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Abstract

We study the higher genus equivariant Gromov–Witten theory of the Hilbert scheme of n points
of C2. Since the equivariant quantum cohomology, computed by Okounkov and Pandharipande
[Invent. Math. 179 (2010), 523–557], is semisimple, the higher genus theory is determined by
an R-matrix via the Givental–Teleman classification of Cohomological Field Theories (CohFTs).
We uniquely specify the required R-matrix by explicit data in degree 0. As a consequence,
we lift the basic triangle of equivalences relating the equivariant quantum cohomology of the
Hilbert scheme Hilbn

(C2) and the Gromov–Witten/Donaldson–Thomas correspondence for 3-fold
theories of local curves to a triangle of equivalences in all higher genera. The proof uses the
analytic continuation of the fundamental solution of the QDE of the Hilbert scheme of points
determined by Okounkov and Pandharipande [Transform. Groups 15 (2010), 965–982]. The
GW/DT edge of the triangle in higher genus concerns new CohFTs defined by varying the 3-fold
local curve in the moduli space of stable curves. The equivariant orbifold Gromov–Witten theory
of the symmetric product Symn

(C2) is also shown to be equivalent to the theories of the triangle in
all genera. The result establishes a complete case of the crepant resolution conjecture [Bryan and
Graber, Algebraic Geometry–Seattle 2005, Part 1, Proceedings of Symposia in Pure Mathematics,
80 (American Mathematical Society, Providence, RI, 2009), 23–42; Coates et al., Geom. Topol. 13
(2009), 2675–2744; Coates & Ruan, Ann. Inst. Fourier (Grenoble) 63 (2013), 431–478].
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0. Introduction

0.1. Quantum cohomology. The Hilbert scheme Hilbn
(C2) of n points in the

plane C2 parameterizes ideals I ⊂ C[x, y] of colength n,

dimC C[x, y]/I = n.

The Hilbert scheme Hilbn
(C2) is a nonsingular, irreducible, quasiprojective

variety of dimension 2n, see [14, 28] for an introduction. An open dense set of
Hilbn

(C2) parameterizes ideals associated to configurations of n distinct points.
The symmetries of C2 lift to the Hilbert scheme. The algebraic torus

T = (C∗)2

acts diagonally on C2 by scaling coordinates,

(z1, z2) · (x, y) = (z1x, z2 y).

The induced T-action on Hilbn
(C2) will play basic role here.

The Hilbert scheme carries a tautological rank-n vector bundle,

O/I → Hilbn
(C2), (0.1)

with fiber C[x, y]/I over [I] ∈ Hilbn
(C2), see [22]. The T-action on Hilbn

(C2)

lifts canonically to the tautological bundle (0.1). Let

D = c1(O/I) ∈ H 2
T (Hilbn

(C2),Q)

be the T-equivariant first Chern class.
The T-equivariant quantum cohomology of Hilbn

(C2) has been determined
in [29]. The matrix elements of the T-equivariant quantum product count rational
curves meeting three given subvarieties of Hilbn

(C2). (The count is virtual.) The
(nonnegative) degree of an effective curve class

β ∈ H2(Hilbn
(C2),Z)

is defined by pairing with D,

d =
∫
β

D.

(The β = 0 is considered here effective.) Curves of degree d are counted with
weight qd , where q is the quantum parameter. The ordinary multiplication in
T-equivariant cohomology is recovered by setting q = 0.

Let MD denote the operator of T-equivariant quantum multiplication by the
divisor D. A central result of [29] is an explicit formula for MD an as operator
on Fock space.
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0.2. Fock space formalism. We review the Fock space description of the
T-equivariant cohomology of the Hilbert scheme of points of C2 following the
notation of [29, Section 2.1], see also [16, 28].

By definition, the Fock space F is freely generated over Q by commuting
creation operators α−k , k ∈ Z>0, acting on the vacuum vector v∅. The annihilation
operators αk , k ∈ Z>0, kill the vacuum

αk · v∅ = 0, k > 0,

and satisfy the commutation relations

[αk, αl] = kδk+l .

A natural basis of F is given by the vectors

|µ〉 =
1

z(µ)

∏
i

α−µi v∅ (0.2)

indexed by partitions µ. Here,

z(µ) = |Aut(µ)|
∏

i

µi

is the usual normalization factor. Let the length `(µ) denote the number of parts
of the partition µ.

The Nakajima basis defines a canonical isomorphism,

F ⊗Q Q[t1, t2]
∼
=

⊕
n>0

H ∗T (Hilbn
(C2),Q). (0.3)

The Nakajima basis element corresponding to |µ〉 is

1
Πiµi
[Vµ]

where [Vµ] is (the cohomological dual of) the class of the subvariety of
Hilb|µ|(C2) with generic element given by a union of schemes of lengths

µ1, . . . , µ`(µ)

supported at `(µ) distinct points of C2. (The points and parts of µ are considered
here to be unordered.) The vacuum vector v∅ corresponds to the unit in

1 ∈ H ∗T (Hilb0
(C2),Q).
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The variables t1 and t2 are the equivariant parameters corresponding to the
weights of the T-action on the tangent space Tan0(C2) at the origin of C2.

The subspace of F⊗QQ[t1, t2] corresponding to H ∗T (Hilbn
(C2),Q) is spanned

by the vectors (0.2) with |µ| = n. The subspace can also be described as the
n-eigenspace of the energy operator:

| · | =

∑
k>0

α−k αk .

The vector |1n
〉 corresponds to the unit

1 ∈ H ∗T (Hilbn
(C2),Q).

A straightforward calculation shows

D = −|2, 1n−2
〉. (0.4)

The standard inner product on the T-equivariant cohomology of Hilbn
(C2)

induces the following nonstandard inner product on Fock space after an
extension of scalars:

〈µ|ν〉 =
(−1)|µ|−`(µ)

(t1t2)`(µ)

δµν

z(µ)
. (0.5)

With respect to the inner product,

(αk)
∗
= (−1)k−1(t1t2)

sgn(k) α−k . (0.6)

0.3. Quantum multiplication by D. The formula of [29] for the operator
MD of quantum multiplication by D is:

MD(q, t1, t2) = (t1 + t2)
∑
k>0

k
2
(−q)k + 1
(−q)k − 1

α−k αk −
t1 + t2

2
(−q)+ 1
(−q)− 1

| · |

+
1
2

∑
k,l>0

[t1t2 αk+l α−k α−l − α−k−l αk αl].

The q-dependence of MD occurs only in the first two terms (which acts
diagonally in the basis (0.2)). The two parts of the last sum are known
respectively as the splitting and joining terms.

Let µ1 and µ2 be partitions of n. The T-equivariant Gromov–Witten invariants
of Hilbn

(C2) in genus 0 with 3 cohomology insertions given (in the Nakajima
basis) by µ1, D, and µ2 are determined by MD:

∞∑
d=0

〈µ1, D, µ2
〉

Hilbn(C2)
0,d qd

= 〈µ1
| MD|µ

2
〉.
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Equivalently, denoting the 2-cycle (2, 1n) by (2), we have
∞∑

d=0

〈µ1, (2), µ2
〉

Hilbn(C2)
0,d qd

= 〈µ1
| −MD|µ

2
〉. (0.7)

Let µ1, . . . , µr
∈ Part(n). The T-equivariant Gromov–Witten series in

genus g,

〈µ1, µ2, . . . , µr
〉

Hilbn(C2)
g =

∞∑
d=0

〈µ1, µ2, . . . , µr
〉

Hilbn(C2)
g,d qd

∈ Q[[q]],

is a sum over the degree d with variable q . The T-equivariant Gromov–Witten
series in genus 0,

〈µ1, µ2, . . . , µr
〉

Hilbn(C2)
0 =

∞∑
d=0

〈µ1, µ2, . . . , µr
〉

Hilbn(C2)
0,d qd,

can be calculated from the special 3-point invariants (0.7), see [29, Section 4.2].

0.4. Higher genus. Our first result here is a determination of the T-
equivariant Gromov–Witten theory of Hilb(C2, d) in all higher genera g.
We use the Givental–Teleman classification of semisimple Cohomological Field
Theories (CohFTs). The Frobenius structure determined by the T-equivariant
genus 0 theory of Hilb(C2, d) is semisimple, but not conformal. Therefore, the R-
matrix is not determined by the T-equivariant genus 0 theory alone. Fortunately,
together with the divisor equation, an evaluation of the T-equivariant higher
genus theory in degree 0 is enough to uniquely determine the R-matrix.

Let Part(n) be the set of partitions of n corresponding to the T-fixed points of
Hilbn

(C2). For each η ∈ Part(n), let Tanη(Hilbn
(C2)) be the T-representation on

the tangent space at the T-fixed point corresponding to η. Let

Eg →Mg

be the Hodge bundle of differential forms over the moduli space of stable curves
of genus g.

THEOREM 1. The R-matrix of the T-equivariant Gromov–Witten theory of
Hilbn

(C2) is uniquely determined from the T-equivariant genus 0 theory by the
divisor equation and the degree 0 invariants

〈µ〉
Hilbn(C2)
1,0 =

∑
η∈Part(n)

µ|η

∫
M1,1

e(E∗1 ⊗ Tanη(Hilbn
(C2)))

e(Tanη(Hilbn
(C2)))

,
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〈 〉
Hilbn(C2)
g>2,0 =

∑
η∈Part(n)

∫
Mg

e(E∗g ⊗ Tanη(Hilbn
(C2)))

e(Tanη(Hilbn
(C2)))

.

The insertion µ in the genus 1 invariant is in the Nakajima basis, and µ|η
denotes the restriction to the T-fixed point corresponding to η—which can be
calculated from the Jack polynomial Jη. The integral of the Euler class e in the
formula may be explicitly expressed in terms of Hodge integrals and the tangent
weights of the T-representation Tanη(Hilbn

(C2)).
Apart from 〈µ〉Hilbn(C2)

1,0 and 〈 〉Hilbn(C2)
g>2,0 , all other degree 0 invariants of Hilbn

(C2)

in positive genus vanish. Theorem 1 can be equivalently stated in the following
form: the R-matrix of the T-equivariant Gromov–Witten theory of Hilbn

(C2)

is uniquely determined from the T-equivariant genus 0 theory by the divisor
equation and the degree 0 invariants in positive genus.

0.5. Lifting the triangle of correspondences. The calculation of the T-
equivariant quantum cohomology of Hilbn

(C2) is a basic step in the proof
[2, 29, 31] of the following triangle of equivalences:

Gromov–Witten theory
of C2

× P1

Quantum cohomology
of Hilbn

(C2)

Donaldson–Thomas theory
of C2

× P1

Our second result is a lifting of the above triangle to all higher genera. The
top vertex is replaced by the T-equivariant Gromov–Witten theory of Hilbn

(C2)

in genus g with r insertions. The bottom vertices of the triangle are new theories
which are constructed here.

Let Mg,r be the moduli space of Deligne–Mumford stable curves of genus
g with r markings. (We always assume g and r satisfy the stability condition
2g − 2+ r > 0.) Let

C →Mg,r

be the universal curve with sections

p1, . . . ,pr :Mg,r → C
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associated to the markings. Let

π : C2
× C →Mg,r

be the universal local curve over Mg,r . The torus T acts on the C2 factor. The
Gromov–Witten and Donaldson–Thomas theories of the morphism π are defined
by the π -relative T-equivariant virtual class of the universal π -relative moduli
spaces of stable maps and stable pairs. (While the triangle of equivalences
originally included the Donaldson–Thomas theory of ideal sheaves, the theory
of stable pairs [36] is much better behaved, see [26, Section 5] for a discussion
valid for C2

× P1. We use the theory of stable pairs here.)

THEOREM 2. For all genera g > 0, there is a triangle of equivalences of T-
equivariant theories:

Gromov–Witten theory of
π : C2

× C →Mg,r

Gromov–Witten theory of Hilbn
(C2)

in genus g with r insertions

Donaldson–Thomas theory of
π : C2

× C →Mg,r

The triangle of Theorem 2 may be viewed from different perspectives. First,
all three vertices define CohFTs. Theorem 2 may be stated as simply an
isomorphism of the three CohFTs. A second point of view of the bottom side
of the triangle of Theorem 2 is as a GW/DT correspondence in families of 3-
folds as the complex structure of the local curve varies. While a general GW/DT
correspondence for families of 3-folds can be naturally formulated, there are
very few interesting cases studied. (The equivariant GW/DT correspondence is
a special case of the GW/DT correspondence for families (and is well studied).)

For a pointed curve of fixed complex structure (C, p1, . . . , pr ), the triangle of
Theorem 2 is a basic result of the papers [2, 29, 31] since C can be degenerated
to a curve with all irreducible components of genus 0.

0.6. Crepant resolution. The Hilbert scheme of points of C2 is well known
to be a crepant resolution of the symmetric product,

ε : Hilbn
(C2) → Symn

(C2) = (C2)n/Sn.
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Viewed as an orbifold, the symmetric product Symn
(C2) has a T-equivariant

Gromov–Witten theory with insertions indexed by partitions of n. The T-
equivariant Gromov–Witten generating series,

〈µ1, µ2, . . . , µr
〉

Symn(C2)
g =

∞∑
b=0

〈µ1, µ2, . . . , µr
〉

Symn(C2)

g,b ub
∈ Q[[u]],

is a sum over the number of free ramification points b with variable u. (A full
discussion of the definition appears in Section 3.2.)

The Frobenius structure determined by the T-equivariant genus 0 theory
of Symn

(C2) is semisimple, but not conformal. Again, the R-matrix is not
determined by the T-equivariant genus 0 theory alone. The determination of the
R-matrix of Symn

(C2) is given by the following result parallel to Theorem 1.

THEOREM 3. The R-matrix of the T-equivariant Gromov–Witten theory of
Symn

(C2) is uniquely determined from the T-equivariant genus 0 theory by the
divisor equation and all the unramified invariants,

〈µ1, . . . , µr
〉

Symn(C2)

g,0 ,

in positive genus.

