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1. Introduction

Let G be a finite group of order g having exactly % conjugate classes.
Let #(G) denote the set of prime divisors of g. K. A. Hirsch [4] has shown
that
g = k modulo 2 G.C.D.{(p*—1)|p € =n(G)} (provided 21 g).

By the same methods we prove g = & modulo G.C.D. {(p—1)*|p e n(G)}
and that if G is a p-group, g = % modulo (p—1)(p*—1). It follows that %
has the form (n-l—r( 1)) (p2—1)+p°* where r and # are integers = 0,
p is a prime, ¢ is 0 or 1, and g = p?*+°. This has been established using repre-
sentation theory by Philip Hall 3] (see also [5]). If

5= G.CD. {(p—1)(#—1) | p e x(G)}

then simple examples show (for 6 4 g obviously) that g =k modulo é
or even §/2 is not generally true.

If G is a p-group, W. Burnside [2] and N. Blackburn [1] have shown that
the statements G has a conjugate class of maximum order and G has
maximum nilpotent class are equivalent. It seems reasonable that if G
has minimum (conjugate) class number it would have classes of maximum
order; indeed, we show that if g = p™ (m = 2n--¢) and &k = n(p2—1)4-p°
then G has maximum nilpotent class, and we calculate exactly how many
classes G has of each order. Such strong conditions hold for these groups
that we can show that they only exist for m < p+43. This extends some
results we obtained in [5] for 2-groups.

2. Background

Let G denote a finite group of order g, where g has prime decomposition
g =TIr.(#7), and let #(G) = {p;|i=1,---,n} be the set of primes
dividing g. The number of conjugate classes of G will be denoted by k(G);

1 This work was done while the author held an N.R.C. (Canada) Postdoctoral Fellowship.
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often we will simply say that % is the number of classes of G. The classes
of G are denoted K, (=1, ---, k), as usual ordered, with K, = {1}; K(z)
means the class containing . We denote the lower central series of G by

G=yy,=y3=--- (y; is left undefined) and the upper central series
by {1} < Z, < Z, <---. The group generated by z,y, - is denoted
<x, Y, .>'

Most of this paper will be concerned with p-groups; that is, #(G) = {p},
g = p™. The phrase “G of order p™ will mean that G is a group, p a prime,
and  a positive integer; we will write m = 2n-+¢ to denote that m and
# are integers = 0 and e is 0 or 1. In this context we define the function
f by f(p™) = n(p?*—1)+p°, an important expression. The ordered set
(a9, a4, - -+, @y) is called the p-class vector of the p-group G and is used to
indicate that G has exactly «; classes of order p* (0 = ¢ < 1) and no classes
of order greater than p2.

If G has order p™, it is well-known (Blackburn [1], p. 52) that G has
nilpotent class at most m—1. If G has maximum nilpotent class (m—1) then
we return to Blackburn (pp. 54 and 57) for the following concepts. Define
71 = 71(G) by »1/ya = Cgy (velva); then G has the characteristic series
Gy >9y=2Z2, 3 >Y3=Zpg>"*"*">Ym1=Z;>1 in which suc-
cessive distinct terms have factor groups of order p. G is said to
have maximum degree of commutativity ¢(G) =c¢ if [y, ;] = Yirite
for all 4,7 =1,2,8,--- and ¢ is the maximum such integer; obviously
c=0.

Burnside ([2], section 98) has shown that the conjugate classes of a
non-abelian group G of order p™ all have order at most ™2 In fact the
statements that G contains a class of maximum order and that G has maxi-
mum nilpotent class are equivalent:

2.1 THEOREM. (Burnside [2], section 98). If G is a non-abelian group
of order p™ containing a conjugate class of order p™2* then G has nilpotent
class m—1.

2.2 THEOREM. Let G be a non-abelian group of order p™ with nilpotent
class m—1. Then
(i) G has p-class vector (p, p2—1) if m = 3, (p, p2—1, p2—p) if m = 4,
and (p, p—1, p*—1, p*—p) or (p, $5—1, 0, p—p) if m = 5,
(i) (Blackburn [1], 2.11 and 3.8) ¢(G) > 0 if m is odd, m = 4, or
m = p+2,and so
(i) ¢(G/Z) > 0 if m = 4,
(iv) (Blackburn [1], 2.8) ¢c(G) > 0 if and only if y, = Cg(Z,), and
(v) (Blackburn [1], 2.14 and the corollaries of 2.15) G has exactly
(p2—p) conjugate classes of ovder p™2 if ¢(G) > 0, and (p—1)? otherwise.
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3. The relation g =k

K. A. Hirsch [4] has shown g = 2 modulo 2(G.C.D.{(p?*—1) | p e =(G)})
if g is odd, and modulo 3 if g is even but 3 { g. Also, for p-groups, Philip
Hall [3] proved by representation theory that £ = (n-+7(p—1)) (p>—1)+2°,
where g = p**¢ and r = 0. In this section we wish to use Hirsch’s extremely
elementary group-theoretic approach to establish Hall’s theorem and, in
some cases, improve Hirsch’s results. Throughout, let é = §(G) = G.C.D.
{(p*—1)(p—1) | p e n(G)}. We assume 6 { g, so thatd > 1.

