
of the cylinders, i.e. described by three actuation parameters. The Reynolds number
based on a cylinder diameter is chosen to be 30. The unforced flow yields statistically
symmetric periodic shedding represented by a one-dimensional limit cycle. The proposed
methodology yields a five-dimensional manifold describing a wide range of dynamics with
small representation error. Interestingly, the manifold coordinates automatically unveil
physically meaningful parameters. Two of them describe the downstream periodic vortex
shedding. The other three describe the near-field actuation, i.e. the strength of boat-tailing,
the Magnus effect and forward stagnation point. The manifold is shown to be a key enabler
for control-oriented flow estimation.
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1. Introduction

In this study, we propose a data-driven manifold learner of the flows for a large range of
operating conditions demonstrated by a low-dimensional manifold for the actuated fluidic
pinball. A cornerstone of theoretical fluid mechanics is the low-dimensional representation
of coherent structures. This representation is a basis for understanding dynamic modelling,
sensor-based flow estimation, model-based control and optimisation.

Many avenues of reduced-order representations have been proposed. Leonardo da
Vinci presented coherent structures and vortices artfully as sketches in a time when the
Navier–Stokes equations were not known (Marusic & Broomhall 2021). A quantitative
pathway of low-dimensional modelling was started by Hermann von Helmholtz (1858)
with his vortex laws. Highlights are the von Kármán (1912) model of the vortex
street and derivation of feedback wake stabilisation from the Föppl’s vortex model by
Protas (2004). Orr and Sommerfeld added a stability framework culminating in Stuart’s
mean-field theory (Stuart 1958) to incorporate non-linear Reynolds stress effects. The
proper orthogonal decomposition (POD) has quickly become the major data-driven
approach to compress snapshot data into a low-dimensional Galerkin expansion (Berkooz,
Holmes & Lumley 1993). Cluster-based modelling is an alternative data-driven flow
compression, coarse-graining snapshot data into a small set of representative centroids
(Kaiser et al. 2014). All these low-dimensional flow representations are the kinematic
prelude to dynamic models, e.g. point vortex models, modal stability approaches (Theofilis
2011), POD Galerkin models (Holmes et al. 2012) and cluster-based network models
(Fernex, Noack & Semaan 2021).

Data-driven manifold learners are a recent highly promising avenue of reduced-order
representations. A two-dimensional manifold may, for instance, accurately resolve
transient cylinder wakes: the manifold dimension is a tiny fraction of the number of
vortices, POD modes and clusters required for a similar resolution. This manifold may be
obtained by mean-field considerations (Noack et al. 2003), by dynamic features (Loiseau,
Noack & Brunton 2018), by locally linear embedding (Noack et al. 2023) and by isometric
mapping (ISOMAP, Farzamnik et al. 2023). In all these approaches, the manifolds have
been determined for a single operating condition. Haller et al. (2023) emphasised a key
challenge, namely, it remains ‘unclear if these manifolds are robust under parameter
changes or under the addition of external, time-dependent forcing’. In this study, we thus
aim to identify a manifold representing fluid flows for a rich set of control actions by
incorporating the actuation commands.

We choose the fluidic pinball as our benchmark problem for the proposed manifold
learning. This configuration has been proposed by Ishar et al. (2019) as a geometrically
simple two-dimensional configuration with a rich dynamic complexity under cylinder
actuation and Reynolds number change. The transition scenario is described and modelled
by Deng et al. (2020) comprising a sequence of bifurcations before passing to chaotic
behaviour. The feedback stabilisation achieved through cylinder rotation has been
accomplished with many different approaches (Raibaudo et al. 2020; Cornejo Maceda
et al. 2021; Li et al. 2022; Wang et al. 2023). Farzamnik et al. (2023) have demonstrated
that the unforced dynamics can be described on a low-dimensional manifold.

In this study, we illustrate the development of the control-oriented manifold, called an
‘actuation manifold’ in the following, for the fluidic pinball with three steady cylinder
rotations as independent inputs. ISOMAP is chosen for its superior compression capability
and manifold interpretability over other techniques such as POD (Farzamnik et al. 2023).

The rest of the article is structured as follows. In § 2 we introduce the dataset of the
actuated fluidic pinball while in § 3 we discuss the methodology employed to distill the
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actuation manifold and to use it for flow-estimation purposes. The results are presented
and discussed in § 4, before highlighting the main conclusions of the work in § 5.