For each η ∈ Part(n), let Hη
g be the moduli space étale covers with `(η)

connected components of degrees

η1, . . . , η`(η)

of a nonsingular genus g > 2 curve. (For the definition of Hη

g, we consider the
parts of η to be ordered and in bijection with the components of the cover.) The
degree of the map

Hη
g →Mg

is an unramified Hurwitz number. Let

Hη

g →Mg

be the compactification by admissible covers.
Since the genus of the component of the cover corresponding to the part ηi is

ηi(g − 1)+ 1, there is a Hodge bundle

E∗ηi (g−1)+1 → Hη

g

obtained via the corresponding component.
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The simplest unramified invariants required in Theorem 3 are

〈 〉
Symn(C2)

g>2,0 =

∑
η∈Part(n)

1
|Aut(η)|

∫
Hη

g

`(η)∏
i=1

e(E∗ηi (g−1)+1 ⊗ Tan0(C2))

e(Tan0(C2))
.

However, there are many further unramified invariants in positive genus obtained
by including insertions. Unlike the case of Hilbn

(C2), the unramified invariants
with insertions for Symn

(C2) do not all vanish.
In genus 0, the equivalence of the T-equivariant Gromov–Witten theories

of Hilbn
(C2) and the orbifold Symn

(C2) was proven in [1]. (The prefactor
(−i)

∑r
i=1 `(µ

i )−|µi
| was treated incorrectly in [1] because of an arithmetical error.

The prefactor here is correct.) Our fourth result is a proof of the equivalence for
all genera.

THEOREM 4. For all genera g > 0 and µ1, µ2, . . . , µr
∈ Part(n), we have

〈µ1, µ2, . . . , µr
〉

Hilbn(C2)
g = (−i)

∑r
i=1 `(µ

i )−|µi
|
〈µ1, µ2, . . . , µr

〉
Symn(C2)
g

after the variable change −q = eiu .

The variable change of Theorem 4 is well defined by the following result
(which was previously proven in genus 0 in [29]).

THEOREM 5. For all genera g > 0 and µ1, µ2, . . . , µr
∈ Part(n), the series

〈µ1, µ2, . . . , µr
〉

Hilbn(C2)
g ∈ Q(t1, t2)[[q]]

is the Taylor expansion in q of a rational function in Q(t1, t1, q). (As always, g
and r are required to be in the stable range 2g − 2+ r > 0.)

Theorem 4 establishes a complete case of the crepant resolution conjecture
[1, 5, 6].

Calculations in closed form in higher genus are not easily obtained. The first
nontrivial example occurs in genus 1 for the Hilbert scheme of 2 points:

〈(2)〉Hilb2(C2)
1 = −

1
24
(t1 + t2)

2

t1t2
·

1+ q
1− q

. (0.8)

While the formula is simple, our virtual localization [15] calculation of the
integral is rather long. Since (0.8) captures all degrees, the full graph sum must
be controlled—we use the valuation at (t1 + t2) as in [29].
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The above calculation (0.8) for the Hilbert scheme of 2 points yields new
Hodge integral calculations for the bielliptic locus H1((2)2n), the moduli space
of double covers of elliptic curves with 2n ordered branch points,

H1((2)2n)→M1,2n.

Since the domain curves parameterized by H1((2)2n) have genus n + 1, there is
a Hodge bundle

E∗n+1 → H1((2)2n).

By a direct application of Theorem 4,
∞∑

n=1

u2n−1

(2n − 1)!

∫
H1((2)2n)

λn+1λn−1 =
i

24
·

1− eiu

1+ eiu

=
1
48

u +
1

576
u3
+

1
5760

u5
+ · · · .

(We follow the standard convention λi = ci(En+1).) The u and u3 coefficients
can be checked geometrically using the bielliptic calculations of [8]. The u5

coefficient has been checked in [39, Remark 5.14].
The corresponding series for higher n,

〈(2, 1n−2)〉
Hilbn(C2)
1 ∈ Q(t1, t2, q),

very likely has a simple closed formula. We return to these questions in a future
paper.

0.7. Plan of proof. Theorems 2 and 4 are proven together by studying the
R-matrices of all four theories. The R-matrix of the CohFT associated to the
local Donaldson–Thomas theories of curves is easily proven to coincide with the
R-matrix of the T-equivariant Gromov–Witten theory of Hilbn

(C2) determined
in Theorem 1. Similarly, the R-matrices of the CohFTs associated to Symn

(C2)

and the local Gromov–Witten theories of curves are straightforward to match
(with determination by Theorem 3). The above results require a detailed study of
the divisor equation in the four cases.

The main step of the joint proof of Theorems 2 and 4 is to match the
R-matrices of Theorems 1 and 3. The matter is nontrivial since the former is
a function of q and the latter is a function of u. The matching after

−q = eiu

requires an analytic continuation. Our method here is to express the R-matrices
in terms of the solution of the QDE associated to Hilbn

(C2). Fortunately, the
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analytic continuation of the solution of the QDE proven in [30] is exactly what
is needed, after a careful study of asymptotic expansions, to match the two
R-matrices.

The addition of Symn
(C2) via Theorem 4 to the triangle of Theorem 2 yields

a tetrahedron of equivalences of T-equivariant theories (as first formulated in
genus 0 in [1]).

�
�
�
�
�

@
@
@
@
@

@
@
@

@
@

�
�
�

�
�

Gromov–Witten theory of Hilbn (C2)
in genus g with r insertions

Orbifold Gromov–Witten theory of Symn (C2)
in genus g with r insertions

Donaldson–Thomas theory of

π : C2
× C→Mg,r

Gromov–Witten theory of

π : C2
× C→Mg,r

Before the development of the orbifold Gromov–Witten theory of Symn
(C2),

a theory of Hurwitz–Hodge integrals was proposed by Cavalieri [3]. While the
orbifold Gromov–Witten theory is formulated in terms of principal Sn-bundles
over curves, Cavalieri’s theory is formulated in terms of the associated Hurwitz
covers of curves. In fact, the virtual class of the orbifold theory of Symn

(C2)

exactly coincides with the Hodge integrand proposed by Cavalieri, so the two
theories are equal. The orbifold vertex of the above tetrahedron may therefore
also be viewed via Cavalieri’s definition. (Our discussion concerns Cavalieri’s
level (0, 0) theory extended naturally over the moduli space of genus g curves.
In genus 0, Cavalieri [3] noted the equivalence of his theory to the Gromov–
Witten vertex. He also defined theories of other levels (a, b)which do not exactly
agree with the corresponding (a, b)-theories of the Gromov–Witten vertex (even
in genus 0). We do not explore here the interesting geometry of the (a, b)-level
structure over the moduli space of genus g curves.)

1. Cohomological field theory

1.1. Definitions. The notion of a cohomological field theory (CohFT) was
introduced in [20], see also [24]. We follow closely here the treatment of [35,
Section 0.5], and we refer the reader also to the survey [33].
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Let k be an algebraically closed field of characteristic 0. Let A be a
commutative k-algebra. Let V be a free A-module of finite rank, let

η : V⊗ V→ A

be an even, symmetric, nondegenerate pairing, and let 1 ∈ V be a distinguished
element. (The pairing η induces an isomorphism between V and the dual
module V∗ = Hom(V,A).) The data (V, η, 1) is the starting point for defining a
cohomological field theory. Given a basis {ei} of V, we write the symmetric form
as a matrix

η jk = η(e j , ek).

The inverse matrix is denoted by η jk as usual.
A cohomological field theory consists of a system Ω = (Ωg,r )2g−2+r>0 of

elements
Ωg,r ∈ H ∗(Mg,r ,A)⊗ (V∗)⊗r .

We view Ωg,r as associating a cohomology class on Mg,r to elements of V
assigned to the r markings. The CohFT axioms imposed on Ω are:

(i) Each Ωg,r is Sr -invariant, where the action of the symmetric group Sr

permutes both the marked points of Mg,r and the copies of V∗.

(ii) Denote the basic gluing maps by

q :Mg−1,r+2 →Mg,r ,

q̃ :Mg1,r1+1 ×Mg2,r2+1 →Mg,r .

The pull-backs q∗(Ωg,r ) and q̃∗(Ωg,r ) are equal to the contractions of

Ωg−1,r+2 and Ωg1,r1+1 ⊗Ωg2,r2+1

by the bivector ∑
j,k

η jke j ⊗ ek

inserted at the two identified points.

(iii) Let v1, . . . , vr ∈ V and let p :Mg,r+1 →Mg,r be the forgetful map. We
require

Ωg,r+1(v1 ⊗ · · · ⊗ vr ⊗ 1) = p∗Ωg,r (v1 ⊗ · · · ⊗ vr ),

Ω0,3(v1 ⊗ v2 ⊗ 1) = η(v1, v2).
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DEFINITION 1.1. A system Ω = (Ωg,r )2g−2+r>0 of elements

Ωg,r ∈ H ∗(Mg,r ,A)⊗ (V ∗)⊗r

satisfying properties (i) and (ii) is a cohomological field theory (CohFT). If (iii)
is also satisfied, Ω is a CohFT with unit.

A CohFT Ω yields a quantum product ? on V via

η(v1 ? v2, v3) = Ω0,3(v1 ⊗ v2 ⊗ v3). (1.1)

Associativity of ? follows from (ii). The element 1 ∈ V is the identity for ? by
(iii).

A CohFT ω composed only of degree 0 classes,

ωg,r ∈ H 0(Mg,r ,A)⊗ (V∗)⊗r ,

is called a topological field theory. Via property (ii), ωg,r (v1, . . . , vr ) is
determined by considering stable curves with a maximal number of nodes.
Every irreducible component of such a curve is of genus 0 with 3 special points.
The value of ωg,r (v1 ⊗ · · · ⊗ vr ) is thus uniquely specified by the values of ω0,3

and by the pairing η. In other words, given V and η, a topological field theory is
uniquely determined by the associated quantum product.

1.2. Gromov–Witten theory. Let X be a nonsingular projective variety over
C. The stack of stable maps Mg,r (X, β) of genus g curves to X representing the
class β ∈ H2(X,Z) admits an evaluation

ev :Mg,r (X, β)→ X r

and a forgetful map
ρ :Mg,r (X, β)→Mg,r ,

when 2g−2+r > 0. (See [10] for an introduction to stable maps.) The Gromov–
Witten CohFT is constructed from the virtual classes of the moduli of stable maps
of X ,

ΩGW
g,r (v1 ⊗ · · · ⊗ vr ) =

∑
β∈H2(X,Z)

qβρ∗(ev∗(v1 ⊗ · · · ⊗ vr ) ∩ [Mg,r (X, β)]vir).

The ground ring A is the Novikov ring, a suitable completion of the group ring
associated to the semigroup of effective curve classes in X ,

V = H ∗(X,Q)⊗Q A = H ∗(X,A),

the pairing η is the extension of the Poincaré pairing, and 1 ∈ V is the unit in
cohomology. (We take the Novikov ring with Q-coefficients.)
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1.3. Semisimplicity.

1.3.1. Classification. Let Ω be a CohFT with respect to (V, η, 1). We are
concerned here with theories for which the algebra V with respect to the quantum
product ? defined by (1.1) is semisimple. Such theories are classified in [40].
Specifically, Ω is obtained from the algebra V via the action of an R-matrix

R ∈ 1+ z · End(V)[[z]],

satisfying the symplectic condition

R(z)R?(−z) = 1.

Here, R? denotes the adjoint with respect to η and 1 is the identity matrix. The
explicit reconstruction of the semisimple CohFT from the R-matrix action will
be explained below, following [35].

1.3.2. Actions on CohFTs. Let Ω = (Ωg,r ) be a CohFT with respect to
(V, η, 1). Fix a symplectic matrix

R ∈ 1+ z · End (V)[[z]]

as above. A new CohFT with respect to (V, η, 1) is obtained via the cohomology
elements

RΩ = (RΩ)g,r ,

defined as sums over stable graphs Γ of genus g with r legs, with contributions
coming from vertices, legs, and edges. Specifically,

(RΩ)g,r =
∑
Γ

1
|Aut(Γ )|

(ιΓ )?

(∏
v

Cont(v)
∏

l

Cont(l)
∏

e

Cont(e)
)

(1.2)

where:

(i) the vertex contribution is

Cont(v) = Ωg(v),r(v),

with g(v) and r(v) denoting the genus and number of half-edges and legs
of the vertex,

(ii) the leg contribution is
Cont(l) = R(ψl)

where ψl is the cotangent class at the marking corresponding to the leg,
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(iii) the edge contribution is

Cont(e) =
η−1
− R(ψ ′e)η

−1R(ψ ′′e )
>

ψ ′e + ψ
′′
e

.

Here ψ ′e and ψ ′′e are the cotangent classes at the node which represents the
edge e. The symplectic condition guarantees that the edge contribution is
well defined.

A second action on CohFTs is given by translations. As before, let Ω be a
CohFT with respect to (V, 1, η) and consider a power series T ∈ V[[z]] with no
terms of degrees 0 and 1:

T(z) = T2z2
+ T3z3

+ · · · ,Tk ∈ V.

A new CohFT with respect to (V, 1, η), denoted TΩ , is defined by setting

(TΩ)g,r (v1 ⊗ · · · ⊗ vr )

=

∞∑
m=0

1
m!
(pm)?Ωg,r+m(v1 ⊗ · · · ⊗ vr ⊗ T(ψr+1)⊗ · · · ⊗ T(ψr+m)) (1.3)

where
pm :Mg,r+m →Mg,r

is the forgetful morphism.

1.3.3. Reconstruction. With the above terminology understood, we can state
the Givental–Teleman classification theorem [12, 13, 40]. Fix Ω a semisimple
CohFT with respect to (V, 1, η), and write ω for the degree 0 topological part of
the theory. Given any symplectic matrix

R ∈ 1+ z · End(V)[[z]]

as above, we form a power series T by plugging 1 ∈ V into R, removing the free
term, and multiplying by z:

T(z) = z(1− R(1)) ∈ V[[z]].

Givental–Teleman classification. There exists a unique symplectic matrix R for
which

Ω = RTω.