3.1 LEmMA. Let {{1} = H,, H,, - - -, H,} be the set of all cyclic primary
subgroups of G, |H,| = ¢*, g e m(G), for i > 1, and let p(1) = 1, p(H;) = g2tV
(g2—1). Then gk = S, p(H;) and p(H;) = ¢*—1 (for © > 1) modulo 6.

ProoF. This is equivalent to a statement of Hirsch [4]; we outline the
proof. We note first that g(¢?—1) = (92—1) modulo (§—1)(¢2—1) so that
the last statement is proved.

The number of solutions z,yeG of the equation [z, y]=1 is
Seee (Col@))) = Sk, (1K) (g/\Kd) = gk. The pair (z,)# (L 1) is a
solution of [x y] = 1 if and only if it is a generator of an abelian subgroup
H of G, s0 gk = 3 g sbetian, amy<a(p(H)) where p(H) is the number of pairs
of generatorsof H. Let H =[]}, H;, H;a p,-group. Then p(H) = H,=1 p(H,)
while if H, is an abelian p,-group of type (p%), (%, pt)ss, OF (P, PL)ss:
then p(H,) is p2(p2—1), (P2—p2%) [(B2'—p2%)—(pi—pt)]. or
e(P)ip(Pt) (Pi-+p271). Since (P2 —1)(p3—7) =0 modulo 3, we are done.

Recall we defined f(p?"+¢) = n(p2—1)-+p°.

3.2 LEMMA. p™ = f(p™) modulo (p2—1)(p—1).

Proor. This is trivially true if m is 1 or 2. If m = 3 p™ = pm—24 pm—2
(p%2—1) = p™ 2+ (p2—1) modulo (p2—1)(p—1). Therefore p2 "+t = (p°)
(™) = (p°)(p*+n(p*—1)) EP‘-F%(PLI) modulo (p*—1)(p—1).

3.3 CoROLLARY. Ifg = i, PP then g® = 1+Z.=1 m;(p2—1) modulo 6.

Proor. g* =TI, pi™ =TI, (1+m.(p2—1)) = 14+30, m,(p7—1)
since (p2—1)(p3—1) = 0 modulo 6.

The following lemma is of some interest in itself, and is modelled on one
of Hirsch ([4], p. 99).

3.4 LEMMA. If p™ || g, P odd, and ¢t is the number of non-trivial cyclic
p-subgroups of G then G contains exactly up™ solutions of the equation x*" = 1,

(-1 | (u—1), and t = m+(u—1)/(p—1) modulo (p—1).

ProoF. By Frobenius’ Theorem, G has up™ solutions of 2*" = 1. Each
non-trivial solution generates a non-trivial cyclic p-group. Let G have 4,
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cyclic subgroups ot order p’; each has ¢(p?) generators. Therefore
Sys1 (A (p—1)) = upm—1 = p(p"—1) + (u—1). It follows that
(p—1)[(u—1) and 3;.,(4,0"") = u(p™ ' +p" 2+ - - - +p+1)+Hu—1)/(p—1).
Since x and p are congruent to 1 modulo (p—1), we have 3, , 4, =m+
(r—1)/(p—1) modulo (p—1).

3.5 COROLLARY. If G has a normal p-Sylow subgroup of order p™ (p # 2)
and t is the number of non-trivial cyclic p-subgroups of G, then t = m modulo

p—1.
3.6 COROLLARY. If G is a nilpotent group, g odd, then g = k modulo 4.

Proor. By Corollary 3.5, we have, in Lemma 3.1, gk=1+4>7_ m,
(p?—1). By Corollary 3.3, gk = g2 modulo 4, and the corollary follows since
(g )= L.

By Corollary 3.5 and Lemma 3.2 we have shown that k= (n-r(p—1))
(p2—1)+-p° for a group G of order p™ (p odd, m = 2n--¢) where 7 is an
integer. By Hirsch’s theorem, this is also true for p = 2. We will have
proved Hall’s theorem if we can show that 2 = f(p™). This is established
in (5) but the following useful lemma, which is quite easy to prove, also
shows that » = 0.

Let f,(p**+) = (n-+7(p—1)) ($*— 1)+

3.7 LEMMA. Let G have order p™ and let H be a normal subgroup of G
of order p. If k(G) = f,(p™), then k(G[H) < [f,(p™7); if k(G/H) 2 [,(™7),
then k(G) = f,(p™).