2. Flow control dataset

The dataset is based on two-dimensional incompressible uniform flow past three cylinders
of equal diameter D. Their vertices form an equilateral triangle with one vertex pointing
upstream and its median aligned with the streamwise direction. The origin of the
Cartesian reference system is located in the midpoint between the two rightmost cylinders.
The streamwise and crosswise directions are indicated with x and y, respectively. The
corresponding velocity components are indicated with u and v. The computational domain
Ω is bounded in [−6, 20] × [−6, 6], and the unstructured grid used has 4225 triangles and
8633 nodes. The snapshots are linearly interpolated on a structured grid with a spacing of
0.05 in both x and y directions to maintain a format similar to the experimental data and
for greater simplicity.

The Reynolds number (Re), which is based on D and the incoming velocity U∞, is set to
30 for all cases. A reference time scale D/U∞ is set as a convective unit (c.u.). The force
coefficients CL and CD are obtained by normalising respectively lift and the drag forces
with 1

2ρU2∞D, being ρ the density of the fluid.
The control is achieved with independent cylinder rotations included in the vector

b = (b1, b2, b3)
T, where b1, b2 and b3 refer to the tangential speeds of the front, top

and bottom cylinder, respectively. Here, ‘T’ denotes the transpose operator. Positive
actuation values correspond to counter-clockwise rotations. Combinations of rotational
speed ranging from −3 to 3 by steps of 1 (i.e. −3, −2, . . . , 3) have been used, for a total
of 343 configurations, including the unforced case. Each of these simulation is run for
800 c.u. to reach the steady state and snapshots with 1 c.u. separation in the last 20 c.u.
for each steady state have been sampled. This time is chosen to approximately cover two
shedding cycles of the unforced case. This dataset therefore consists of 20 post-transient
snapshots for each of the 343 combinations of actuations explored, for a total of M = 6860
snapshots.

The actuations are condensed into a three-parameter vector, denoted as p = ( p1, p2,
p3)

T, and referred to as Kiki parameters (Lin 2021). These three parameters describe the
three mechanisms of boat-tailing (p1 = (b3 − b2)/2), Magnus effect (p2 = b1 + b2 + b3)
and forward stagnation point control (p3 = b1). The Kiki parameters are introduced for an
easier physical interpretation of the actuation commands.

3. Methodology

A n-dimensional manifold is a topological space in which every point has a neighbourhood
homeomorphic to Euclidean space R

n. The approach proposed here involves employing
an encoder–decoder strategy to acquire actuation manifolds, incorporating ISOMAP
(Tenenbaum, de Silva & Langford 2000), neural networks and k-nearest-neighbour (kNN)
algorithms (Fix & Hodges 1989). The collected dataset undergoes ISOMAP to discern a
low-dimensional embedding. Then, the flow reconstruction procedure involves mapping
actuation and sensor information to the manifold coordinates, followed by interpolation
among the kNNs to estimate the corresponding snapshot. An overview of this procedure
is illustrated in figure 1 and detailed in the following.

If we consider our flow fields as vector functions u(x) = (u(x, y), v(x, y))
belonging to a Hilbert space, the inner product between two snapshots ui and uj
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Figure 1. Illustration of the methodology for actuation-manifold learning and full-state estimation. The
diagram highlights key steps, from flow data collection to data-driven actuation manifold discovery (upper
section). A neural network, incorporating actuation parameters (p1, p2 and p3) and sensor information
(s1 and s2), determines ISOMAP coordinates (γ1, γ2, . . . , γn) and a kNN decoder is used for the full-state
flow reconstruction.

is defined by

〈ui, uj〉 =
∫∫

Ω

ui(x, y) · uj(x, y) dx dy, (3.1)

where ‘·’ refers to the scalar product in the two-dimensional vector space. Norms are
canonically defined by ‖u‖ = √〈u, u〉 and distances between snapshots are consistent with
this norm.