A proof of uniqueness can be found, for example, in [25, Lemma 2.2].
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1.4. Targets Hilbn
(C2) and Symn

(C2). The CohFTs determined by the T-
equivariant Gromov–Witten theories of Hilbn

(C2) and Symn
(C2) are based on

the algebras
A = Q(t1, t2)[[q]], Ã = Q(t1, t2)[[u]], (1.4)

and the corresponding free modules

V = F n
⊗Q A, Ṽ = F n

⊗Q Ã, (1.5)

where F n is the Fock space with basis indexed by Part(n). While the inner
product for the CohFT determined by Hilbn

(C2) is the inner product defined
in (0.5),

η(µ, ν) = 〈µ|ν〉 =
(−1)|µ|−`(µ)

(t1t2)`(µ)

δµν

z(µ)
,

the inner product for the CohFT determined by Symn
(C2) differs by a sign,

η̃(µ, ν) = (−1)|µ|−`(µ)〈µ|ν〉 =
1

(t1t2)`(µ)

δµν

z(µ)
.

Since the CohFTs are both semisimple, we obtain unique R-matrices from the
Givental–Teleman classification,

RHilb and RSym.

After rescaling the insertion µ in the T-equivariant Gromov–Witten theory of
Symn

(C2) by the factor (−i)|µ|−`(µ), the inner products match. Let

|µ̃〉 = (−i)`(µ)−|µ||µ〉 ∈ Ṽ. (1.6)

The linear transformation V→ Ṽ defined by

µ 7→ µ̃

respects the inner products η and η̃. Moreover, the correspondence claimed by
Theorem 4 then simplifies to

〈µ1, µ2, . . . , µr
〉

Hilbn(C2)
g = 〈µ̃1, µ̃2, . . . , µ̃r

〉
Symn(C2)
g

after the variable change −q = eiu .
To prove Theorems 2 and 4, we construct an operator series R defined over an

open set of values of q ∈ C containing q = 0 and q = −1 with the two following
properties:

• R = RHilb near q = 0;

• R = RSym near q = −1 after the variable change −q = eiu .
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The operator R is obtained from the asymptotic solution to the QDE of Hilbn
(C2).

The existence of R is guaranteed by results of [7, 11]. The asymptotic solution
is shown to be the asymptotic expansion of an actual solution to the QDE. The
behavior of R near q =−1 is then studied by using the solution to the connection
problem in [30].

2. The R-matrix for Hilbn
(C2)

2.1. The formal Frobenius manifold. We follow the notation of Section 1.4
for the CohFT determined by the T-equivariant Gromov–Witten theory of
Hilbn

(C2). The genus 0 Gromov–Witten potential,

FHilbn(C2)
0 (γ ) =

∞∑
d=0

qd
∞∑

r=0

1
r !
〈γ, . . . , γ︸ ︷︷ ︸

r

〉
Hilbn(C2)
0,d , γ ∈ V

is a formal series in the ring A[[V∗]] where

A = Q(t1, t2)[[q]].

The T-equivariant genus 0 potential FHilbn(C2)
0 defines a formal Frobenius

manifold
(V, ?, η)

at the origin of V.
A basic result of [29] is the rationality of the dependence on q . Let

Q = Q(t1, t2, q)

be the field of rational functions. By [29, Section 4.2],

FHilbn(C2)
0 (γ ) ∈ Q[[V∗]].

We often view the formal Frobenius manifold (V, ?, η) as defined over the field
Q instead of the ring A.

2.2. Semisimplicity. The formal Frobenius manifold (V, ?, η) is semisimple
at the origin after extending Q to the algebraic closure Q. The semisimple
algebra

(Tan0V, ?0, η)

is the small quantum cohomology of Hilbn
(C2). The matrices of quantum

multiplication of the algebra Tan0(V) have coefficients in Q. The restriction
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to q = 0 is well defined and semisimple with idempotents proportional to
the classes of the T-fixed points of Hilbn

(C2). The idempotents of the algebra
Tan0(V) may be written in the Nakajima basis after extending scalars to Q. The
algebraic closure is required since the eigenvalues of the matrices of quantum
multiplication lie in finite extensions of Q. (More precisely, coefficients lie in
the ring Q ∩ A since the eigenvalues lie in A.)

Since the formal Frobenius manifold (V, ?, η) is semisimple at the origin, the
full algebra

(Tan0(V)⊗Q Q[[V∗]], ?, η) (2.1)

is also semisimple (after extending scalars to Q). The idempotents of the algebra
Tan0(V) can be lifted to all orders to obtain idempotents εµ of the full algebra
(2.1) parameterized by partitions µ corresponding to the T-fixed points of
Hilbn

(C2).
For the formal Frobenius manifold (V, ?, η), there are two bases of vector

fields which play a fundamental role in the theory:

• the flat vector fields ∂µ corresponding the basis elements |µ〉 ∈ V;

• the normalized idempotents ε̃µ of the quantum product ?.

The normalized idempotents are proportional to the idempotents and satisfy

η( ε̃µ, ε̃ν) = δµν .

Let Ψ be change of basis matrix,

Ψ ν
µ = η( ε̃ν, ∂µ) ∈ Q[[V∗]]

between the two frames. Unique canonical coordinates at the origin,

{uµ ∈ Q[[V∗]]}µ∈Part(n)

can be found satisfying

uµ(0) = 0,
∂

∂uµ
= εµ.

By [11, Proposition 1.1], the quantum differential equation

∇zS̃ = 0 (2.2)

has a formal fundamental solution in the basis of normalized idempotents of the
form

S̃ = R(z)eu/z. (2.3)
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(We follow the notation of the exposition in [21]. See also [7].) Often the solution
is written in the basis of flat vector fields as

S = Ψ −1R(z)eu/z.

Here, ∇z is the Dubrovin connection,

R(z) = 1+ R1z + R2z2
+ R3z3

+ . . . (2.4)

is a series of |Part(n)| × |Part(n)| matrices starting with the identity matrix 1,
and u is a diagonal matrix with the diagonal entries given by the canonical
coordinates uµ.

We view R(z) as an End(V)-valued formal power series in z written in
the basis of normalized idempotents. The series R(z) satisfies the symplectic
condition

R†(−z)R(z) = 1, (2.5)

where R†(z) is the adjoint of R(z) with respect to the inner product η. A detailed
treatment of the construction and properties of R(z) can be found in [21, Section
4.6 of Ch. 1].

An R-matrix associated to the formal Frobenius manifold (V, ?, η) is a matrix
series of the form (2.4) which determines a solution (2.3) of the quantum
differential equation (2.2) and satisfies the symplectic condition (2.5). The two
basic properties of R-matrices which we use are:

(i) There exists a unique R-matrix RHilb associated to (V, ?, η)with coefficients
in A[[V∗]] which generates the T-equivariant Gromov–Witten theory of
Hilbn

(C2) in all higher genus.

(ii) Two R-matrices associated to (V, ?, η) with coefficients in A[[V∗]] must
differ by right multiplication by

exp
( ∞∑

j=1

a2 j−1z2 j−1

)

where each a2 j−1 is a diagonal matrix with coefficients in A.

Property (i) is a statement of the Givental–Teleman classification of semisimple
CohFTs applied to the T-equivariant Gromov–Witten theory of Hilbn

(C2). For
properties (i) and (ii), we have left the field Q and returned to the ring A because
the CohFT associated to Hilbn

(C2) is defined over A. In Section 2.5, the unique
R-matrix of property (i) will be shown to actually have coefficients in Q[[V∗]].
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2.3. Divisor equation. The formal Frobenius manifold (V, ?, η) is actually
well defined away from the origin along the line with coordinate t determined by
the vector

|2, 1n−2
〉 ∈ V.

At the point −t |2, 1n−2
〉 ∈ V, the potential of the Frobenius manifold is

FHilbn(C2)
0 (−t |2, 1n−2

〉 + γ ) =

∞∑
d=0

qd
∞∑

r=0

∞∑
m=0

tm

r !m!
〈γ, . . . , γ︸ ︷︷ ︸

r

, D, . . . , D︸ ︷︷ ︸
m

〉
Hilbn(C2)
0,d

=

∞∑
d=0

qd
∞∑

r=0

∞∑
m=0

(dt)m

r !m!
〈γ, . . . , γ︸ ︷︷ ︸

r

〉
Hilbn(C2)
0,d ,

=

∞∑
d=0

qdedt
∞∑

r=0

1
r !
〈γ, . . . , γ︸ ︷︷ ︸

r

〉
Hilbn(C2)
0,d

for γ ∈ V and D = −|2, 1n−2
〉 as in (0.4). We have used the divisor equation

of Gromov–Witten theory in the second equality. The potential near the point
−t |2, 1n−2

〉 ∈ V is obtained from the potential at 0 ∈ V by the substitution

FHilbn(C2)
0 (−t |2, 1n−2

〉 + γ ) = FHilbn(C2)
0 (γ )|q 7→qet .

The Frobenius manifold is semisimple at all the points −t |2, 1n−2
〉 ∈ V .

Let Ω be the CohFT associated to the T-equivariant Gromov–Witten theory
of Hilbn

(C2). The genus 0 data of Ω is exactly given by the formal Frobenius
manifold (V, ?, η) at the origin. Define the −t |2, 1n−2

〉-shifted CohFT by

Ω−t |2,1n−2
〉

g,r (γ ⊗ · · · ⊗ γ ) =
∑
m>0

tm

m!
ρr+m

r∗ (Ωg,r+m(γ ⊗ · · · ⊗ γ ⊗ D⊗m))

= Ωg,r (γ ⊗ · · · ⊗ γ )|q 7→qet .

Here, ρr+m
r is the forgetful map which drops the last m markings,

ρr+m
r :Mg,r+m →Mg,r . (2.6)

We have again used the divisor equation of Gromov–Witten theory in the second
equality.

Let RHilb be the unique R-matrix associated to the T-equivariant Gromov–
Witten theory of Hilbn

(C2). The shifted CohFT Ω−t |2,1n−2
〉

g,r is obtained from the
semisimple genus 0 data

FHilbn(C2)
0 (−t |2, 1n−2

〉 + γ )
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by the unique R-matrix

RHilb(−t |2, 1n−2
〉 + γ ).

On the other hand, the R-matrix

RHilb
|q 7→qet

also generates Ω−t |2,1n−2
〉

g,r from the same semisimple genus 0 data. By the
uniqueness of the R-matrix in the Givental–Teleman classification,

RHilb(−t |2, 1n−2
〉 + γ ) = RHilb

|q 7→qet .

We find the following differential equation:

−
∂

∂t
RHilb
= q

∂

∂q
RHilb. (2.7)

The differential equation is an extra condition satisfied by RHilbn(C2) in addition
to determining a solution (2.3) of the quantum differential equation (2.2) and
satisfying the symplectic condition (2.5).

PROPOSITION 6. Two R-matrices associated to (V, ?, η) with coefficients in
A[[V∗]] which both satisfy the differential equation

−
∂

∂t
R = q

∂

∂q
R

must differ by right multiplication by

exp
( ∞∑

i=1

a2 j−1z2 j−1

)
where each a2 j−1 is a diagonal matrix with coefficients in Q(t1, t2).

Proof. Let R̃ and R̂ be two R-matrices associated to (V, ?, η) which both satisfy
the additional differential equation. By property (ii) of R-matrices associated to
(V, ?, η),

R̃ = R̂ · exp
( ∞∑

i=1

a2 j−1z2 j−1

)
where each a2 j−1 is a diagonal matrix with coefficients in

A = Q(t1, t2)[[q]].
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Differentiation yields

−
∂

∂t
R̃ = −

∂

∂t
R̂ · exp

( ∞∑
i=1

a2 j−1z2 j−1

)
− R̂ ·

∂

∂t
exp

( ∞∑
i=1

a2 j−1z2 j−1

)

= −
∂

∂t
R̂ · exp

( ∞∑
i=1

a2 j−1z2 j−1

)

= q
∂

∂q
R̂ · exp

( ∞∑
i=1

a2 j−1z2 j−1

)
.

The second equality uses the independence of a2 j−1 with respect to the
coordinate t . The third equality uses the differential equation for R̂. Application
of the operator q(∂/∂q) to R̃ yields

q
∂

∂q
R̃ = q

∂

∂q
R̂ · exp

( ∞∑
i=1

a2 j−1z2 j−1

)
+ R̂ · q

∂

∂q
exp

( ∞∑
i=1

a2 j−1z2 j−1

)
.

Finally, using the differential equation for R̃, we find

R̂ · q
∂

∂q
exp

( ∞∑
i=1

a2 j−1z2 j−1

)
= 0.

By the invertibility of R̂,

q
∂

∂q
exp

( ∞∑
i=1

a2 j−1z2 j−1

)
= 0.

Hence, the matrices a2 j−1 are independent of q .

2.4. Proof of Theorem 1. Since the CohFT Ωg,r associated to the T-
equivariant Gromov–Witten theory of Hilbn

(C2) is defined over the ring

A = Q(t1, t2)[[q]],

we can consider the CohFT Ωg,r |q=0 defined over the ring Q(t1, t2). The CohFT
Ωg,r |q=0 is semisimple with R-matrix given by the q = 0 restriction,

RHilb
|q=0,

of the R-matrix ofΩg,r . As a corollary of Proposition 6, we obtain the following
characterization of RHilb.
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PROPOSITION 7. RHilb is the unique R-matrix associated to (V, ?, η) which
satisfies

−
∂

∂t
RHilb
= q

∂

∂q
RHilb

and has q = 0 restriction which equals the R-matrix of the restricted CohFT
Ωg,r |q=0.

Since Ωg,r |q=0 concerns constant maps of genus g curves to Hilbn
(C2), the

CohFT can be written explicitly in terms of Hodge integrals. The moduli space
of maps in degree 0 is

Mg,r (Hilbn
(C2), 0) =Mg,r × Hilbn

(C2)

with virtual class
E∗g ⊗ Tan(Hilbn

(C2)).

Since the Hodge bundle is pulled back from M1,1 in genus 1 and Mg in higher
genera, all invariants in positive genus vanish other than

〈µ〉
Hilbn(C2)
1,0 =

∑
η∈Part(n)

µ|η

∫
M1,1

e(E∗1 ⊗ Tanη(Hilbn
(C2)))

e(Tanη(Hilbn
(C2)))

, (2.8)

〈 〉
Hilbn(C2)
g>2,0 =

∑
η∈Part(n)

∫
Mg

e(E∗g ⊗ Tanη(Hilbn
(C2)))

e(Tanη(Hilbn
(C2)))

.

Theorem 1 follows from Proposition 7 together with the fact that (2.8) is the
complete list of degree 0 invariants.

The unique R-matrix RHilb
|q=0 of the CohFTΩg,r |q=0 can be explicitly written

after the coordinates on V are set to 0. The formula is presented in Section 6.1.

