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1.  Introduction
Our goal is to find new constructions and properties of parabolas. Our

strategy is to display the steps in a known construction or property, and then
to take the dual of the steps in order to create a new construction or
property.

Two decisions are made for simplicity and sufficient generality. One is
that throughout, in the original -space, the equation of the parabola is the
standard form

x, y

C : y =
x2

4p
, (1)

with . Any parabola can be converted to (1) by applying linear
transformations (see [1, pp. 666-673]). 

p > 0

The second choice is the specific duality transformation from among the
many duality transformations that are available (see [2, pp. 20-23]). We
utilise the transformation that is based upon the form  for
lines. It is the same duality transformation that was successfully used in [3]
to find a new construction for points of a parabola by applying a duality
transformation to the well-known triangle-construction method for tangent
lines of a parabola. Henceforth, dual refers only to this duality.

ax + by = 1

2.  The duality transformation
The duality transformation that we use is a mapping between a pair of

two-dimensional spaces, which maps points to lines and lines to points with
the exception of the origin and lines containing the origin. For clarity and to
help to distinguish between these two spaces, we use -coordinates for
one and -coordinates for the other. The dual of line  is denoted , and
the dual of point  is denoted .

x, y
u, v L L′

P P′
Each line not containing the origin can be expressed uniquely in the

form . We may therefore unambiguously define the dual of the
line  to be the point  and the dual of the point

 to be the line .

ax + by = 1
L : ax + by = 1 L′ : (a, b)

P : (a, b) P′ : au + bv = 1
Through this duality, one can associate a differentiable curve with its

dual curve, because points of tangency and tangent lines of a curve in one
space are dual to tangent lines and points of tangency, respectively, of the
dual curve in the dual space (see [4, pp. 385-388]). Applying the dual to the
points of a given differentiable curve results in a family of lines whose
envelope is the dual curve in the dual space. Similarly, applying the dual to
the family of tangent lines to a differentiable curve results in the points of its
dual curve.
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This duality is involutive or reflexive, that is, the inverse transformation
follows the same rules, and the transformation of the transformation is the
identity (see [4, pp. 24-25]). Because of this property, it can be unimportant
which space is identified as the dual space and which the original space.

Theorem 1 establishes the identity of the parabola  that is dual to
parabola  in (1), with the exceptions of the origins. The origins can be
made to correspond by continuity.

C′
C

Theorem 1 (Dual of ): Consider  for . Then, except for ,C C x ≠ 0 u = 0

C′ : {(u, v) : v = −pu2} . (2)

Proof: For any , the tangent line to (1) at  is .

The dual to this line is the point , which satisfies (2). All points of

, except the origin, are of this form.

a ≠ 0 (a,
a2

4p) 2
a

x −
4p
a2

y = 1

(2
a

,
−4p
a2 )

C′

As we apply the duality transformation, we want to be able to make
sense of the concepts of angle, parallel, perpendicular, and distance in the
dual space. With the inclusion of the origin, which has no dual, the set of all
points in , equipped with the dot product, gives rise to Euclidean 2-space
and the usual definitions of angle, parallel, perpendicular, and distance. By
defining a sum, scalar multiplication, and an inner product on the set of all
lines of the form , including the special degenerate line

, we establish an inner product space that is isomorphic to
Euclidean 2-space. This space possesses the usual definitions of angle,
parallel, and perpendicular associated with lines, and also a definition of
distance between lines and a way of adding and scaling them.

�2

ax + by = 1
0x + 0y = 1

These ideas are fruitful. For example, perpendicularity of lines in one
space implies perpendicularity of the dual points in the dual space. This new
perpendicularity can be used to shorten derivations, because it contains a
number of steps that do not need to be explicitly indicated. Also, new
insights can be revealed.

Definition 1 (Sum of lines, scalar multiplication of a line, inner product of
lines, and distance between lines): Let , and consider the
lines  and .

a, b, c, d, k ∈ �2

M : ax + by = 1 N : cx + dy = 1
(i) Sum of lines:

.M ⊕ N = (ax + by = 1) ⊕ (cx + dy = 1) = ((a + c)x + (b + d)y = 1)
(ii) Scalar multiplication of a line:

.k ⊗ M = k ⊗ (ax + by = 1) = (kax + kby = 1)
(iii) Inner product of lines: .�M, N� = �ax + by = 1, cx + dy = 1� = ac + bd
(iv) Distance between lines: .D (M, N) = (a − c)2 + (b − d)2

The inner product in (iii) induces the definition of distance between
lines in (iv) and can be used to obtain one of the two supplementary angles
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between a pair of lines. Because the inner product of a pair of lines is equal
to the dot product of the corresponding dual points, both distances and
angles are preserved by duality. In particular, two non-zero points are
perpendicular (parallel) if and only if their dual lines are perpendicular
(parallel). Also, all parallel lines, excepting those containing the origin, have
dual points lying on a line through the origin.