For our study, we have a collection of M flow field snapshots. In the encoder procedure,
the ISOMAP algorithm necessitates determining the square matrix DG ∈ R

M×M

containing the geodesic distances among snapshots. Geodesic distances are approximated
by selecting a set of neighbours for each snapshot to create a kNN graph. Within these
neighbourhoods, snapshots are linked by paths whose lengths correspond to Hilbert-space
distances. Geodesic distances between non-neighbours are then obtained as the shortest
path through neighbouring snapshots in the kNN graph (Floyd 1962). At this stage,
selecting the number of neighbours, which in the encoding part we denote by ke, is crucial
for creating the kNN graph and thus approximating the geodesic distance matrix.

Existing techniques are mostly empirical as in Samko, Marshall & Rosin (2006). The
method proposed by Samko et al. (2006) was successfully used by Farzamnik et al. (2023).
However, due to the particularity of our dataset, as explained later in the article, standard
empirical methods did not yield acceptable results. For this reason, we use the approach
based on the Frobenius norm (denoted by ‖ · ‖F) of the geodesic distance matrix DG (Shao
& Huang 2005) to determine ke. Opting for a small ke can lead to disconnected regions and
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undefined distances within the dataset. Thus, there exists a minimum value of ke ensuring
that all snapshots are linked in the kNN graph. Starting from this minimum, increasing ke
results in more connections in the kNN graph, causing the Frobenius norm of the geodesic
distance matrix to decrease monotonically. However, using an excessively large value
may cause a short-circuiting within the kNN graph. Eventually, this yields an Euclidean
representation, thus losing ISOMAP’s capability to unfold nonlinear relationships within
the dataset. Such short-circuiting is indicated by a sudden drop in ‖DG‖F with increasing
ke. Thus, the minimum and the value at which short-circuiting first occurs define a suitable
range of ke to be selected to approximate the geodesic distance matrix. The choice of ke
within this range is generally based on how well the high-dimensional data are represented
in the low-dimensional space. This is measured in terms of residual variance, as done by
Kouropteva, Okun & Pietikäinen (2002).

After constructing the geodesic distance matrix DG, multidimensional scaling
(Torgerson 1952) is employed to construct the low-dimensional embedding Γ =
(γ̃ij)1 � i �M, 1 � j �n, whose dimension is n. The jth column of the matrix Γ is the
jth ISOMAP coordinate for all the M flow field snapshots. We refer to the ISOMAP
coordinates with γj, j = 1, . . . , n. Consequently, γ̃ij = γj(i), i = 1, . . . , M.

More specifically, to obtain the low-dimensional embedding, we need to minimise the
cost function:

‖Γ Γ T − B‖2
F, (3.2)

where B is the double-centred squared-geodesic distance matrix B = −1/2HT(DG �
DG)H . The centring matrix H is defined as H = IM − (1/M)1M . Here IM and 1M are
the identity matrix and the matrix with all unit components of size M × M, respectively.
The symbol � refers to the Hadamard product. The solution of the minimisation term
in (3.2) involves the eigenvalues and eigenvectors arising from the decomposition of B,
specifically B = VΛV T . For a given n, we select the n largest positive eigenvalues, i.e.
Λn, and the corresponding eigenvectors V n. The coordinates are obtained by scaling these
eigenvectors by the square roots of their corresponding eigenvalues. Thus, the coordinates
are given by Γ = V nΛ

1/2
n , where Λ

1/2
n is a diagonal matrix containing the square roots of

the n largest eigenvalues.
In this instance, following the methodology outlined by Tenenbaum et al. (2000), the

evaluation of data representation quality within the ISOMAP technique is conducted
through the residual variance Rv = 1 − R2(vec(DG), vec(DE)). Here R2(·, ·) denotes the
squared correlation coefficient, ‘vec’ is the vectorisation operator and DE represents the
matrix of the Euclidean distances between the low-dimensional representation of all the
snapshots, retaining only the first n ISOMAP coordinates. The residual variance indicates
the ability of the low-dimensional embedding to reproduce the geodesic distances in the
high-dimensional space. The dimension n of the low-dimensional embedding is typically
determined by identifying an elbow in the residual variance plot.