2.5. Proof of Theorem 5. As we have seen in Section 2.3 using the divisor
equation, the dependence of the potential of the formal Frobenius manifold
(V, ?, η) at the origin,

FHilbn(C2)
0 ∈ Q[[V∗]],

along −t |2, 1n−2
〉 can be expressed as

FHilbn(C2)
0 = (FHilbn(C2)

0 |t=0)q 7→qet .

The same dependence on t then also holds for the matrices of quantum
multiplication for (V, ?, η) and their common eigenvalues.
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In the procedure for constructing an R-matrix associated to (V, ?, η), we can
take all the undetermined diagonal constants for R2 j−1 equal to 0 for all j .
(See [21, Section 4.6 of Ch. 1].) The resulting associated R-matrix R# will satisfy

−
∂

∂t
R#
= q

∂

∂q
R#

since the same q 7→ qet dependence on t holds for all terms in the procedure.
By Proposition 6,

RHilb
= R#

· exp
( ∞∑

i=1

a2 j−1z2 j−1

)
, (2.9)

where each a2 j−1 is a diagonal matrix with coefficients in Q(t1, t2).
By [29, Section 4.2], the third derivatives of the potential of (V, ?, η) are

defined over Q,
∂3

∂tµ1∂tµ2∂tµ3
FHilbn(C2)

0 ∈ Q[[V∗]].

Hence, the matrices of quantum multiplication also have coefficients in Q[[V∗]].
As we have remarked in Section 2.2, the common eigenvalues require finite
extensions of Q. Using the procedure for the construction of RHilb with
undetermined diagonal constants in Q(t1, t2) fixed by (2.9), we see that the
coefficients of RHilb lie in the ring Q[[V∗]].

The definition of the R-matrix action then yields the rationality of Theorem 5
after applying Galois invariance: for all genera g > 0 and µ1, µ2, . . . , µr

∈

Part(n), the series

〈µ1, µ2, . . . , µr
〉

Hilbn(C2)
g ∈ Q(t1, t2)[[q]]

is the Taylor expansion in q of a rational function in Q(t1, t1, q).

3. The R-matrix for Symn
(C2)

3.1. The formal Frobenius manifold. The T-equivariant Gromov–Witten
potential in genus 0,

FSymn(C2)

0 (γ ) =

∞∑
b=0

ub
∞∑

n=0

1
r !
〈γ, . . . , γ︸ ︷︷ ︸

r

〉
Symn(C2)

0,b , γ ∈ Ṽ,

is a formal series in the ring Ã[[Ṽ∗]], where Ã is given in (1.4). The potential
FSymn(C2)

0 defines a formal Frobenius manifold

(Ṽ, ?̃, η̃)
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at the origin of Ṽ. The Frobenius algebra

(Tan0Ṽ, ?̃0, η̃)

is the small quantum cohomology of FSymn(C2)

0 , which is calculated in [1, Section
3.3]. (The term small here refers to deformations by twisted divisors, introduced
in [1, Section 2.2].) The formal Frobenius manifold (Ṽ, ?̃, η̃) is semisimple at the
origin. The idempotents of Tan0Ṽ can be written in terms of the standard basis
of the Chen–Ruan cohomology of Symn

(C2) after extension of scalars. Again,
the idempotents of Tan0Ṽ are indexed by partitions µ.

We write {̃uµ ∈ Ãcl
[[Ṽ∗]]}µ∈Part(n) for the unique canonical coordinates of

(Ṽ, ?̃, η̃) satisfying that ũµ(0) = 0 and ∂/∂ ũµ is an idempotent. (Ãcl denotes
the algebraic closure of the field of fractions of Ã.) By [11, Proposition 1.1],
the quantum differential equation associated to the formal Frobenius manifold
(Ṽ, ?̃, η̃),

∇̃zS̃ = 0,

admits a formal fundamental solution of the form

S̃ = R̃(z)eũ/z,

written in the basis of normalized idempotents. Here ∇̃z is the Dubrovin
connection associated to (Ṽ, ?̃, η̃), ũ is the diagonal matrix with diagonal entries
given by ũµ, and

R̃(z) = 1+ R̃1z + R̃2z2
+ · · ·

is an End(Ṽ)-valued formal power series in z written in the basis of normalized
idempotents. The symplectic condition

R̃†(−z)R̃(z) = 1,

taken with respect to the inner product η̃, is required.
By [11, Proposition 1.1], two R-matrices satisfying the quantum differential

equation associated to (Ṽ, ?̃, η̃) and the symplectic condition must differ by right
multiplication by

exp
( ∞∑

j=1

ã2 j−1z2 j−1

)
,

where each ã2 j−1 is a diagonal matrix with coefficients in Ã.
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3.2. Divisor equation. Let Mg,r (Symn(C2)) be the moduli space of
n-pointed genus g stable maps to Symn(C2). (The moduli stack, which
parameterizes stable maps with sections to all marked gerbes, is also used
in [41].) Let

evi :Mg,r (Symn(C2))→ I Symn(C2)

be the T-equivariant evaluation map at the i th marked point with values in the
inertia stack

I Symn(C2)

of Symn(C2). The inertia stack I Symn(C2) is a disjoint union indexed by
conjugacy classes of the symmetric group Sn . For µ ∈ Part(n), the component
Iµ ⊂ I Symn(C2) indexed by the conjugacy class of cycle type µ is isomorphic
to the stack quotient

[C2n
σ /C(σ )],

where σ ∈ Sn has cycle type µ, C2n
σ is the invariant part of C2n under the action

of σ , and C(σ ) is the centralizer of σ ∈ Sn . Let

[Iµ] ∈ H 0
T(Iµ) ⊂ H ∗T (I Symn(C2))

be the fundamental class. There is an additive isomorphism

H ∗T (I Symn(C2)) ' Ṽ

given by sending [Iµ] to |µ〉.
The unramified T-equivariant Gromov–Witten invariants are defined by

〈µ1, . . . , µr
〉

Symn(C2)

g,0 =

∫
[Mg,r (Symn(C2))]vir

r∏
i=1

ev∗i ([Iµi ]).

Consider

ev−1
r+1(I(2,1n−2)) ∩ · · · ∩ ev−1

r+b(I(2,1n−2)) ⊂Mg,r+b(Symn(C2)),

and let

Mg,r,b(Symn(C2)) = [(ev−1
r+1(I(2,1n−2)) ∩ · · · ∩ ev−1

r+b(I(2,1n−2)))/Sb]

where the symmetric group Sb acts by permuting the last b marked points. The
Gromov–Witten invariants with b free ramification points are defined by

〈µ1, . . . , µr
〉

Symn(C2)

g,b =

∫
[Mg,r,b(Symn(C2))]vir

r∏
i=1

ev∗i ([Iµi ]).
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The above definition can be rewritten as

〈µ1, . . . , µr
〉

Symn(C2)

g,b =
1
b!
〈µ1, . . . , µr , (2, 1n−2), . . . , (2, 1n−2)︸ ︷︷ ︸

b

〉
Symn(C2)

g,0 . (3.1)

(See [1, Section 2.2] for a parallel discussion.)
Property (3.1) will be important for our study of the Frobenius manifold

(Ṽ, ?̃, η̃). In particular, the divisor equation holds:

〈µ1, . . . , µr, (2, 1n−2)〉
Symn(C2)

g,b = (b + 1)〈µ1, . . . , µr
〉

Symn(C2)

g,b+1 ,

or equivalently,

〈µ1, . . . , µr, (2, 1n−2)〉Symn(C2)
g =

∂

∂u
〈µ1, . . . , µr

〉
Symn(C2)
g ,

for the generating series

〈µ1, . . . , µr, (2, 1n−2)〉Symn(C2)
g =

∞∑
b=0

〈µ1, . . . , µr, (2, 1n−2)〉
Symn(C2)

g,b ub,

〈µ1, . . . , µr
〉

Symn(C2)
g =

∞∑
b=0

〈µ1, . . . , µr
〉

Symn(C2)

g,b ub.

3.3. Shifted CohFT. Let t̃ be the coordinate of the vector [I(2,1n−2)] ∈ Ṽ. The
formal Frobenius manifold (Ṽ, ?̃, η̃) is well defined at t̃ [I(2,1n−2)] ∈ Ṽ, at which
the potential of the Frobenius manifold is

FSymn(C2)

0 ( t̃ [I(2,1n−2)] + γ )

=

∞∑
b=0

ub
∞∑

r=0

∞∑
m=0

t̃m

r !m!
〈γ, . . . , γ︸ ︷︷ ︸

r

, (2, 1n−2), . . . , (2, 1n−2)︸ ︷︷ ︸
m

〉
Symn(C2)

0,b

=

∞∑
b=0

∞∑
r=0

∞∑
m=0

ub t̃m

r !m!b!
〈γ, . . . , γ︸ ︷︷ ︸

n

, (2, 1n−2), . . . , (2, 1n−2)︸ ︷︷ ︸
m+b

〉
Symn(C2)

0,0

=

∞∑
b=0

∞∑
r=0

∞∑
m=0

ub t̃m(m + b)!
r !m!b!(m + b)!

〈γ, . . . , γ︸ ︷︷ ︸
r

, (2, 1n−2), . . . , (2, 1n−2)︸ ︷︷ ︸
m+b

〉
Symn(C2)

0,0

=

∞∑
b=0

∞∑
r=0

∞∑
m=0

ub t̃m(m + b)!
r !m!b!

〈γ, . . . , γ︸ ︷︷ ︸
r

〉
Symn(C2)

0,m+b
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=

∞∑
b=0

∞∑
r=0

∞∑
m=0

ub t̃m

r !

(
m + b

m

)
〈γ, . . . , γ︸ ︷︷ ︸

r

〉
Symn(C2)

0,m+b

=

∞∑
d=0

(u + t̃ )d
∞∑

r=0

1
r !
〈γ, . . . , γ︸ ︷︷ ︸

r

〉
Symn(C2)

0,b .

In the above calculation above, we have used (3.1) in the second and fourth
equalities. We conclude

FSymn(C2)

0 ( t̃ [I(2,1n−2)] + γ ) = FSymn(C2)

0 (γ )|u 7→u+̃t .

Certainly the Frobenius manifold is semisimple at t̃ [I(2,1n−2)] ∈ Ṽ.
Let Ω̃g,r be the CohFT associated to the T-equivariant Gromov–Witten theory

of Symn
(C2):

Ω̃g,r (γ ⊗· · ·⊗γ ) =

∞∑
b=0

ub

b!
ρ∗(ev∗(γ ⊗r

⊗[I(2,1n−2)]
⊗b)∩[Mg,r+b(Symn(C2))]vir).

The genus 0 data of Ω̃g,r is exactly given by the formal Frobenius manifold
(Ṽ, ?̃, η̃) at the origin. Define the t̃ [I(2,1n−2)]-shifted CohFT by

Ω̃
t̃ [I

(2,1n−2)]

g,r (γ ⊗ · · · ⊗ γ ) =
∑
m>0

t̃m

m!
ρr+m

r∗ (Ω̃g,r+m(γ ⊗ · · · ⊗ γ ⊗ [I(2,1n−2)]
⊗m))

= Ω̃g,n(γ ⊗ · · · ⊗ γ )|u 7→u+̃t ,

where ρr+m
r is given by (2.6).

Let RSym be the unique R-matrix associated to the T-equivariant Gromov–
Witten theory of Symn(C2). The shifted CohFT Ω̃

t̃ [I
(2,1n−2)]

g,r is obtained from the
semisimple genus 0 data

FSymn(C2)

0 ( t̃ [I(2,1n−2)] + γ )

by the unique R-matrix
RSym( t̃ [I(2,1n−2)] + γ ).

On the other hand, the R-matrix

RSym
|u 7→u+̃t

also generates Ω̃
t̃ [I

(2,1n−2)]

g,r from the same semisimple genus 0 data. By the
uniqueness of the R-matrix in the Givental–Teleman classification,

RSym( t̃ [I(2,1n−2)] + γ ) = RSym
|u 7→u+̃t .
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Hence, we obtain the following differential equation:

∂

∂ t̃
RSym

=
∂

∂u
RSym. (3.2)

PROPOSITION 8. Two R-matrices associated to (Ṽ, ?̃, η̃) with coefficients in
Ã[[Ṽ∗]] which both satisfy the differential equation (3.2) must differ by right
multiplication by

exp
( ∞∑

j=1

ã2 j−1z2 j−1

)
,

where each ã2 j−1 is a diagonal matrix with coefficients in Q(t1, t2).

Proof. Let R̃ and R̂ be two R-matrices associated to (Ṽ, ?̃, η̃) which both satisfy
(3.2). Then

R̃ = R̂ · exp
( ∞∑

j=1

ã2 j−1z2 j−1

)
,

where each ã2 j−1 is a diagonal matrix with coefficients in Ã = Q(t1, t2)[[u]]. We
show

∂

∂u
ã2 j−1 = 0, j > 1. (3.3)

By the product rule, we have

∂

∂ t̃
R̃ =

∂

∂ t̃
R̂ · exp

( ∞∑
j=1

ã2 j−1z2 j−1

)
+ R̂ ·

∂

∂ t̃
exp

( ∞∑
j=1

ã2 j−1z2 j−1

)
.

Since ã2 j−1 is independent of t̃ , the right side is

∂

∂ t̃
R̂ · exp

( ∞∑
j=1

ã2 j−1z2 j−1

)
.

Since R̂ satisfies (3.2), we obtain

∂

∂u
R̃ =

∂

∂u
R̂ · exp

( ∞∑
j=1

ã2 j−1z2 j−1

)
.

On the other hand, product rule also yields

∂

∂u
R̃ =

∂

∂u
R̂ · exp

( ∞∑
j=1

ã2 j−1z2 j−1

)
+ R̂ ·

∂

∂u
exp

( ∞∑
j=1

ã2 j−1z2 j−1

)
.
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Comparing the two equations above, we find

R̂ ·
∂

∂u
exp

( ∞∑
j=1

ã2 j−1z2 j−1

)
= 0.

Since R̃ is invertible, we conclude

∂

∂u
exp

( ∞∑
j=1

ã2 j−1z2 j−1

)
= 0

which implies (3.3).

As a corollary of Proposition 8, we obtain the following characterization of
RSym parallel to Proposition 7.