Proor. It is straightforward that f,(p™) = f, 1. (P™ 1)+ (—1)*(1—2).
Hence £,(p™) < fria(#™ 1), or {,(p™1) > f,_1(p™). Since k(G/H) < k(G), then,
it £(G) =7,(6™), R(GIH) < £,(") < f,1a(p™) and so k(GH) = f,(p™).
Similarly if 2(G/H) = f,(p™1) then k(G) = f,(p™).

This latter statement, combined with the fact that (obviously)
k(G) = f(g) for groups of order p, 2%, and p? gives us by induction

3.8 COROLLARY. If G has order p™ then k(G)= (n+r(p—1))(p2—1)
+p%, 7 = 0.

We would like to show that g = % modulo ¢ for all groups (6 1 g).
By Lemma 3.1 and Corollary 3.3, it seems we would need to extend Corol-
lary 3.5: if p™ || g, p # 2, and ¢ is the number of cyclic non-trivial p-sub-
groups of G then { = m modulo p—1. We present some counterexamples
to these conjectures.

Let p and ¢ be primes such that p | (¢—1), and let 1 < « << ¢ be such
that if «f = 1 modulo ¢ then p | 8. Let Fr(p, ¢) denote the (Frobenius)
group G =<z, y|l2? =y"=1, y¥* =y*>. Then G = Fr(p,q) contains
exactly ¢ p-Sylow subgroups, g = pg, and the number of non-trivial cyclic
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p-subgroups of G is ¢. But it is not necessarily true (for example: p = 7,
g = 29) that ¢ =1 modulo p—1, or even modulo (p—1/2), so Corollary 3.5
cannot be extended to all groups, except in the form of Lemma 3.4. If
p =61, ¢ = 367, then g = 22,387, k — 67, g—k = 22,320 = 16-9 - 5 - 31,
while § = 32 - 9 so that g = % modulo 6/2 but not 6. If p =7, ¢ = 71, then
g=497, k=17, g—k =480 =232-3-5, while 6 =32-9 so that g==#
modulo 4/3 but not é.

Although we cannot show that g = % modulo 6 or even §/2 in general
then, we can still extend Hirsch’s result slightly.

3.9 PROPOSITION. g =k modulo G.C.D.{(p—1)?|p e n(G)} if g is odd.
Proor. Let
1= G.C.D{(p—1)%|p en(G)} = [G.C.D{(p—1) | p € n(G)}]? say.

As every element of G generates a cyclic subgroup of G,

§= ZHcyclic(p(lHl) = z:'\=1 (p(lHtI) modulo 7,

where H; and 4 are as in Lemma 3.1, taking ¢(1) = 1. Note that if
|H,| = ¢}, ¢, € =(G), then ¢(|H,|) = ¢**1(9,—1) = ¢,—1 modulo 7. There-
fore g*= [1+2?=2(Qi"‘1)]2 = 1+Z?=2 2(q—1) = 1+2§\=2 (¢:4+1)(g:—1) =
gk modulo 7 by Lemma 3.1. Since (g, ) = 1, the proposition follows.

3.10 COoROLLARY. g =~k modulo L.C.M.[G.C.D.{(p—1)2|p en(G)},
2(G.C.D{(p*—1) | p e=(G)})] of g is odd.

Proposition 3.9 says, for example, if #(G) = {19,37}, then g==#%
modulo (18)2, whereas Hirsch’s theorem states g = £ modulo (16)(18).

4. k(G) = 1(2)

In this section, G will always denote a group of order ™,  prime. We
have shown that if f,(p™) = (n+7(p—1))(p2—1)+p° (where m = 2n+-e),
then 2(G) = f,(p™) for some integer » = 0. Denote f,(p™) by f(p™); what is
the structure of G if (G) = f(g)?

4.1 LEMMA. Let N be a mormal subgroup of G of order p. Let
kR(GIN) = f,(p™), k(G) =f(p™), and let GIN have p-class vector
(@, @y, -+, a4y). Then G has p-class vector (p*~*, (ag—1)4-(e—1)(p—1),
a1, 8y, @) or (p,(a9—1), a1, a4, 8+ (1—€) (P2 =), @11+ (e—1)
(p—1), 8,42, -, @) for some 0 <7 < A

PrOOF. Let & be the canonical map of G -~ G/N and let K be any
conjugate class of G/N. If 1 # £(x) € K then &1(K) = K(z) - N is a union
of classes of G, and since |[N| = p, £&-2(K) then must be a single class of G

https://doi.org/10.1017/51446788700004596 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700004596

54 John Poland [6]

or a union of p classes of G (obviously £71(1) = N is a union of p classes of
order 1). 1(K) # N is a union of p classes of G if and only if K’ is, where
£eK and & €K’ for some 1 < a < p, so this happens in sets of p—1
classes of the same order, over G/N. If we let 8 denote the number of such
sets, then R(G) = R(G/N)+(p—1)+B[p(p—1)—(p—1)]. Straightforward
substitution shows that if m = 2n+-¢, § = 1—e¢, and we are done.