After the actuation manifold identification, the objective is to perform a flow
reconstruction from the knowledge of a reduced number of sensors and actuation
parameters. This process is carried out in two steps. First, a regression model is trained
to identify the low-dimensional representation of a snapshot. Specifically, we employ a
fully connected multi-layer perceptron (MLP) to map the actuation parameters and sensor
information to the ISOMAP coordinates. It is possible to employ as network input either
the actuation or the Kiki parameters. In the following, we employ the Kiki parameters since
we deem them more elegant, although this does not substantially affect the results, being
the Kiki parameters a linear combination of the actuation parameters. Second, a decoding
procedure is conducted through linear interpolation among a fixed number (denoted by
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kd) of nearest neighbours, following the methodology established by Farzamnik et al.
(2023). An alternative to this mapping is presented in Appendix A, where a two-step kNN
regression with distance-weighted averaging is employed. It is important to clarify that
the decoding step is applicable only for interpolation cases, meaning for actuation cases
that fall within the limits explored during the dataset generation, i.e. |bi| < 3, ∀i = 1, 2, 3,
with |·| being the absolute value.

4. Results

4.1. Identification and physical interpretation of the low-dimensional embedding
The results of the encoding step are represented in figure 2. First, the neighbourhood size ke
for the encoding must be determined. The Frobenius norm of the geodesic distance matrix
||DG||F as a function of ke is reported in figure 2(a). A minimum ke = 40 is required to
ensure that all the neighbourhoods are connected. Figure 2(b) reports the percentage of
connected snapshots in the kNN graph. This percentage reaches 100 % for ke = 40. Below
this value, the manifold is divided into disjointed regions. By increasing ke starting from
the minimum value, the Frobenius norm decreases due to improved connections between
neighbourhoods. This also raises the probability of short-circuits, which drastically
reduces ||DG||F. Indeed, the first short-circuiting is identified for ke = 60. Choosing a
value of ke within the range from the minimum value up to the point where the first
significant drop in ||DG||F occurs does not result in substantial alterations of the geometry
of the manifold or the physical interpretation of its coordinates. Therefore, in this paper,
we select the minimum value, that is ke = 40.

Then the residual variance is used to search for the true dimensionality of the dataset.
Employing n = 5 coordinates leads to a residual variance of less than 10 %, thus n = 5
dimensions are deemed sufficient to describe the manifold, as shown in figure 2(c). Further
increase in the number of dimensions provides only marginal changes in the residual
variance.

The representation of the five-dimensional embedding is undertaken in figure 2(d) in the
form of two-dimensional projections on the γi − γj planes with i, j = 1, . . . , 5 and i < j.
A first visual observation of the projections highlights interesting physical interpretations.
The projection on the γ3 − γ4 plane unveils a circular shape, suggesting that these two
coordinates describe a periodic feature, i.e. the vortex shedding in the wake of the pinball.
The fact that the circle is full suggests that different control actions result in an enhanced or
attenuated vortex shedding. Each steady state describes a circle in the γ3 − γ4 plane. The
radius of each circle explains the amplitude of vortex shedding, while the angular position
provides information about the phase. Cases that do not exhibit vortex shedding collapse
into points where γ3, γ4 ≈ 0. This is evident from the observation of the projections on
the planes γ1 − γ3 and γ1 − γ4, both returning a champagne coupe shape, suggesting that
smaller values of γ1 are a prerogative of the cases with limit cycle of smaller amplitude.

This feature also suggests that γ1 is correlated with the boat tailing parameter p1 and thus
with the drag coefficient CD, as visualised in figure 3. This plot also shows a correlation
between γ2, the Magnus parameter p2 and the lift coefficient CL. The fifth coordinate
of the low-dimensional embedding γ5, on the other hand, appears to be correlated with
the stagnation point parameter p3 and partially explains the lift produced by the pinball.
Intriguingly, all ISOMAP coordinates are physically meaningful and allow us to discover
the three Kiki parameters without human input.

Another interesting physical interpretation arises observing the manifold section
γ1 − γ2, as shown in figure 4. This provides insights into the horizontal symmetry of
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Figure 2. (a) The Frobenius norm of the geodesic distance matrix plotted against the number of neighbours
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snapshots as ke increases. Results of the manifold obtained for ke = 40 are presented in panels (c,d). The
former illustrates the residual variance of the first 10 ISOMAP coordinates, whereas the latter showcases all
possible manifold sections identified by the first five coordinates.

the data. In the figure, semicircles repeat, increasing in number as γ1 increases. Within
each of them, b1 varies from −3 to 3, whereas b2 and b3 remain fixed. The branches
symmetrically positioned with respect to the axis γ2 = 0 are associated with symmetric
actuation b2 and b3.