PROPOSITION 9. RSym is the unique R-matrix associated to (Ṽ, ?̃, η̃) which
satisfies

∂

∂ t̃
RSym

=
∂

∂u
RSym

and has u = 0 restriction which equals the R-matrix of the restricted CohFT
Ω̃g,r

∣∣
u=0.

3.4. Proof of Theorem 3. The restricted CohFT Ω̃g,r |u=0 is defined over
Q(t1, t2) and is semisimple with the R-matrix given by

RSym
|u=0.

By Proposition 9, the unique R-matrix RSym that generates the CohFT Ω̃g,r is the
unique R-matrix associated to the Frobenius manifold (Ṽ, ?̃, η̃) which satisfies

∂

∂ t̃
RSym

=
∂

∂u
RSym

and has u = 0 restriction equal to the R-matrix of the CohFT Ω̃g,r |u=0. By the
definition of Ω̃g,r , the u = 0 restriction Ω̃g,r |u=0 is equivalent to the collection of
the invariants

〈µ1, . . . , µr
〉

Symn(C2)

g,0

for g > 0 and µ1, . . . , µr
∈ Part(n).

The R-matrix RSym
|u=0 is written explicitly (after the coordinates of Ṽ are set to

0) in Section 6.2.
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4. Local theories of curves: stable maps

4.1. Local theories of curves. Let Mg,r be the moduli space of Deligne–
Mumford stable curves of genus g with r markings. (We always assume g and r
satisfy the stability condition 2g − 2+ r > 0.) Let

C →Mg,r

be the universal curve with sections

p1, . . . ,pr :Mg,r → C

associated to the markings. Let

π : C2
× C →Mg,r (4.1)

be the universal local curve over Mg,r . The torus T acts on the C2 factor. The
Gromov–Witten and Donaldson–Thomas theories of the morphism π are defined
by the π -relative T-equivariant virtual class of the universal π -relative moduli
spaces of stable maps and stable pairs.

4.2. Stable maps. We define a CohFT Λ̃ via the moduli space of π -relative
stable maps to the universal local curve (4.1) based on the algebra

Ã = Q(t1, t2)[[u]]

and the corresponding free module

Ṽ = F n
⊗Q Ã,

where F n is the Fock space with basis indexed by Part(n). The inner product for
the CohFT is

η̃(µ, ν) =
1

(t1t2)`(µ)

δµν

z(µ)
.

The algebra, free module, and inner product for Λ̃ are exactly the same as for the
CohFT Ω̃ obtained from the orbifold Gromov–Witten theory of Symn

(C2).
Let µ1, . . . , µr

∈ Part(n), and let M•

h(π, µ
1, . . . , µr ) be the moduli space of

stable relative maps to the fibers of π ,

ε :M•

h(π, µ
1, . . . , µr )→Mg,r .
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(The subscript • indicates the domain curves is possibly disconnected (but no
connected component is contracted to a point). See [2].) The fiber of ε over the
moduli point

(C, p1, . . . , pr ) ∈Mg,r

is the moduli space of stable maps of genus h to C2
× C relative to the divisors

determined by the nodes and the markings of C with boundary condition µi over
the divisor C2

× pi . (The cohomology weights of the boundary condition are all
the identity class.) The moduli space M•

h(π, µ
1, . . . , µr ) has π -relative virtual

dimension

−n(2g − 2+ r)+
r∑

i=1

`(µi).

The CohFT Λ̃ is defined via the π -relative T-equivariant virtual class by

Λ̃g,r (µ
1
⊗ · · · ⊗ µr ) =

∑
b>0

ub

b!
ε∗([M

•

h[b](π, µ
1, . . . , µr )]virπ ).

Here, summation index b is the branch point number, so

2h[b] − 2 = b + n(2g − 2+ r)−
r∑

i=1

`(µi).

The moduli space of stable maps is empty unless h[b] is an integer.

4.3. Axioms. The defining axioms of a CohFT are listed in Section 1. Axiom
(i) for Λ̃ follows from the symmetry of the construction. Axiom (ii) is a
consequence of the degeneration formula of relative Gromov–Witten theory.
Axiom (iii) requires a proof.

PROPOSITION 10. The identity axiom holds:

Λ̃g,r+1(µ
1
⊗ · · · ⊗ µr

⊗ 1) = p∗Λ̃g,r (µ
1
⊗ · · · ⊗ µr )

where p :Mg,r+1 →Mg,r is the forgetful map.

Proof. Consider first the standard identity equation in Gromov–Witten theory

[M•

h,1(π, µ
1, . . . , µr )]virπ = p∗π [M

•

h(π, µ
1, . . . , µr )]virπ , (4.2)

where 1 is a new marking on the domain curve and pπ is the map forgetting 1,

pπ :M
•

h,1(π, µ
1, . . . , µr )→M•

h(π, µ
1, . . . , µr ).
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By stability, the image of the marking 1 together with the r relative points yields
a stable r + 1 pointed curve,

ε1 :M
•

h,1(π, µ
1, . . . , µr )→Mg,r+1.

Since the stable maps are of degree n, we obtain

ε1∗([M
•

h,1(π, µ
1, . . . , µr )]virπ ) = np∗ε∗([M

•

h(π, µ
1, . . . , µr )]virπ ). (4.3)

The Proposition then follows from (4.3) and the relation

ε1∗([M
•

h,1(π, µ
1, . . . , µr )]virπ ) = nε∗([M

•

h(π, µ
1, . . . , µr, (1n))]virπ )

obtained from the degeneration formula by universally bubbling off the image of
the marking 1 in the target.

Finally, since Λ̃0,3 is nothing more than the Gromov–Witten theory of the
local 3-fold C2

× P1 with 3 relative divisors appearing in the original triangle of
equivalence of Section 0.5, the property

Λ̃0,3(µ
1
⊗ µ2

⊗ 1) = η̃(v1, v2)

holds.

4.4. The divisor equation. The divisor equation for the CohFT Λ̃ will play
an important role.

PROPOSITION 11. The divisor equation holds:

Λ̃g,r+1(µ
1
⊗ · · · ⊗ µr

⊗ (2, 1n−2)) =
∂

∂u
Λ̃g,r (µ

1
⊗ · · · ⊗ µr ).

Proof. Proposition 11 is equivalent to the following statement:

p∗ε∗([M
•

h(π, µ
1, . . . , µr, (2, 1n−2))]virπ ) = b[h] · ε∗([M

•

h(π, µ
1, . . . , µr )]virπ ),

(4.4)
where b[h] is defined by the relation

2h − 2 = b[h] + n(2g − 2+ r)−
r∑

i=1

`(µi).

In order to prove (4.4), consider first the standard dilaton equation

ε∗ pπ∗(ψ1[M
•

h,1(π, µ
1, . . . , µr )]virπ )

=

(
2h − 2+

r∑
i=1

`(µi)

)
· ε∗([M

•

h(π, µ
1, . . . , µr )]virπ ). (4.5)
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Here, ψ1 is the cotangent line on the domain curve of the map. Equation (4.4)
then follows from (4.5) and the degeneration relation

ε1∗(ψ1[M
•

h,1(π, µ
1, . . . , µr )]virπ )

= ε∗([M
•

h(π, µ
1, . . . , µr, (2, 1n−2))]virπ )

+ nψ · ε∗([M
•

h(π, µ
1, . . . , µr, (1n))]virπ )

obtained by universally bubbling off the image of the marking 1 in the target. In
the second term on the right in the degeneration relation, ψ is the cotangent
line at relative marking associated to the boundary condition (1n). There is
no higher genus distribution to the bubble as can be seen from calculation of
the equivariant cap. (The equivariant cap invariant for (1n) has been calculated
in [34, Section 2.5]. The crucial point is that s3 occurs only in the leading u−2

summand. The leading summand contributes the right most term in the above
degeneration formula. All other summands of the equivariant cap invariant for
(1n) have vanishing contributions.)

We now apply p∗ to the degeneration relation. Since εpπ = pε1, we have

ε∗ pπ∗(ψ1[M
•

h,1(π, µ
1, . . . , µr )]virπ ) = p∗ε1∗(ψ1[M

•

h,1(π, µ
1, . . . , µr )]virπ ).

Using the identity axiom, we see

p∗(nψ · ε∗([M
•

h(π, µ
1, . . . , µr, (1n))]virπ ))

= n(2g − 2+ r) · ε∗([M
•

h(π, µ
1, . . . , µr )]virπ ).

Equation (4.4) then follows.

4.5. Equivalence. The CohFT Ω̃ obtained from the orbifold Gromov–Witten
theory of Symn

(C2) and the CohFT Λ̃ are equal in genus 0 (and hence both
semisimple) by [1, 2]. The two CohFTs satisfy identical divisor equations. The
equality after restriction to u = 0,

Ω̃g,r (µ
1, . . . , µr )|u=0 = Λ̃g,r (µ

1, . . . , µr )|u=0, g > 0, µ1, . . . , µr
∈ Part(n),

follows from a simple matching of moduli spaces and obstruction theories. By
Theorem 3, we conclude the following equivalence.

PROPOSITION 12. We have Ω̃ = Λ̃.
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5. Local theories of curves: stable pairs

5.1. Stable pairs. We define a CohFT Λ via the moduli space of π -relative
T-equivariant stable pairs on the universal local curve,

π : C2
× C →Mg,r , (5.1)

based on the algebra
A = Q(t1, t2)[[q]]

and the corresponding free module

V = F n
⊗Q A,

where F n is the Fock space with basis indexed by Part(n). The inner product for
the CohFT is

η(µ, ν) =
(−1)|µ|−`(µ)

(t1t2)`(µ)

δµν

z(µ)
.

The algebra, free module, and inner product forΛ are exactly the same as for the
CohFT Ω obtained from Gromov–Witten theory of Hilbn

(C2).
Let µ1, . . . , µr

∈ Part(n), and let Pk(π, µ
1, . . . , µr ) be the moduli space of

stable pairs on the fibers of π ,

ε : Pk(π, µ
1, . . . , µr )→Mg,r .

The fiber of ε over the moduli point

(C, p1, . . . , pr ) ∈Mg,r

is the moduli space of stable pairs of Euler characteristic k on C2
× C relative

to the divisors determined by the nodes and the markings of C with boundary
condition µi over the divisor C2

× pi . (The cohomology weights of the boundary
condition are all the identity class.) The moduli space Pk(π, µ

1, . . . , µr ) has
π -relative virtual dimension

−n(2g − 2+ r)+
r∑

i=1

`(µi).

The CohFT Λ is defined via the π -relative T-equivariant virtual class by

Λg,r (µ
1
⊗ · · · ⊗ µr ) =

∑
d>0

qdε∗([Pd+n(1−g)(π, µ
1, . . . , µr )]virπ ).
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5.2. Axioms and the divisor equation. The defining axioms of a CohFT
are listed in Section 1. Axiom (i) for Λ follows from the symmetry of the
construction. Axiom (ii) is a consequence of the degeneration formula of
relative stable pairs theory. The proof of Axiom (iii) is parallel to the proof of
Proposition 10.

PROPOSITION 13. The identity axiom holds:

Λg,r+1(µ
1
⊗ · · · ⊗ µr

⊗ 1) = p∗Λg,r (µ
1
⊗ · · · ⊗ µr )

where p :Mg,r+1 →Mg,r is the forgetful map.

Instead of using the 1-pointed stable map space, we consider the universal target

pπ : Tk → Pk(π, µ
1, . . . , µr ) (5.2)

with the universal curve expressed as the descendent ch2(F) of the universal
sheaf F on Tk . Otherwise, the proof is identical.

The divisor equation forΛ is identical to the divisor equation for the Gromov–
Witten theory of Hilbn

(C2). The proof is parallel to the proof of Proposition 11.

PROPOSITION 14. The divisor equation holds:

−Λg,r+1(µ
1
⊗ · · · ⊗ µr

⊗ (2, 1n−2)) = q
∂

∂q
Λg,r (µ

1
⊗ · · · ⊗ µr ).

Proof. Instead of using the 1-pointed stable map space with ψ1, we consider the
universal target (5.2) with the descendent ch3(F) of the universal sheaf F on Tk .
The notation here will be parallel to the stable maps case,

ε1 : Tk →Mg,r+1.

Proposition 14 is equivalent to the following statement:

p∗ε∗([Pd+n(1−g)(π, µ
1, . . . , µr, (2, 1n−2))]virπ )

= d · ε∗([Pd+n(1−g)(π, µ
1, . . . , µr )]virπ ).

Consider first the dilaton equation in the theory of stable pairs

ε∗ pπ∗(ch3(F)[Td+n(1−g)]
virπ )

=

(
d + n(1− g)−

n
2
(2− 2g)

)
· ε∗([Pd+n(1−g)(π, µ

1, . . . , µr )]virπ ).
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(See [32, Section 3.2].) We have also the degeneration relation

ε1∗(ch3(F)[Td+n(1−g)]
virπ ) = −ε∗([Pd+n(1−g)(π, µ

1, . . . , µr, (2, 1n−2))]virπ )

obtained by universally bubbling off the descendent in the target. The
contribution of the boundary condition (1n) vanishes as can be seen from
calculation of the equivariant cap. (The equivariant cap invariant for (1n) has
been calculated in [34, Section 2.5]. For stable pairs, s3 does not occur. All
summands have vanishing contributions.) We conclude

p∗ε∗([Pd+n(1−g)(π, µ
1, . . . , µr, (2, 1n−2))]virπ )

= p∗ε1∗(ch3(F)[Td+n(1−g)]
virπ )

= ε∗ pπ∗(ch3(F)[Td+n(1−g)]
virπ )

= d · ε∗([Pd+n(1−g)(π, µ
1, . . . , µr )]virπ ),

completing the proof of the divisor equation.

5.3. Equivalence. The CohFT Ω obtained from the Gromov–Witten theory
of Hilbn

(C2) and the CohFTΛ are equal in genus 0 (and hence both semisimple)
by [30, 31]. The two CohFTs satisfy identical divisor equations. The equality
after restriction to q = 0,

Ωg,r (µ
1, . . . , µr )|q=0 = Λg,r (µ

1, . . . , µr )|q=0, g > 0, µ1, . . . , µr
∈ Part(n),

follows from a simple matching of moduli spaces and obstruction theories. By
Theorem 1, we conclude the following equivalence.