Theorem 2 (Sum of lines, scalar multiplication of a line, and distance
between lines through duality): For lines  and , the dual relationships for
the sum of lines, scalar multiplication of a line, and distance between two
lines are

M N

(M ⊕ N) ′ = M′ + N′, (k ⊗ M) ′ = kM′, and D (M, N) = D (M′, N′) ,
where the distance function D is understood from its arguments of points or
lines.

Proof: For points  and  in -space, addition yields
the point . The dual of  is

. The dual lines are  and
, so that . Thus addition of points and

addition of lines are dual operations. Proofs of the other two formulas follow
similarly.

P : (a, b) Q : (c, d) x, y
R = P + Q = (a + c, b + d) R

R′ : (a + c)u + (b + d)v = 1 P′ : au + bv = 1
Q′ : cu + dv = 1 R′ = P′ ⊕ Q′

3.  The pedal-curve construction and its dual construction
Construction 1 is called the pedal-curve construction. See [5, pp. 33-34],

[6, p. 126]. Construction 1 can be used to supply all the tangent lines to ,
except the tangent line at the origin. The parabola  is the envelope of these
lines. The dual Construction 2 supplies all the points of , except the origin.

C
C

C

Construction 1 (Pedal-curve construction for a tangent line  to ): See
Figure 1. Take a point , . The focus is . The line

 contains  and . Construct the line ,
which is perpendicular to  and contains . Line  is tangent to  at

. The -axis supplies the tangent line at the vertex, where .

L C
Q : (a, 0) a ≠ 0 F : (0, p)

M : 1
ax + 1

py = 1 Q F L : 1
ax − p

a2y = 1
M Q L C

x = 2a x a = 0

C F
M L

Q
x

y

− 3 − 2 4 5 63210− 1

3

2

1

FIGURE 1: The pedal-curve construction for a tangent line to C
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Construction 2 (Dual construction for a point of ): See Figure 2. Take the
lines  and , which intersect in point .
Construct the point , which is perpendicular to  and on the
line . In Figure 2, the perpendicular dashed line segments show this
perpendicularity. Point  is contained in .

C
Q′ : au = 1 F′ : pv = 1 M′ : (1

a, 1
p)

L′ : (1
a, − p

a2) M′
Q′

L′ C

u

v
F′

M′

C′

Q′

-2.4 -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2 2.4

1.5

1

0.5

-0.5

-1

-1.5

L′

FIGURE 2: The duality transformation of the pedal-curve construction

4.  St Vincent's construction and its dual construction
Construction 3, which is attributed to Gregory of Saint-Vincent, also

known as St Vincent, in 1647, is for all points of the parabola , excepting
the origin (see [7, p. 37]). St Vincent's construction is very specific. It uses a
fixed point on the -axis, and, for each non-zero point on the -axis, a point
of parabola (1) is found. The dual Construction 4 gives all the tangent lines
of , except the line at the origin.

C

y x

C′

Construction 3 (St Vincent's construction for a point of ): Refer to
Figure 3. Take a point , , on the -axis. The fixed point is

 with . The line  contains points
and . Erect the line , which is perpendicular to the line

 at . The intersection of  with the -axis is . Adding points
and  gives , which is a point of . The set of all such
points, along with (0, 0), is .

C
Q : (a, 0) a ≠ 0 x

R : (0, −4p) p > 0 M : 1
ax − 1

4py = 1 Q
R L : 1

ax + 4p
a2 y = 1

M Q L y S : (0, a2

4p) Q
S Q + S = P : (a, a2

4p) C
C

Construction 4 (Dual construction for a line of ): Refer to Figure 4. For
fixed , plot the lines  with  and
and the point , which is the intersection of  and . Point

 is perpendicular to point  and is on line . The perpendicular
dashed line segments in Figure 4 show how to locate  geometrically. Plot

C
p > 0 Q′ : au = 1 a ≠ 0 R′ : −4pv = 1

M′ : (1
a, − 1

4p) Q′ R′
L′ : (1

a, 4p
a2 ) M′ Q′

L′
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L
Q

M

R

52.5 7.5 10x

-2.5

FIGURE 3: St Vincent's construction for a point of C

the line . Performing the dual operation to  in
Construction 3 gives , which is tangent to

 at . The family of all such lines, along with the line , has
as its envelope.

S′ : (a2

4p) v = 1 Q + S
Q′ ⊕ S′ = P′ : au + a2

4pv = 1
C′ u = 2

a v = 0 C′

5

v
S′

Q′
0.75

L′

0.5 P′

0.25

−1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 1 1.25
u

−0.25
R′

M′
C′

−0.5

FIGURE 4: The duality transformation of St Vincent's construction

5.  The collinearity of certain points and the dual property
Property 1 concerns all chords of the parabola  that have a fixed slope.