The low-dimensional embedding, being the result of the eigenvector decomposition
of the double-centred squared-geodesic distance matrix, is made of orthogonal vectors.
While this might represent a disadvantage to autoencoders (Otto & Rowley 2022), this
also allows projecting the snapshots on this basis and obtaining spatial modes that can be
used to corroborate the physical interpretation of the manifold coordinates. The jth spatial
mode φj, j = 1, . . . , n is a linear combination of the snapshots ui, i.e. (

∑M
i=1 γ 2

ij )
1/2φj =∑M

i=1 γ̃ijui.
The first five ISOMAP modes are visualised in figure 5 with a line integral convolution

(LIC; Forssell & Cohen 1995) plot superimposed on a velocity magnitude contour plot.
The visual observation of the modes confirms the interpretation of the physical meaning
of the coordinates of the low-dimensional embedding. Three modes, namely φ1, φ2 and φ5
are representative of the actuation parameters. The first ISOMAP mode is characterised by
the presence of a jet (wake) downstream of the pinball due to boat-tailing (base bleeding).
The second ISOMAP mode represents a circulating motion around the pinball, responsible
for positive or negative lift, depending on the circulation direction. The fifth mode is
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Figure 3. Three-dimensional projections of the manifold colour-coded with actuation parameters and forces
coefficients. The first (boat-tailing) and second (Magnus) actuation parameters are plotted against lift and drag
coefficients to understand physical control mechanisms.

characterised by a net circulation around the front cylinder, determining the position of
the front cylinder stagnation point, if added to the mean field. The two spatial modes
φ3 and φ4, instead, have the classical aspect of vortex shedding modes. Together, they
describe the wake response to actuation parameters (far field), providing information on
the intensity and phase of vortex shedding.

4.2. Flow estimation
For the identification of the low-dimensional representation of a snapshot, we employ a
fully connected MLP. The mapping is done having as inputs the Kiki parameters and two
sensors. The mapping also includes sensor information because each actuation vector is
associated with a limit cycle, which in our case is described by 20 post-transient snapshots.
Therefore, the actuation vector provides comprehensive knowledge of the coordinates
representing the near field (γ1, γ2 and γ5). Far-field coordinates (γ3 and γ4) identification
requires information about the phase of vortex shedding, which is provided by the sensors.
Two different alternatives are proposed here. In the first, we utilise the lift coefficient
and its one-quarter mean shedding period delay (we refer to this case with MLP1). In
the second, crosswise components of velocity are measured at two positions in the wake,
specifically at points x1 = (7, 1.25) and x2 = (10, 1.25) (MLP2). The sensors are located
in the crosswise position at the edge of the shear layer of the unforced case, i.e. at the top
of the upper cylinder. The streamwise location is selected such that the vortex shedding
is already developed. The streamwise separation between the two sensors is such that
the flight time between them is approximately one-quarter of the shedding period in the
unforced case. This ensures that the sensor data collect relevant information for the flow
reconstruction, even though a systematic position optimisation has not been performed.
The characteristics of the employed networks are summarised in table 1. The training
of the neural networks is performed with the dataset used to construct the data-driven
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Figure 4. At the top, representation of the manifold section identified by the coordinates γ1 and γ2 colour
coded with b1 (a), b2 (b) and b3 (c). At the bottom, a diagram explaining how the coordinate γ2 provides
indications of horizontal symmetry in the flow field.
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Figure 5. LIC representations of the normalised actuation modes. The shadowed contour represents the local
velocity magnitude of the pseudomodes.
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Input layer size 5 Output layer size 5
Number of samples 6860 Loss Mean square error
Training set 80 % Batch size 2048
Validation set 20 % Number of epochs Early stop on validation loss
Test set 22 external cases Optimiser Adam
I/O scaling Mean − std → [0, 1] Activation function tanh
Hidden layers MLP1 (70, 70, 70, 70) Hidden layers MLP2 (40, 40)

Table 1. Structure of the neural networks used for latent coordinate identification.

manifold randomly removing all snapshots related to 20 % of the actuation cases and using
the remaining snapshots for validation.