PROPOSITION 15. We have Ω = Λ.

Since the matching of obstruction theories here in the q = 0 case is interesting,
we discuss the matter in more detail. The moduli spaces

r∏
i=1

ev−1
i (µ

i) ⊂Mg,r (Hilbn
(C2), 0) and Pn(1−g)(π, µ

1, . . . , µr )

are isomorphic. The T-equivariant obstruction bundle for the Gromov–Witten
theory of Hilbn

(C2) in the q = 0 case is

Tan(Hilbn
(C2))⊗ E∗g. (5.3)

The T-equivariant obstruction bundle for π -relative stable pairs theory in the
q = 0 case is

Tan(Hilbn
(C2))∗ ⊗ E∗g ⊗ [t1 + t2], (5.4)
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where [t1 + t2] denotes a trivial bundle of weight t1 + t2. (The calculation is
by Serre duality and standard techniques.) The matching of (5.3) and (5.4)
follows from the holomorphic symplectic condition which takes the following
T-equivariant form:

Tan(Hilbn
(C2))∗ = Tan(Hilbn

(C2))⊗ [−t1 − t2].

6. The restricted CohFTs

6.1. The Hilbert scheme Hilbn
(C2). Following [23, Ch. VI, Section 10], let

Jλ ∈ F ⊗C C(t1, t2)

be an integral form of the Jack symmetric function depending on the parameter
α = 1/θ . Define

Jλ = t |λ|2 t`(·)1 Jλ|α=−t1/t2 .

The vector Jλ in Fock space corresponds to the T-equivariant class of the T-fixed
point of Hilbn

(C2) associated to λ. See also [30, Section 2.2].
The Bernoulli numbers Bm are defined by

t
et − 1

=

∞∑
m=0

Bm

m!
tm . (6.1)

For λ ∈ Part(n), define

N2m−1,λ(t1, t2)

=

∑
s∈Dλ

(
1

(a(s)t2 − (l(s)+ 1)t1)2m−1
+

1
(l(s)t1 − (a(s)+ 1)t2)2m−1

)
.

Here, the sum is over all boxes s in the Young diagram Dλ corresponding to λ.
The standard arm and leg lengths are a(s) and l(s), respectively.

PROPOSITION 16. After the coordinates of V are set to 0, the matrix RHilb
|q=0 in

the basis
{Jλ | λ ∈ Part(n)}

of V is diagonal with entries

exp
(∑

m>0

B2m

2m(2m − 1)
z2m−1 N2m−1,λ(t1, t2)

)
.
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Proof. The R-matrix RHilb
|q=0 is the R-matrix classifying the CohFTΩ|q=0. The

CohFTΩ|q=0 concerns the T-equivariant Gromov–Witten theory of Hilbn
(C2) in

degree 0. The T-fixed locus

Hilbn
(C2)T ⊂ Hilbn

(C2)

is a set of isolated points indexed by partitions of n (see, for example, [28,
Section 5.2]). A partition

λ = (λ1, λ2, λ3, . . .) ∈ Part(n)

defines a Young diagram Dλ whose i th row has λi boxes. The point in Hilbn
(C2)T

indexed by λ is defined by the monomial ideal Iλ ⊂ C[x, y] generated by

(yλ1, xyλ2, x2 yλ3, . . . , x i−1 yλi , . . .).

The Young diagram Dλ also determines the conjugate partition

λ′ = (λ′1, λ
′

2, λ
′

3, . . .)

obtained by setting λ′i to be the number of boxes in the i th column of Dλ.
For s = (i, j) ∈ Dλ, the box on the i th row and the j th column, define the arm

and leg lengths by

a(s) = λ′j − i and l(s) = λi − j,

respectively. By [28, Proposition 5.8], the weights associated to s ∈ Dλ of the
T-action on the tangent space Tanλ(Hilbn

(C2)) are

−a(s)t2 + (l(s)+ 1)t1, −l(s)t1 + (a(s)+ 1)t2. (6.2)

As s varies in Dλ, we obtain 2n tangent weights.
By virtual localization, the T-equivariant Gromov–Witten theory of Hilbn

(C2)

in degree 0 equals the Gromov–Witten theory of Hilbn
(C2)T twisted (In the sense

of [4].) by the inverse T-equivariant Euler class of the rank-2n bundle on which
T acts with weights (6.2).

The R-matrix RHilb
|q=0 is the unique matrix which transforms the Gromov–

Witten theory of Hilbn
(C2)T to the aforementioned twisted Gromov–Witten

theory of Hilbn
(C2)T. The latter theory consists of Hodge integrals over Mg,r ,

which have been calculated in [9, 27]. To identify the R-matrix, we consider
the twisted theory in the setting of [4] and apply the quantum Riemann–Roch
theorem. Then, RHilb

|q=0 coincides with the symplectic transformation in the
quantum Riemann–Roch theorem, which is the claim of the Proposition. (Since
RHilb
|q=0 = Id + O(z), we may discard the scalar factors in quantum Riemann–

Roch theorem.)
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6.2. The symmetric product Symn
(C2). For Symn

(C2), the vector |µ〉 ∈ Ṽ
in Fock space corresponds to the fundamental class [Iµ] of the component

Iµ ⊂ ISymn
(C2)

of the inertial stack.

PROPOSITION 17. After the coordinates of Ṽ are set to 0, the matrix RSym
|u=0

in the basis
{|µ〉 | µ ∈ Part(n)}

of Ṽ is diagonal with entries

exp
(
−

∑
m>0

B2m

2m(2m − 1)

`(µ)∑
i=1

(
1

(µi t1)2m−1
+

1
(µi t2)2m−1

)
z2m−1

)
.

Proof. The R-matrix RSym
|u=0 classifies the restricted CohFT Ω̃g,r |u=0. By

definition, the CohFT Ω̃g,r |u=0 is obtained from the T-equivariant Gromov–
Witten theory of Symn(C2)—the Gromov–Witten theory of the classifying
orbifold BSn twisted (In the sense of [41].) by the inverse T-equivariant Euler
class of the rank-2n trivial bundle on which T acts with weights t1 and t2 (each
appearing n times). By the orbifold quantum Riemann–Roch theorem of [41],
the twisted theory is obtained from the Gromov–Witten theory of BSn by the
action of a symplectic operator Q. The operator Q coincides with RSym

|u=0 in
the basis {[Iµ]}µ∈Part(n) of

H ∗T (I BSn) = H ∗T (ISymn
(C2)).

Next, we identify Q. Consider the conjugacy class Conj(µ) of Sn

corresponding to the partition

µ = (µ1, µ2, µ3, . . .).

Let σ ∈ Sn be an element of Conj(µ). Then, σ can be written as a product of
disjoint cycles of lengths µi . The vector space (C2)⊕n decomposes into a direct
sum of σ -eigenspaces. The eigenvalues and ranks of these eigenspaces depend
only on the conjugacy class, not σ . The eigenvalues are

exp
(

2π
√
−1

l
µi

)
, 0 6 l 6 µi − 1, i = 1, 2, 3, . . . .

Each such eigenvalue has a rank-2 eigenspace with T-weights t1, t2. (If µ has
equal parts, the eigenspaces increase by the multiplicity factor.)

By [41], the operator Q is diagonal in the basis {[Iµ]} of H ∗T (I BSn) with entry
at [Iµ] given by
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exp
(∑

m>1

−1
m(m − 1)

`(µ)∑
i=1

{
Bm(0)+ Bm

(
1
µi

)
+ · · · + Bm

(
µi − 1
µi

)}
× zm−1

(
1

tm−1
1

+
1

tm−1
2

))
.

Here, Bm(x) is the Bernoulli polynomial,

text

et − 1
=

∞∑
m=0

Bm(x)
tm

m!
.

From the identity
r−1∑
l=0

tetl/r

et − 1
=

t
et − 1

et
− 1

et/r − 1
=

t/r
et/r − 1

· r,

and the definition (6.1) of the Bernoulli numbers, we see
r−1∑
l=0

Bm

(
l
r

)
=

Bm

rm−1
.

The above expression for the diagonal elements of Q can be written as

exp
(
−

∑
m>0

B2m

2m(2m − 1)

`(µ)∑
i=1

(
1

(µi t1)2m−1
+

1
(µi t2)2m−1

)
z2m−1

)
which completes the proof.

The product structure on H ∗T (I SymnC2) is described in [1, Section 3.3] in
terms of the representation theory of the symmetric group. The normalized
idempotents of H ∗T (I SymnC2) are

Iλ =
∑

µ∈Part(n)

χλ(µ)Iµ(t1t2)
`(µ)/2, (6.3)

where χλ(µ) is the character of Sn . The action of the matrix RSym
|u=0 in the

idempotent basis of H ∗T (I SymnC2) is given by

RSym
|u=0(Iλ)

=

∑
µ

χλ(µ) exp
(
−

∑
m>0

B2m

2m(2m − 1)

×

`(µ)∑
i=1

(
1

(µi t1)2m−1
+

1
(µi t2)2m−1

)
z2m−1

)
(t1t2)

`(µ)/2
|µ〉 (6.4)
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written in Ṽ. Under the identification V→ Ṽ given by (1.6), we have

RSym
|u=0(Iλ)

=

∑
µ

χλ(µ) exp
(
−

∑
m>0

B2m

2m(2m − 1)

×

`(µ)∑
i=1

(
1

(µi t1)2m−1
+

1
(µi t2)2m−1

)
z2m−1

)
·
√
−1

`(µ)−|µ|
(t1t2)

`(µ)/2
|µ〉 (6.5)

written in V. (We use
√
−1 here instead of i for clarity in the formulas (since i

also occurs as an index of summation).)

7. Quantum differential equations

We recall the quantum differential equation for Hilbn
(C2) calculated in [29]

and further studied in [30]. We follow here the exposition [29, 30].
Consider the Fock space introduced in Section 0.2 (after extension of scalars

to C),

F ⊗C C[t1, t2]
∼
=

⊕
n>0

H ∗T (Hilbn
(C2),C), (7.1)

freely generated by commuting creation operators α−k for k ∈ Z>0 acting on the
vacuum vector v∅. The intersection pairing on the T-equivariant cohomology of
Hilbn

(C2) induces a pairing on Fock space,

η(µ, ν) =
(−1)|µ|−`(µ)

(t1t2)`(µ)

δµν

z(µ)
.

The paper [30] also uses a Hermitian pairing 〈−,−〉H on the Fock space (7.1)
defined by the three following properties:

• 〈µ|ν〉H = (1/(t1t2)
`(µ))(δµν/z(µ));

• 〈a f, g〉H = a〈 f, g〉H , a ∈ C(t1, t2);

• 〈 f, g〉H = 〈g, f 〉H , where a(t1, t2) = a(−t1,−t2).

The quantum differential equation (QDE) for the Hilbert schemes of points on
C2 is given by
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q
d

dq
Φ = MDΦ, Φ ∈ F ⊗C C(t1, t2), (7.2)

where MD is the operator of quantum multiplication by D,

MD = (t1 + t2)
∑
k>0

k
2
(−q)k + 1
(−q)k − 1

α−kαk −
t1 + t2

2
(−q)+ 1
(−q)− 1

| · |

+
1
2

∑
k,l>0

[t1t2αk+lα−kα−l − α−k−lαkαl]. (7.3)

While the quantum differential equation (7.2) has a regular singular point at q =
0, the point q = −1 is regular.

The quantum differential equation considered in Givental’s theory contains a
parameter z. In the case of the Hilbert schemes of points on C2, the QDE with
parameter z is

zq
d

dq
Φ = MDΦ, Φ ∈ F ⊗C C(t1, t2). (7.4)

For Φ ∈ F ⊗C C(t1, t2), define

Φz = Φ

(
t1

z
,

t2

z
, q
)
.

Define Θ ∈ Aut(F) by
Θ|µ〉 = z`(µ)|µ〉.

The following Proposition allows us to use the results in [30].

PROPOSITION 18. If Φ is a solution of (7.2), then ΘΦz is a solution of (7.4).

Proposition 18 follow immediately from the following direct computation.

LEMMA 19. For k > 0, we have Θαk = (1/z)αkΘ and Θα−k = zα−kΘ .

8. Solutions of the QDE

8.1. Preparations. In what follows, we fix an integer n > 1 and consider the
solutions of the QDE for Hilbn

(C2). The equivariant parameters t1, t2 are treated
as complex numbers varying in a Euclidean open domain of C. We work with
the energy n subspace of Fock space. For notational simplicity, we often omit n
from the formulas.
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8.2. At the origin. At q = 0, the operator MD(0) has distinct eigenvalues

−c(λ; t1, t2) = −
∑
(i, j)∈λ

[( j − 1)t1 + (i − 1)t2].

So MD(q) has distinct eigenvalues for small for q ∈ C with |q| small.
Furthermore, the values of q for which MD(q) has repeated eigenvalues are
roots of polynomial equations, so there are only finitely many such q . Therefore,
we can find a path

γ : [0, 1] → C, γ (0) = 0, γ (1) = −1,

and an open neighborhood U ⊂ C containing γ such that:

(i) MD(q) has distinct eigenvalues for q ∈ U .

(ii) As q moves along γ to q = −1, the function q−c(λ;t1,t2) is transported to
exp(π

√
−1c(λ; t1, t2)).

For q ∈ U , the eigenvalues of MD(q), denoted by v(λ; q), are analytic in q . Near
q = 0, we have a power series expansion

v(λ; q) = −c(λ; t1, t2)+ O(q).

Therefore, the canonical coordinates

u(λ; q) =
∫
v(λ; q) d log q,

are analytic in q . We choose the integration constants so that in q → 0 we have
the asymptotics

u(λ; q) = −c(λ; t1, t2) log q + O(q). (8.1)

Let u be the diagonal matrix with entries u(λ; q).

8.3. Formal solutions. By [11, Proposition 1.1], we have the following
results (see also [7] and [21, Theorem 1]).

PROPOSITION 20. There is an open neighborhood U0 ⊂ U of 0 on which the
QDE (7.4) has a formal solution of the form

RHilbeu/z. (8.2)
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In [11, Proposition 1.1], the asymptotics takes the form

ΨReu/z (8.3)

where Ψ (q) is the matrix whose columns are length-1 eigenvectors of MD(q).
(In [21, Theorem 1], a different convention is followed: the same transition
matrix is denoted Ψ −1.) In other word, Ψ is the transition matrix from the
canonical basis to the flat basis. In (8.3), the matrix R is in canonical coordinates.
Together ΨR is the R-matrix in flat coordinates.

