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Abstract

For a positive integer r ≥ 2, a natural number n is r-free if there is no prime p such that pr | n. Asymptotic
formulae for the distribution of r-free integers in the floor function set S(x) := {�x/n� : 1 ≤ n ≤ x} are
derived. The first formula uses an estimate for elements of S(x) belonging to arithmetic progressions. The
other, more refined, formula makes use of an exponent pair and the Riemann hypothesis.
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1. Introduction and results

Let �t� be the integral part of t ∈ R and let r be a fixed integer ≥ 2. A positive integer
n is called r-free if in its canonical prime representation, each exponent is < r; a
2-free integer is also called square-free. Let μr be the characteristic function of the
r-free integers. There is considerable research on the distribution of r-free integers
over certain special sets, such as the set of integer parts, the Beatty sequence �αn + β�,
[1, 8, 9, 19] and the Piatetski-Shapiro sequence �nc�, [5–7, 13–15, 17, 18, 21]. In 2019,
Bordellés et al. [4] established an asymptotic formula for a sum of the form

∑
n≤x

f
(⌊ x

n

⌋)
,

where f is an arithmetic function subject to some growth condition, and applied it
in particular to Euler’s totient function. It is thus natural to consider such a sum for
various other functions. For example, in [3], Bordellés proved that

Sμ2 (x) = x
∞∑

n=1

μ2(n)
n(n + 1)

+ O(x1919/4268+ε), (1.1)

This work was financially supported by the Office of the Permanent Secretary, Ministry of Higher
Education, Science, Research and Innovation, Grant No. RGNS 63-40.
© The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical
Publishing Association Inc.

107

https://doi.org/10.1017/S0004972722001241 Published online by Cambridge University Press

http://dx.doi.org/10.1017/S0004972722001241
https://orcid.org/0000-0003-0499-9387
https://orcid.org/0000-0001-8172-6935
https://orcid.org/0000-0002-7357-1061
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0004972722001241&domain=pdf
https://doi.org/10.1017/S0004972722001241


108 P. Tangsupphathawat, T. Srichan and V. Laohakosol [2]

where μ2(n) is the characteristic function of the set of square-free numbers. Later, Liu
et al. [12] improved the O-term in (1.1) to O(x2/5+ε). In 2022, Stucky [16] generalised
the sum in (1.1) to the case of r-free integers and showed that for r ≥ 3,

Sμr (x) =
∞∑

n=1

μr(n)
n(n + 1)

x + O(xθr ), θr :=
r + 1

3r + 1
,

where μr(n) is the characteristic function of the set of r-free numbers. Very recently,
Heyman [10] considered the floor function set

S(x) :=
{⌊ x

n

⌋
: 1 ≤ n ≤ x

}
(1.2)

and studied the number of primes in S(x). Our objective here is to investigate how the
r-free integers are distributed over the set S(x), that is, to ask for an asymptotic estimate
for the function

Tμr (x) :=
∑

m∈S(x)

μr(m). (1.3)

There first arises the question whether the sum (1.3) is identical or related to the sum

Sμr (x) :=
∑
n≤x

μr

(⌊ x
n

⌋)
. (1.4)

To answer this question, we rewrite the sum (1.3) as

Tμr (x) =
∑
m≤x

∃n∈N such that �x/n�=m

μr(m).

Observe that each argument appears once in the sum (1.3), but usually appears several
times in the sum (1.4), as seen in the following example. Taking x = 20 and r = 2, for
the sum (1.4), we get

Sμ2 (20) =
∑
n≤20

μ2

(⌊20
n

⌋)

= μ2(20) + μ2(10) + μ2(6) + μ2(5) + μ2(4) + μ2(3) + μ2(2) + μ2(2) + μ2(2) + μ2(2)
+ μ2(1) + μ2(1) + μ2(1) + μ2(1) + μ2(1) + μ2(1) + μ2(1) + μ2(1) + μ2(1) + μ2(1)
= μ2(20) + μ2(10) + μ2(6) + μ2(5) + μ2(4) + μ2(3) + 4μ2(2) + 10μ2(1) = 18,

while for the sum (1.3), we get S(20) = {�20/n� : 1 ≤ n ≤ 20} = {1, 2, 3, 4, 5, 6, 10, 20}
and

Tμ2 (20) =
∑

m∈S(20)

μ2(m)

= μ2(20) + μ2(10) + μ2(6) + μ2(5) + μ2(4) + μ2(3) + μ2(2) + μ2(1) = 6.