To test the accuracy of flow estimation, we use 22 additional simulations with randomly
selected actuation, not present in the training nor the validation dataset. As done for the
training dataset, the last 20 c.u. are sampled every 1 c.u. for a total of 440 snapshots. The
neural networks are used to identify the low-dimensional representation of the snapshots
in the test dataset and then the kNN decoder is applied to reconstruct the full state. In the
decoding phase, we select kd = 220.

The value of kd was chosen by performing a parametric study. In particular, we selected
the kd to minimise the reconstruction error of the snapshots in the validation dataset. The
selected kd is considerably higher than the ke. A reason for this result lies in the particular
topology of the present dataset. For some specific control actions, vortex shedding is
completely suppressed, resulting in a stationary post-transient solution. The cases with no
shedding have 20 snapshots sampled in the post-transient identical to each other. Likewise,
their representation in low-dimensional space is identical. When decoding using the kNN
interpolation, for snapshots close to those without shedding, considering a low kd is
equivalent to considering a small number of directions for the estimation of the gradients,
which is not sufficient and results in a reconstruction with considerable error. To get a
practical idea, considering kd < 20 would be equivalent to considering only one direction,
which is insufficient for decoding. Such a dataset topology greatly complicates the choice
of kd, suggesting the need to identify a kd that is locally optimal. Such a choice, however,
goes beyond the scope of the present research and is deferred to future work.

The accuracy of the estimation between the true (ui) and estimated (ûi) snapshots is
quantified in terms of cosine similarity SG(ui, ûi) = 〈ui, ûi〉/(‖ui‖‖ûi‖). Results can be
observed in figure 6, the knowledge of the manifold enables a full state estimation with
few sensors and minimal reconstruction error. When performing the flow reconstruction
using MLP1, the median cosine similarity is 0.9977, corresponding to a median
root-mean-square error (RMSE) of 0.0512. Using MLP2, instead, the median cosine
similarity is 0.9990 (RMSE = 0.0336).

5. Conclusions

In this study, we have addressed a challenge of reduced-order modelling: accurate
low-dimensional representations for a large range of operating conditions. The flow data
are compressed in a manifold using ISOMAP as encoder and kNN as decoder. The
methodology is demonstrated for the fluidic pinball as an established benchmark problem
of modelling and control. The cylinder rotations are used as three independent steady
control parameters. The starting point of the reduced-order modelling is a dataset with
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Figure 6. Cosine similarity between real and reconstructed snapshots for all 22 actuation cases in the test
dataset. Reconstruction error is plotted against the distance of each actuation case (bi) to its nearest neighbour
in the training dataset bi(1). In the centre, a comparison between the true snapshot and its estimation is presented
for the median error case. Figure presented with LIC and color-coded by velocity magnitude. The number of
neighbours is fixed to kd = 220. Results are shown for MLP1 (a) and MLP2 (b).

20 statistically representative post-transient snapshots at Re = 30 for 343 sets of cylinder
rotations covering uniformly a box with circumferential velocities between −3 and 3.

The ISOMAP manifold describes all snapshots with 5 latent variables and few per cent
representation errors. To the best of the authors’ knowledge, this is the first demonstration
of data-driven manifold learning for a flow under multiple input control. Intriguingly, all
latent variables are aligned with clear physical meanings. Three coordinates correspond
to near-field actuation effects. More precisely, these coordinates are strongly aligned with
the Kiki parameters p introduced by Lin (2021), describing (i) the level of boat-tailing
(base bleeding) p1 leading to drag reduction (increase), (ii) the strength of the Magnus
effect p2 leading to a steady lift and characterising (iii) the forward stagnation point p3.
Two further coordinates correspond to the wake response to actuation, i.e. the amplitude
and phase of vortex shedding. The distillation of physically meaningful parameters from a
fully automated manifold is surprising and inspiring (see figure 1).

Our low-rank model is a key enabler for flow estimation with a minimum number of
sensors. It is possible to estimate the full flow state with small reconstruction errors just by
knowing the actuation parameters and employing two additional measurements, namely
the aerodynamic forces or the flow velocity in two points of the wake.