After the restriction q = 0, canonical and flat coordinates are the given by the
respective bases

{Jλ | λ ∈ Part(n)} and {|µ〉 | µ ∈ Part(n)}

of Fock space.
The asymptotics in the z → 0 limit will play a crucial role. For our study, we

must specify how z approaches 0 ∈ C. Let

R ⊂ C

be a ray emanating from 0 satisfying the following four conditions:

• For z ∈ R or z ∈ −R;∣∣∣∣arg
(

t1

z

)∣∣∣∣ < π,

∣∣∣∣arg
(

t2

z

)∣∣∣∣ < π. (8.4)

• For z ∈ R or z ∈ −R, and for any partition λ of n, and s ∈ Dλ, we have∣∣∣∣arg
(
(l(s)+ 1)t1 − a(s)t2

z

)∣∣∣∣ < π,

∣∣∣∣arg
(
−l(s)t1 + (a(s)+ 1)t2

z

)∣∣∣∣ < π.

(8.5)

• For z ∈ R or z ∈ −R, and for any two partitions λ, λ′ of n, we have

arg
(
−c(λ; t1, t2)+ c(λ′; t1, t2)

z

)
/∈
π

2
+ Zπ. (8.6)

• For z ∈ R,
Re(
√
−1t1/z) < 0, Re(

√
−1t2/z) > 0. (8.7)

For suitable t1, t2 varying in small enough domains, we can find R⊂ C satisfying
these conditions.

8.4. Solutions. We recall the solution of QDE (7.2) constructed in [30].
As in Section 6.1, let Jλ ∈ F ⊗C C(t1, t2) be the integral form of the Jack

symmetric function depending on the parameter α = 1/θ of [23, 30]. Then
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Jλ = t |λ|2 t`(·)1 Jλ|α=−t1/t2

is an eigenfunction of MD(0) with eigenvalue −c(λ; t1, t2). The coefficient of

|µ〉 ∈ F ⊗C C(t1, t2)

in the expansion of Jλ is (t1t2)
`(µ) times a polynomial in t1 and t2 of degree

|λ| − `(µ).
By direct calculation, detailed in Section 8.6, we find

〈Jλ, Jµ〉H = η(Jλ, Jµ). (8.8)

Since Jλ corresponds to the T-equivariant class of the T-fixed point of Hilbn
(C2)

associated to λ,
‖Jλ‖2

= ‖Jλ‖2
H =

∏
w: tangent weights at λ

w (8.9)

see [30]. The tangent weights are given by (6.2).
There are solutions to (7.2) of the form

Yλ(q)q−c(λ;t1,t2), Yλ(q) ∈ F ⊗C C(t1, t2)[[q]],

which converge for |q| < 1 and satisfy Yλ(0) = Jλ. (See, for example, [19,
Ch. XIX] for a discussion of how these solutions are constructed.)

By [30, Corollary 1],

〈Yλ(q),Yµ(q)〉H = δλµ‖Jλ‖2
H = 〈J

λ, Jµ〉H . (8.10)

As in [30, Section 3.1.3], let Y be the matrix whose column vectors are Yλ.
Let J be the matrix whose column vectors are Jλ. Let GDT(t1, t2) be the diagonal
matrix with eigenvalues

q−c(λ;t1,t2)
∏

w: tangent weights at λ

1
Γ (w+ 1)

.

Define the following further diagonal matrices:

Matrix Eigenvalues
L z−|λ|

∏
w: tangent weights at λ w1/2

L0 q−c(λ;t1,t2)/z

A
∏

w: tangent weights at λ(w/z)
w/ze−w/z
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Consider the following solution to (7.4),

S = (2π)|·|ΘYzGDTz A, (8.11)

where S is defined over U . As before,

Yz = Y
(

t1

z
,

t2

z
, q
)
, GDTz = GDT

(
t1

z
,

t2

z
, q
)
.

PROPOSITION 21. As z → 0 along R, the operator Se−u/z
|q=0 has the

asymptotics

RHilb
|q=0.

Proof. We write S as

(2π)|·|ΘYzGDTz A = (2π)|·|ΘYz L−1 L L0 L−1
0 GDTz A.

= (ΘYz L−1)((2π)|·|L L−1
0 GDTz A)L0.

At q = 0, the columns of ΘYz L−1 are

ΘYλ

(
0;

t1

z
,

t2

z

)
z|λ|

∏
w: tangent weights at λ

w−1/2

= ΘJλ
(

t1

z
,

t2

z

)
z|λ|

∏
w: tangent weights at λ

w−1/2

= Jλ(t1, t2)
∏

w: tangent weights at λ

w−1/2.

So Ψ |q=0 = ΘYz L−1. By (8.1), L0e−u/z
|q=0 = 1, where 1 is the identity matrix.

It remains to calculate the asymptotics of (2π)|·|L L−1
0 GDTz A. Recall the

Stirling asymptotics for Gamma function (see, for example, [43]):

1
Γ (x + 1)

∼
x−1/2x−x ex

√
2π

exp
(∑

m>0

B2m

2m(2m − 1)

(
−1
x

)2m−1)
,

|x | → ∞, |arg(x)| < π. (8.12)

By condition (8.5), the formula (8.12) is applicable to GDT as z→ 0 along R. We
conclude that the asymptotics of L−1

0 GDTz is a diagonal matrix with eigenvalues
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∏
w: tangent weights at λ

(w/z)−1/2(w/z)−(w/z)ew/z

√
2π

× exp
(∑

m>0

B2m

2m(2m − 1)

(
−1
(w/z)

)2m−1)
=

z|λ|

(2π)|λ|
∏

w: tangent weights at λ

w−1/2(w/z)−w/zew/z

× exp
(∑

m>0

B2m

2m(2m − 1)

(
−z
w

)2m−1)
.

Therefore, (2π)|·|L L−1
0 GDTz A has asymptotics given by a diagonal matrix with

eigenvalues

∏
w: tangent weights at λ

exp
(∑

m>0

B2m

2m(2m − 1)

(
−z
w

)2m−1)
,

which coincides, by Proposition 16, with RHilb
|q=0 written as a matrix with both

domain and range in the canonical basis.
Taken all together, Se−u/z

|q=0 is

(ΘYz L−1)((2π)|·|L L−1
0 GDTz A)L0 exp(−u/z)|q=0

and has the asymptotics RHilb
|q=0 written as a matrix with domain in the

canonical basis and range in the flat basis.

8.5. Asymptotics of solutions.

PROPOSITION 22. For every p ∈ γ , there exists an open neighborhood

Up ⊂ U

on which the system (7.4) has a fundamental solution S satisfying the following
property: in the z→ 0 limit along R, S has asymptotics of the form

S ∼ Reu/z

where R = 1+R1z+R2z2
+· · · is an operator-valued z-series with coefficients

analytic in q.
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Proof. For p 6= 0, the result follows immediately from [42, Theorem 26.3]. More
precisely, we use the change of variables q = pe−x to transform the system (7.4)
into a system of the form

z
d

dx
Φ = MΦ.

We use an analytical simplification, which exists according to [42, Theorem
26.1], to transform the latter system to a collection of 1-dimensional ODEs of
the form

z
d f
dx
= a(x, t1, t2) f,

which can be easily solved. Combining the solutions of these ODEs with the
analytical simplification gives the solution S . The z → 0 limit can be taken
along R because the proof of [42, Theorem 26.1] allows the z → 0 limit to be
taken along any direction.

For p = 0 the above argument is still valid. The needed analytical
simplification exists because of the condition (8.6) allows us to apply [37,
Theorem 3], whose proof was completed in [38]. We then transform (7.4) to a
collection of 1-dimensional ODEs of the form

zq
d f
dq
= a(q, t1, t2) f.

Combining the solutions of these ODEs with the analytical simplification gives
the solution S . By condition (8.6), the z→ 0 limit can be taken along R.

PROPOSITION 23. There exists an open neighborhood U ′ ⊂ U of γ on which
the solution S has the asymptotics

S ∼ Reu/z as z→ 0 along R, (8.13)

where R = 1+R1z+R2z2
+· · · is an operator-valued z-series with coefficients

analytic in q and R = RHilb in a neighborhood of q = 0. Moreover, R is
symplectic,

R†(−z)R(z) = 1
with the adjoint taken with respect to the pairing η.

Proof. After intersection, we may assume the two open sets U0 in
Propositions 20 and 22 are the same.

Consider the open sets Uq of Proposition 22. Certainly γ ⊂
⋃

q∈γ Uq . Since γ
is compact, there exist finitely many points

t0 = 0 < t1 < t2 < · · · < tk = 1

for which γ ⊂
⋃k

i=0 Uγ (ti ). Define

Ui = Uγ (ti ).
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Consider the solution S over U0 constructed in Proposition 22. The
asymptotics of S as z → 0 along R, Reu/z is an asymptotical solution of (7.4).
We compare Reu/z with the asymptotical solution (8.2). By [11, Remark 1 after
the proof of Proposition 1.1], R and RHilb differ by a z-series with coefficients
given by diagonal matrices independent of q . (Here, all operators are represented
by matrices in the canonical basis. Since both eu/z and (RHilb

|q=0)
−1(R|q=0) are

diagonal, these matrices commute.) Therefore,

R = RHilb(RHilb
|q=0)

−1(R|q=0)

and (RHilb
|q=0)

−1(R|q=0) is diagonal.
The solution S in (8.11) is a fundamental solution to (7.4). Hence, there exists

a matrix C , independent of q , satisfying

SC = S

on U0. The asymptotics of S|q=0 as z → 0 along R were calculated in
Proposition 21. After comparing with the asymptotics of S|q=0, we find

C ∼ (RHilb
|q=0)

−1(R|q=0)

as z→ 0 along R. Therefore, on U0, we find

S = SC−1
∼ Reu/z(R|q=0)

−1(RHilb
|q=0)

= R(R|q=0)
−1(RHilb

|q=0)eu/z
= RHilbeu/z

as z→ 0 along R.
Suppose now (8.13) is proven over U<l =

⋃l−1
i=0 Ui . Consider the solution S

over Ul constructed in Proposition 22. The asymptotics of S as z → 0 along
R, Reu/z , is an asymptotical solution of (7.4) on Ul . We compare Reu/z with
the asymptotical solution (8.13) over U<l ∩ Ul . As before, R and R differ by a
z-series with coefficients diagonal matrices independent of q . Let pl ∈ U<l ∩ Ul .
Then, over U<l ∩ Ul , we have

R = R(R|q=pl )
−1(R|q=pl ).

Moreover, (R|q=pl )
−1(R|q=pl ) is a diagonal matrix. As before, there exists a

matrix C , independent of q , satisfying

SC = S

on U<l ∩ Ul . Comparing asymptotics at q = pl , we find

C ∼ (R|q=pl )
−1(R|q=pl )

as z→ 0 along R.
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On Ul , define R = R(R|q=pl )
−1(R|q=pl ). Over U<l ∩ Ul , we have

S = SC−1
∼ Reu/z(R|q=pl )

−1(R|q=pl ) = R(R|−1
q=pl

)(R|q=pl )e
u/z
= Reu/z

as z→ 0 along R. We have proven (8.13) over U<l ∪ Ul .
Finally, we prove the constructed R is symplectic. (An easier way to see the

symplectic property of R is the following: being symplectic is a closed condition
in q , and R is symplectic on U0 because R is RHilb on U0. However, we include
a detailed calculation to verify the symplectic condition to show how all the
formula fit together.) We compute S†(−z)S(z) in two ways. By (8.13), as z→ 0
along R, we find

S†(−z)S(z) ∼ e−u†/zR†(−z)R(z)eu/z
= e−u/zR†(−z)R(z)eu/z.

On the other hand, using the definition of S in (8.11) and the matrix L , we find

S(z) = (2π)|·|ΘYzGDTz A = (ΘYz L−1)(2π)|·|LGDTz A.

By direct calculation, detailed in Section 8.6, we have

〈ΘYλ
z z|λ|,ΘYµ

z z|µ|〉H = η(ΘYλ
z z|λ|, (ΘYµ

z z|µ|)|z 7→−z) = δλµ
∏

w: tangent weight at λ

w.

(8.14)
Hence,

(ΘYz L−1)†|z 7→−z(ΘYz L−1) = 1.
Then,

S†(−z)S(z)
= ((2π)|·|LGDTz A)†|z 7→−z(ΘYz L−1)†|z 7→−z(ΘYz L−1)((2π)|·|LGDTz A)
= ((2π)|·|LGDTz A)†|z 7→−z((2π)|·|LGDTz A).

By the analysis of asymptotics of GDT in the proof of Proposition 21, we have
the following as z→ 0 along R:

(2π)|·|LGDTz A

∼ Diag
(

q−c(λ;t1,t2)/z
∏

w: tangent weights at λ

exp
(∑

m>0

B2m

2m(2m − 1)

(
−z
w

)2m−1))
,

((2π)|·|LGDTz A)†|z 7→−z

∼ Diag
(

qc(λ;t1,t2)/z
∏

w: tangent weights at λ

exp
(∑

m>0

B2m

2m(2m − 1)

(
z
w

)2m−1))
.

We conclude S†(−z)S(z) ∼ 1.
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Comparing the two asymptotics of S†(−z)S(z), we find

exp(−u/z)R†(−z)R(z) exp(u/z) = 1,

which implies R†(−z)R(z) = 1.

8.6. Calculations of scalar products. We first check (8.8). Write

Jλ =
∑
ε

Jλε (t1, t2)|ε〉, Jµ =
∑
ε′

Jµε′(t1, t2)|ε〉,

where Jλε (t1, t2), J
µ

ε′(t1, t2) ∈ C(t1, t2)[[q]]. Then

〈Jλ, Jµ〉H =
∑
ε,ε′

Jλε (t1, t2)J
µ

ε′(t1, t2)〈ε|ε
′
〉H

=

∑
ε,ε′

Jλε (t1, t2)J
µ

ε′(−t1,−t2)
1

(t1t2)`(ε)

δεε′

z(ε)
. (8.15)

Since Jµε′(t1, t2) is (t1t2)
`(ε′) times a polynomial in t1 and t2 of degree |µ| − `(ε ′),

we have
Jµε′(−t1,−t2) = (−1)2`(ε

′)(−1)|µ|−`(ε
′)Jµε′(t1, t2).