Our first main result is proved using the following estimate of Yu and Wu [20].
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LEMMA 1.1 [20]. Let x ∈ R, x > 0, let q, a ∈ Z such that 0 ≤ a < q ≤ x1/4 log−3/2 x and
let S(x) be as defined in (1.2). Then,

∑
n∈S(x)

n≡ a (mod q)

1 =
2x1/2

q
+ O
( x1/3

q1/3 log x
)
.

REMARK 1.2. For real large x, let S(x) be as defined in (1.2). We shall need the estimate
|S(x)| = O(x1/2) in our proofs. To verify this, note that for n ∈ {1, 2, . . . �x�}:

• if �x/n� = 1, then n ≤ x;
• if �x/n� = 2, then n ≤ x/2;

...
• if �x/n� = �x1/2�, then n < x1/2.

It follows that for n < x1/2, the function �x/n� takes at most �x1/2� distinct integral
values. However, if n ≥ x1/2, the function �x/n� ≤ x1/2 can then take at most �x1/2�
integral values. Thus, |S(x)| ≤ 2�x1/2� = O(x1/2).

Our first theorem reads as follows.

THEOREM 1.3. Let S(x) and Tμr be as defined in (1.2) and (1.3). Then,

Tμr (x) =
2x1/2

ζ(r)
+

⎧⎪⎪⎨⎪⎪⎩
O(x3/8 log3/4 x) for r = 2,
O(x1/3 log x) for r ≥ 3.

Regarding our second main result, very recently, Zhang [22] improved the results
of Bordellés (1.1), Stuctky [16] and Liu et al. [12] by proving using the exponent pair
method, that

Sμr (x) = x
∞∑

n=1

μr(n)
n(n + 1)

+

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

O(x11/29 log2 x) for r = 2,
O(x1/3 log2 x) for r = 3,
O(x1/3 log x), for r ≥ 3.

We use the same idea as in [22] to give another formula, which, in the case r = 2, is
slightly weaker than that in Theorem 1.3.

THEOREM 1.4. For an exponent pair (κ, λ) such that 1/2 < λ/(1 + κ), we have

Tμr (x) =
2x1/2

ζ(r)
+

⎧⎪⎪⎨⎪⎪⎩
O(x1/4+λ/4(1+κ)(log x)3/2−3λ/2(1+κ)) for r = 2,
O(x1/3 log x) for r ≥ 3.

We note in passing that a result better than that in Theorem 1.4 for the case
r = 2 can be derived, assuming the Riemann hypothesis, by taking the exponent pair
(κ, λ) = (2/7, 4/7) to get

Tμ2 (x) =
2x1/2

ζ(2)
+ O(x13/36(log x)1/6).
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Under the Riemann hypothesis, we can omit the restriction on the exponent pair (κ, λ)
such that 1/2 < λ/(1 + κ) and obtain the following result.

THEOREM 1.5. Assume the Riemann hypothesis. For an exponent pair (κ, λ) such that
1/4 < λ/(1 + κ), we have

Tμ2 (x) =
2x1/2

ζ(2)
+ O(x1/4+λ/4(1+κ)(log x)3/2−3λ/2(1+κ)).

2. Proofs

PROOF OF THEOREM 1.3. Since μr(n) is the characteristic function of the set of r-free
numbers, by the well-known identity μr(n) =

∑
dr |n μ(d), we have

Tμr (x) =
∑

n∈S(x)

μr(n) =
∑

n∈S(x)

∑
dr |n
μ(d) =

∑
d≤x1/r

μ(d)
∑

n∈S(x)
n≡ 0 (mod dr)

1

=
∑

d≤x1/4r log−3/2r x

μ(d)
∑

n∈S(x)
n≡ 0 (mod dr)

1 +
∑

x1/4r log−3/2r x<d≤x1/r

μ(d)
∑

n∈S(x)
n≡ 0 (mod dr)

1.

Using Lemma 1.1 to compute the first sum, we have

∑
d≤x1/4r log−3/2r x

μ(d)
∑

n∈S(x)
n≡ 0 (mod dr)

1 =
∑

d≤x1/4r log−3/2r x

μ(d)
(2x1/2

dr + O
(x1/3

dr/3 log x
))

=
2x1/2

ζ(r)
+

⎧⎪⎪⎨⎪⎪⎩
O(x3/8 log3/4 x) for r = 2,
O(x1/3 log x) for r ≥ 3.