We emphasise that the low-dimensional characterisation of post-transient dynamics
as a function of three actuations constitutes a modelling challenge and encourages
numerous further applications, e.g. vortex-induced vibration of a cylinder at different
spring stiffnesses and cylinder masses, aerodynamic flutter of an elastic airfoil with
different wing elasticities, combustion instabilities for different reaction parameters, just to
name a few. A low-dimensional manifold representation can be utilised for understanding,
estimation, prediction and model-based control. In summary, the presented results can be
expected to inspire a large range of applications and complementary manifold learning
methods.
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Appendix A. Comparison between neural network and kNN performances in the
decoding step

In this appendix, we propose an alternative to the decoding as illustrated in figure 1. In
this approach, the decoding is carried out only utilising a kNN regression with weighted
averaging with the inverse of distances between neighbours. We transition from actuation
parameters and sensor data to the low-dimensional representation of a snapshot using an
initial kNN regression, with a number of neighbours indicated as kd1 . Subsequently, we
move from the manifold coordinates to the full state reconstruction using another kNN
regression, with a number of neighbours indicated as kd2 .

Consider the estimation of a snapshot ui based on the actuation vector and sensor
information in the vector zi = ( p1, p2, p3, s1, s2)

T. We estimate the low-dimensional
representation of this snapshot, which we denoted as ŷi, utilising the first kNN regression.
Therefore, starting from zi, we consider its kd1-nearest vectors in the dataset, denoted as
zi(1), . . . , zi(kd1 ), and their counterparts in the low-dimensional embedding yi(1), . . . , yi(kd1 )

to derive ŷi as follows:

ŷi =
∑kd1

j=1 yi( j)||zi( j) − zi||−1

∑kd1
j=1 ||zi( j) − zi||−1

. (A1)

Subsequently, the same procedure is applied to estimate the snapshot, denoted as ûi. We
consider the kd2 nearest vectors to ŷi, labelled as ŷi(1), . . . , ŷi(kd2 ), and their counterparts
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Figure 7. Cosine similarity between real and reconstructed snapshots for all 22 actuation cases in the test
dataset. Reconstruction error is plotted against the distance of each actuation case to its nearest neighbour in
the training dataset. In the centre, a comparison between the true snapshot and its estimation is presented for
the median error case. Figure presented with LIC and color-coded by velocity magnitude. Results are shown
force for sensors (a) and velocity sensors (b).

kNN + kNN regression MLP + kNN interpolation

kd1 kd2 Median SC Median RMSE Median SC Median RMSE

Sensing forces 69 7 0.9970 0.0573 0.9977 0.0512
Sensing velocities 66 7 0.9946 0.0804 0.9990 0.0336

Table 2. Comparison of reconstruction errors in terms of cosine similarity and RMSE for both sensing
cases using the two decoding methodologies: two-step kNN regression (left) and neural network and kNN
interpolation (right). The table also includes the values of kd1 and kd2 used in the two-step kNN regression
decoding method.

in the high-dimensional space ui(1), . . . , ui(kd2 ) to obtain the estimate as follows:

ûi =
∑kd2

j=1 ui( j)||ŷi( j) − ŷi||−1

∑kd2
j=1 ||ŷi( j) − ŷi||−1

. (A2)

For the selection of kd1 and kd2 we have to solve the minimisation problems in (A3):
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

argmin
kd1

M∑
i=1

(
ŷ
(−m),kd1
i − yi

)2
,

argmin
kd2

M∑
i=1

(
û

(−m),kd2
i − ui

)2
,

(A3)

where ŷ
(−m),kd1
i and û

(−m),kd2
i are the estimations of yi and ui using the kNN regression

with kd1 and kd2 neighbours, respectively, and using as the training dataset all snapshots
except the m = 20 snapshots of the limit cycle to which the ith snapshot, being estimated,
belongs. The procedure follow the same principles of the leave-one-out cross-validation
(Wand & Jones 1994), but instead of eliminating only one case for the estimation, all
snapshots of the limit cycle corresponding to the execution are eliminated. The results of
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the snapshot reconstruction using k NN regression in the two steps of the decoding process
are presented in figure 7.

Table 2 lists the values of kd1 and kd2 used for reconstructing the snapshots in the
testing dataset for both sensing cases. In addition, the table also includes the reconstruction
errors in terms of median cosine similarity and RMSE. The reconstruction performance
is only slightly worse if compared with the case where a neural network followed by kNN
interpolation is used.
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