The tangent lines to  at the termini of each such chord intersect at a point.
The set of all those points lies on a vertical line that is determined by the
slope of the chords. Property 2, which is dual to Property 1, says that each
and every point which is dual to a line containing a chord in Property 1, on a
line through the origin and external to the parabola, produces two tangent

C
C
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lines to the parabola. It concludes that the line through the contact points
with the parabola contains a fixed point, which corresponds to the vertical
line in Property 1.

Property 1 (Intersections of tangent lines to  at the endpoints of parallel
chords are collinear): See Figure 5. Let  be one of the parallel lines of slope
 meeting  in two distinct points. The termini of the chord on  are

 and , the equation of  is

C
L

c C L
P : (a, a2

4p) Q : (b, b2

4p) L

L :
a + b

ab
x −

4p
ab

y = 1,

and the tangent lines at  and  are  and .
Lines  and  meet at . The slope of  is . The -
coordinate of the intersection points, such as , of all pairs of tangent lines is

, which is a constant. Thus, all these points of intersection are on
. The arrows in Figure 5 show how the location of the

intersection point changes along the line  as one varies the chord of slope 
in the indicated direction.

P Q M : 2
ax − 4p

a2 y = 1 N : 2
bx − 4p

b2y = 1
M N R : (a + b

2 , ab
4p) L a + b

4p = c x
R

2pc
T : x = 2pc

T c

−1

−2

4 532−4 −3 −2 −1 0 1

1

2

3

-2

-1

-4 -3 -2 -1 0 1 2 3 4 5

3

2

1

R

C′

T P

y

x

L
Q

N M

FIGURE 5: All pairs of tangent lines at the endpoints of parallel chords meet on line T

Property 2 (Dual property of Property 1): See Figure 6. By duality, the
lines  and  are tangent to  at points  and . Line  contains the
points  and  and has equation .
Because point  is on line  in Property 1, point  is on line .
This is true for all points  generated by lines that are parallel to . At the
same time, because points  and  are on line  in Property 1, the
intersection of lines  and  is point . All lines that are parallel to  in
Property 1 have dual points that are collinear with the origin. The equation
of that line, which contains , is . As point  moves along this
line, the line  is rotated about the fixed point .

P′ Q′ C′ M′ N′ R′
M′ : (2

a, −4p
a2 ) N′ : (2

b, −4p
b2) a + b

2 u + ab
4pv = 1

R T T′ : ( 2
a + b, 0) R′

R L
Q P L

P′ Q′ L′ L

L′ v = −2p
c u L′

R′ T′
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v

L′

T
Q

u

M′

C′R′ N′

P′

2

1.6

1.2

0.8

0.4

−0.4

−0.8

−1.2

2 2.4 2.8 3.21.61.20.80.40−0.4−0.8−1.2−1.6

FIGURE 6: The duality transformation of Property 1

6.  The reflection property and its dual property
The reflection or focusing property of parabolas is Property 3. It says

that rays which are inside the curve and parallel to the parabola's axis are
reflected at the point of contact to the focus using the Law of Reflection. See
[8, p. 752]. Property 4 is the dual of Property 3.

Property 3 (Reflection or focusing property): Refer to Figure 7. For
parabola , consider the portions of the lines , , andC R : 1

ax = 1 a ≠ 0

y R M

θ

θ

C
S

P

F

x 54321 6−3 −2 −1

5

4

3

2

1

0

−1

FIGURE 7: The reflection property
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, which are interior to  and meet  at point .
The tangent line to  at  is . The Law of Reflection
requires the equality of the two angles interior to  between  and  and
between  and  (labelled  in Figure 7). The angle  between  and  is
equal to the angle between  and  determined by the inner product given
in Definition 1, while the angle  between lines  and  is the supplement
of the angle between lines  and  determined by the inner product. This
fact must be taken into account when we look at the dual property. For all
values of , line  contains the focus .

S : 4p2 − a2

4p2a x + 1
py = 1 C C P : (a, a2

4p)
C P M : 2

ax − 4p
a2y = 1

C R M
S M θ θ R M

R M
θ S M

S M

a S F : (0, p)
Property 4 (Dual of the reflection property): See Figure 8. Consider parabola

, points  and , and lines  and . Point  is on the -axis, and points
 and  are on line . The angle between  and  is  while the angle

between  and  is the supplementary angle  where  is on . By
considering the three lines through the origin that separately contain ,
and  two equal angles of measure  can be identified. Duality with Property
3 implies that the three lines ,  and  meet at the point .

C′ M′ R′ P′ F′ R′ u
M′ R′ P′ R′ M′ θ

S′ M′ 180° − θ S′ P′
R′ M′

S′ θ
P′ OS′ F′ S′

2

1.6

1.2

0.8

0.4

0

−0.4

−0.8

−1.2

0 .4 0.8 1.2 1.6 2 2.4−2.4 −2 −1.6 −1.2 −0.8 −0.4

v

F′ S′

P′

R′
θ

θ u

M′

C′

FIGURE 8: Dual to the reflection property
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