4.2 THEOREM. If G has order p™ (m > 1) and k(G) = f(p™) then G
has nilpotent class m—1.

ProOF. The theorem is obviously true for m = 2 and 3, so suppose
m > 3, k(G) = f($p™), and that the theorem is proved for all groups of order
pmt (1 £i<Em—2). Take N = Z,(G), [N| = p. By Lemma 3.7 and
Corollary 3.8, 2(G/N) = f(p™'). By the induction hypothesis, G/N has
maximum nilpotent class, so by part (v) of Theorem 2.2, G has p*—p
classes of maximum order, or (p—1)2 perhaps if p > 2. By Lemma 4.1
then G has (p2—p)— (p—1), or (p—1)2—(p—1) if p > 2, classes of order
$™2, at least; that is, G has at least ‘one class of maximum order. The
theorem follows by Theorem 2.1.

The p-Sylow subgroup of Sym (4?) shows that the converse of Theorem
4.2 is not true. In fact, we must place rather strong conditions upon G
in order that 2(G) = f(g).

4.3 THEOREM. If k(G) = {(p™) for a group G of order p™ (m = 3) then
either

(i) ¢(G) = 0 and G has p-class vector
(¢, p—1.- L;»P—l:zﬁ-l»!’z—ﬁ: L P'—p, 2(0°—p), (p—1)%) if n =4,

or (p, p—1, p—1, 2p2—p—1,(p—1)2) if n=3; or

(i) c(G)=1;for 1 =i =m—2, if xey,—y; 4 then Co(x) = <@, i1

and 2% €y, 1; and G has p-class vector
(B:p=1, + p—L, p*—L, p—p, " -, ).
n—2+e n—1

PrOOF. Since each y, is a normal subgroup of G and so a union of
conjugate classes of G, then G—y, and y;,—y,,, (£ > 0) are unions of classes
of G. Note that |y,] = p™.

First, suppose ¢(G) > 0. By part (v) of Theorem 2.2, G—y,; splits
into p*—p classes of p™2 elements each. Since [y, ;] = y;,;41 then
[¥i) Ym—sa] = 1 s0 if 2 € p;—p;, then Co(x) = <&, Ym—i1)- NOWZ € Yy
if and only if y; < y,,_; 4 or ¢ = (m—1)/2. Therefore if 1 <7 < n, then
|Cel@)| = p - i+ so |K(z)| < p™—*-2. It follows that y,—y,,, splits into at
least (pm—t—pm—i-1)[pm—~i-2 = p2—p classes of G if 1 < 7 < ». In the same
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way if n <7 < m, y,—y,,, splits into at least p—1 classes. Finally y,, = {1}
is a class of G. Therefore k(G) = n(p2—p)+ (m—n)(p—1)+1 = f(p™),
with equality only if zey,—y,,, implies that C(z) = <z, y,,_;—,> and
ey, _;q for ¢=1,---,m—2. In particular [y,, y,3] =1 but
(%1, Ym—s] # 1 s0 ¢(G) = 1. We note that we have y,_,—y, splitting into
p*—p classes of order p™ "2 and y,—y,,, splitting into p—1 classes of
the same order. To summarize, G must have p-class vector

(P, p—1, -, p—1, P21, p2—p, - -+, pPP—p).

n—2+46 n-1
Suppose now ¢(G) = 0. By part (ii) of Theorem 2.2 m = 2» and

6 =< m < p-+2, while by part (iii), ¢(G/Z) > 0. By Lemma 3.7 and Corol-
lary 3.8, R(G/Z) = f(p™'). Hence we can apply the above results and
G/Z must have p-class vector

(b p=1, - p=L =1, pp, - ).

Now by part (v) of Theorem 2.2, G has exactly (p—1)2 = (p2—p)—(p—1)
classes of order p™—2%. The p-class vector of G now follows by Lemma 4.1,

and we are done.
4.4 THEOREM. If Gisagroup of order p™ and m = p+3 then k(G) = f,(p™).

Proor. Suppose g = p™, m = p+3, and k(G) = f(p™). Define s and
s, as generators of G modulo y, and y; modulo y, respectively; define
$g = [S4y, s] for 7 > 1. Blackburn ([1], 2.9 and 3.8) has shown that s,
and y;,; generate y, then because of Theorem 4.2. By Theorem 4.3,
S} € Ym_g = ¥p41 since m = p+43. Therefore sPs,¢y,,,, contradicting
Lemma 3.3 of Blackburn. The theorem follows by Corollary 3.8.

The case of p = 2 and %(G) = f,(g) has been examined in [5].
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