By the remark preceding the statement of Theorem 1.3, we have |S(x)| = O(x1/2) and
so the second sum is bounded by

∑
x1/4r log−3/2r x<d≤x1/r

μ(d)
∑

n∈S(x)
n≡ 0 (mod d2)

1 = O
(
x1/2

∑
x1/4r log−3/2r x<d≤x1/r

1
d2

)

=

⎧⎪⎪⎨⎪⎪⎩
O(x3/8 log3/4 x) for r = 2,
O(x1/4 log1/2 x) for r ≥ 3,

which completes the proof of Theorem 1.3. �

PROOF OF THEOREM 1.4. In view of [11, (14.23)],

μr(n) =
∑
d|n

g(d), where g(d) =

⎧⎪⎪⎨⎪⎪⎩
μ(	) if d = 	r, for some 	 ∈ N,
0 otherwise.
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From the definition of g(d),

∑
d≤x

|g(d)| =
⎧⎪⎪⎨⎪⎪⎩

O(x1/2) if r = 2,
O(x1/3) if r ≥ 3.

(2.1)

Let (κ, λ) be an exponent pair such that 1/2 < λ/(1 + κ) (< 1). Trivially, from (2.1),∑
d≤x

|g(d)| = O(xλ/(1+κ)). (2.2)

For x > 1,∑
n∈S(x)

μr(n) =
∑

n∈S(x)

∑
d|n

g(d) =
∑
d≤x

g(d)
∑

n∈S(x)
n≡ 0 (mod d)

1

=
∑

d≤x1/4 log−3/2 x

g(d)
∑

n∈S(x)
n≡ 0 (mod d)

1 +
∑

x1/4 log−3/2 x<d≤x

g(d)
∑

n∈S(x)
n≡ 0 (mod d)

1.

We use Lemma 1.1 to compute the first sum. We have
∑

d≤x1/4 log−3/2 x

g(d)
∑

n∈S(x)
n≡ 0 (mod d)

1 =
∑

d≤x1/4 log−3/2 x

g(d)
(2x1/2

d
+ O
( x1/3

d1/3 log x
))

= 2x1/2
∑

d≤x1/4 log−3/2 x

g(d)
d
+ O
(
x1/3 log x

∑
d≤x1/4 log−3/2 x

|g(d)|
d1/3

)
.

Denote the first and the second sums on the right-hand side by Σ1 and Σ2, respectively.
Using partial summation (or Abel’s identity [2, Theorem 4.2]) and (2.2),

∑
d≤x1/4 log−3/2 x

g(d)
d
=

∞∑
d=1

g(d)
d
−

∑
d>x1/4 log−3/2 x

g(d)
d
=

∞∑
d=1

g(d)
d
+ O
( ∑

d>x1/4 log−3/2 x

|g(d)|
d

)

=

∞∑
d=1

g(d)
d
+ O(x−1/4+λ/4(1+κ)(log x)3/2−3λ/2(1+κ))

and so

Σ1 = 2x1/2
∞∑

d=1

g(d)
d
+ O(x1/4+λ/4(1+κ)(log x)3/2−3λ/2(1+κ)).

Again from (2.2), by Abel’s identity,
∑

d≤x1/4 log−3/2 x

|g(d)|
d1/3 
 x−1/12+λ/4(1+κ)(log x)1/2−3λ/2(1+κ)

and so

Σ2 = O(x1/4+λ/4(1+κ)(log x)3/2−3λ/2(1+κ)).
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Then,
∑

d≤x1/4 log−3/2 x

g(d)
∑

n∈S(x)
n≡ 0 (mod d)

1 = 2x1/2
∞∑

d=1

g(d)
d
+ O(x1/4+λ/4(1+κ)(log x)3/2−3λ/2(1+κ)).

Next, we bound the second sum. Using |S(x)| = O(x1/2),
∑

x1/4 log−3/2 x<d≤x

g(d)
∑

n∈S(x)
n≡ 0 (mod d)

1 = O
(
x1/2

∑
x1/4 log−3/2 x<d≤x

|g(d)|
d

)
.

By Abel’s identity and (2.2), we arrive at

x1/2
∑

x1/4 log−3/2 x<d≤x

|g(d)|
d

 x1/4+λ/4(1+κ)(log x)3/2−3λ/2(1+κ),

and Theorem 1.4 follows. �

PROOF OF THEOREM 1.5. The proof is the same as the proof of Theorem 1.4. We
assume the Riemann hypothesis. Thus, we can replace (2.1) by∑

d≤x

|g(d)| = O(x1/4+ε). (2.3)

Using (2.3), we choose the exponent pairs (κ, λ) such that 1/4 < λ/(1 + κ). The result
follows. �
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