We can therefore write (8.15) as∑
ε,ε′

Jλε (t1, t2)J
µ

ε′(t1, t2)
(−1)|µ|−`(ε′)

(t1t2)`(ε)

δεε′

z(ε)

=

∑
ε,ε′

Jλε (t1, t2)J
µ

ε′(t1, t2)
(−1)|ε|−`(ε)

(t1t2)`(ε)

δεε′

z(ε)

= η(Jλ, Jµ),

where, in the first equality, we have used |µ| = |ε|.
We now check (8.14). Write

Yλ
=

∑
ε

Yλ
ε (t1, t2)|ε〉, Yµ

=

∑
ε′

Yµ

ε′(t1, t2)|ε
′
〉,

where Yλ
ε (t1, t2),Y

µ

ε′(t1, t2) ∈ C(t1, t2)[[q]]. Then,

〈ΘYλ
z z|λ|,ΘYµ

z z|µ|〉H = z|λ|+|µ|
∑
ε,ε′

Yλ
ε

(
t1

z
,

t2

z

)
Yµ

ε′

(
t1

z
,

t2

z

)
〈Θε|Θε ′〉H
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= z|λ|+|µ|
∑
ε,ε′

Yλ
ε

(
t1

z
,

t2

z

)
Yµ

ε′

(
−

t1

z
,−

t2

z

)
〈ε|ε ′〉H z`(ε)+`(ε

′)

= z|λ|+|µ|
∑
ε,ε′

Yλ
ε

(
t1

z
,

t2

z

)
Yµ

ε′

(
−

t1

z
,−

t2

z

)
z`(ε)+`(ε

′)

(t1t2)`(ε)

δεε′

z(ε)
.

We have ∑
ε,ε′

Yλ
ε

(
t1

z
,

t2

z

)
Yµ

ε′

(
−

t1

z
,−

t2

z

)
z`(ε)+`(ε

′)

(t1t2)`(ε)

δεε′

z(ε)

=

∑
ε,ε′

Yλ
ε

(
t1

z
,

t2

z

)
Yµ

ε′

(
−

t1

z
,−

t2

z

)
1

((t1/z)(t2/z))`(ε)
δεε′

z(ε)

= 〈Yλ,Yµ
〉H |ti 7→ti /z

= δλµ
∏

w: tangent weight at λ

w
∣∣∣∣
ti 7→ti /z

= δλµ
∏

w: tangent weight at λ

w/z2|λ|. (8.16)

In the second equality of (8.16), we have used the definition of 〈−,−〉H . In the
third equality, we have used (8.9) and (8.10). Since |λ| = |µ|, we have

〈ΘYλ
z z|λ|,ΘYµ

z z|µ|〉H = δλµ
∏

w: tangent weight at λ

w.

On the other hand, we have

η(ΘYλ
z z|λ|, (ΘYµ

z z|µ|)|z 7→−z)

= z|λ|+|µ|(−1)|µ|
∑
ε,ε′

Yλ
ε

(
t1

z
,

t2

z

)
Yµ

ε′

(
−

t1

z
,−

t2

z

)
η(ε|ε ′)z`(ε)+`(ε

′)(−1)`(ε
′)

= z|λ|+|µ|
∑
ε,ε′

Yλ
ε

(
t1

z
,

t2

z

)
Yµ

ε′

(
−

t1

z
,−

t2

z

)

×
(−1)|ε|−`(ε)

(t1t2)`(ε)

δεε′

z(ε)
z`(ε)+`(ε

′)(−1)`(ε
′)(−1)|µ|.

Since the factors of (−1) cancel, the above is

z|λ|+|µ|
∑
ε,ε′

Yλ
ε

(
t1

z
,

t2

z

)
Yµ

ε′

(
−

t1

z
,−

t2

z

)
z`(ε)+`(ε

′)

(t1t2)`(ε)

δεε′

z(ε)
= δλµ

∏
w: tangent weight at λ

w,
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where we have used (8.16). We conclude

η(ΘYλ
z z|λ|, (ΘYµ

z z|µ|)|z 7→−z) = δλµ
∏

w: tangent weight at λ

w.

9. Analytic continuation

9.1. Asymptotics near q = −1. We study the value of S at q = −1, using
the solution to the connection problem in [30, Section 4]. Let

Hλ(q, t)

be the integral form of the Macdonald polynomial as in [30, Equation (33)]. More
precisely,

Hλ(q, t) = tn(λ)
∏
�∈λ

(1− qa(�)t−l(�)−1)ΥPλ(q, t−1),

where

Υ |µ〉 =

`(µ)∏
i=1

(1− t−µi )−1
|µ〉

and

n(λ) =
`(λ)∑
i=1

(i − 1)λi .

Let H be the matrix with columns Hλ and the following identification of
parameters:

(q, t) = (T1, T2), Ti = exp(2π
√
−1ti). (9.1)

Define the operators GGW and Γ by

GGW(t1, t2)|µ〉 =
∏

i

g(µi , t1)g(µi , t2)|µ〉,

Γ |µ〉 =
(2π
√
−1)`(µ)∏
i µi

GGW(t1, t2)|µ〉,

where g(x, t) = x t x/Γ (t x).
By [30, Theorem 4], YGDT|q=−1 = 1/(2π

√
−1)|·|ΓH. Therefore, the solution

S in (8.11) satisfies

S|q=−1 =
1

√
−1
|·|
ΘΓ zHz A. (9.2)
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By Proposition 23,
S|q=−1 ∼ R|q=−1eu/z

|q=−1 (9.3)

as z→ 0 along R. We determine R|q=−1 by studying the asymptotics of the right
side of (9.2).

As we see, as z → 0 along R, the right side of (9.2) admits an asymptotical
expansion of the following form

1
√
−1
|·|
ΘΓ zHz A ∼ Z+Z−, (9.4)

where Z+ = 1+ O(z) is a z-series and Z− = 1+ O(1/z) is a 1/z-series.
We write A = A0 A1, where

Matrix Eigenvalues
A0

∏
w: tangent weights at λ z−w/ze−w/z

A1
∏

w: tangent weights at λ ww/z

The operator A0 is a scalar multiple of the identity matrix since∑
w: tangent weights

w = |λ|(t1 + t2).

As a result,

S|q=−1 =
1

√
−1
|·|
ΘΓ z A0Hz A1. (9.5)

Since we have ∏
w: tangent weights at λ

ww/z
= exp

(
1
z

∑
w: tangent weights at λ

w log w
)
,

A1 contributes to Z−.
By [23, Ch. VI, equation (8.19)], matrix coefficients of H are polynomials in

T1, T2. As mentioned in [30], our Hλ is the same as H̃λ in [17, Definition 3.5.2].
To see the equivalence, the first step is

H̃λ(z; q, t) = tn(λ) Jλ[Z/(1− t−1); q, t−1
],

by the equation just below Theorem/Definition 6.1 of [18]. Here, Z/(1 − t−1)

stands for the plethystic substitution defined in [17, Section 3.3]. The function
Jλ(z; q, t), defined by [17, equation (54)], is the same as that defined in [23,
Ch. VI, Section 8, (8.3)], as remarked just above [17, Section 3.5.2]. (Note there
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is a typo in [17, equation (54)]: the plethystic substitution should be (1 − t)Z
instead of (1− t−1)Z .) By [23, Ch. VI, Section 8, (8.3)],

Jλ(z; q, t) =
∏
�∈λ

(1− qa(�)t l(�)+1)Pλ(z; q, t).

Working through the definition given in [17, Section 3.3], we find that the
plethystic substitution

Z 7→ Z/(1− t−1)

is equivalent to the map |µ〉 7→ (1/
∏

i(1− t−µi ))|µ〉. Thus

Hλ(q, t) = H̃λ(z; q, t).

By the identification of parameters (9.1) and condition (8.7), we see that as
z→ 0 along R, we have q → 0, t−1

→ 0. By [17, Definition 3.5.3], we have

Hλ(q, t) =
∑
µ

K̃µλ(q, t)sµ,

where K̃µλ(q, t) are the Kostka–Macdonald polynomials (or q, t-Kostka
coefficients) and

sµ =
∑
ν

χµ(ν)|ν〉

is the Schur function.
By the discussion below [17, Definition 3.5.3], we can define Kµλ(q, t) by

Jλ(z; q, t) =
∑
µ

Kµλ(q, t)sµ[Z/(1− t)].

As noted in the discussion below [17, Definition 3.5.3],

K̃µλ(q, t) = tn(λ)Kµλ(q, t−1). (9.6)

Therefore, we can write∑
µ

K̃µλ(q, t)sµ =
∑
µ

K̃µλ(q, t)
∑
ν

χµ(ν)|ν〉

=

∑
ν

(∑
µ

K̃µλ(q, t)χµ(ν)
)
|ν〉,

and ∑
µ

K̃µλ(q, t)χµ(ν) =
∑
µ

tn(λ)Kµλ(q, t−1)χµ(ν).
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As z→ 0 along R, we have q, t−1
→ 0. By [17, equation (59)],

K̃µλ(0, t) = K̃µλ(t),

where K̃µλ(t) is the cocharge Kostka–Foulkes polynomial given in [17,
Definition 3.4.13] in terms of the Kostka–Foulkes polynomials Kµλ(t),

K̃µλ(t) = tn(λ)Kµλ(t−1).

Comparing this with (9.6), we see that

Kµλ(0, t) = Kµλ(t).

By [17, Corollary 3.4.12 (vi)],

Kµλ(0) = δµλ.

Therefore,
lim

z→0 along R
Kµλ(q, t−1) = δµλ.

Thus as z → 0 along R, we have X−1Hz exp(−2π
√
−1t2n/z) tends to 1, where

X is the matrix with entries χλ(µ) and n is the diagonal matrix with diagonal
entries n(λ). Hence,

Hz ∼ X exp(2π
√
−1t2n/z), (9.7)

as z→ 0 along R. So Hz contributes X to Z+ and exp(2π
√
−1t2n/z) to Z−.

It remains to study the asymptotics of (1/
√
−1
|·|

)ΘΓ z A0. By condition (8.4),
the Stirling asymptotics (8.12) is applicable to Γ z as z→ 0 along R. We find Γ z

has the asymptotics a diagonal matrix with entries:
√
−1

`(µ)
(t1t2)

`(µ)/2z−`(µ)e(|µ|(t1+t2))/z

× exp
(
−|µ|

t1 log t1 + t2 log t2

z
+ |µ|(t1 + t2)

log z
z

)
×

`(µ)∏
i=1

exp
(∑

m>0

B2m

2m(2m − 1)

((
−z
µi t1

)2m−1

+

(
−z
µi t2

)2m−1))
.

There are now several cancelations:

• The term e(|µ|(t1+t2))/z cancels with
∏

w: tangent weights at µ e−w/z in A0.

• The term exp(|µ|(t1 + t2)(log z/z)) cancels with
∏

w: tangent weights tµ z−w/z in
A0.

• The factor z−`(µ) cancels with Θ .

Also, the term exp(−|µ|(t1 log t1 + t2 log t2)/z) contributes to Z−.
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Therefore, the part of Z+ coming from (1/
√
−1
|·|

)ΘΓ z A0 is the diagonal
matrix with entries

√
−1

`(µ)−|µ|
(t1t2)

`(µ)/2

×

`(µ)∏
i=1

exp
(∑

m>0

B2m

2m(2m − 1)

((
−z
µi t1

)2m−1

+

(
−z
µi t2

)2m−1))
. (9.8)

Comparing the two asymptotical expansions of S|q=−1 in (9.3) and (9.4), we
find

R|q=−1 = Z+, eu/z
|q=−1 = Z−.

(What we need here is that if a function of the form exp(A/z), with A a
diagonal matrix independent of z, has an asymptotical expansion into a z-series
starting with 1, then A = 0. The result follows by computing the asymptotical
coefficients using their definitions.) Hence, u|q=−1 is the diagonal matrix with
diagonal entries

−|λ|(t1 log t1 + t2 log t2)+
∑

w: tangent weights at λ

w log w+ 2π
√
−1t2n(λ).

By construction, the columns of R|q=−1,z=0 are normalized idempotents of the
ring

H ∗T (I Symn(C2))

written in the basis {|µ〉µ ∈ Part(n)} of V. Since R|q=−1 = Z+, by looking
at Z+|z=0, we find the idempotent appearing on the column indexed by λ is Iλ

written in the basis {|µ〉µ ∈ Part(n)} of V. Moreover, the action of R|q=−1 on
Iλ is given by the column of Z+ indexed by λ, which is computed by combining
(9.7) and (9.8). More precisely,

R|q=−1(Iλ) =
∑
µ

χλ(µ) exp
(
−

∑
m>0

B2m

2m(2m − 1)

×

∑
i

(
1

(µi t1)2m−1
+

1
(µi t2)2m−1

)
z2m−1

)
·
√
−1

`(µ)−|µ|
(t1t2)

`(µ)/2
|µ〉. (9.9)

Comparing (6.5) with (9.9), we find

RSym
|u=0 = R|q=−1,

after −q = eiu . As a consequence, in a neighborhood of q = −1, RSym
= R.

We have proven the following result parallel to Proposition 21.
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PROPOSITION 24. As z → 0 along R, the operator Se−u/z
|q=−1 has the

asymptotics
RSym
|u=0.

9.2. Proof of Theorem 4. We already have a match of the complete genus 0
theory for Hilbn

(C2) and Symn
(C2) under the identification

V→ Ṽ, |µ〉 7→ |µ̃〉. (9.10)

To prove Theorem 4, we need only match the R-matrices RHilb and RSym via
(9.10) and the variable change

−q = eiu. (9.11)

The coordinate t̃ along |2, 1n−2
〉 ∈ Ṽ is related to the coordinate t along

|2, 1n−2
〉 ∈ V via (9.10) by

t̃ = (−i)−1t = i t.

By the chain rule,

−
∂

∂t
= −i

∂

∂ t̃
and q

∂

∂q
= −i

∂

∂u
.

The differential equations

−
∂

∂t
RHilb
= q

∂

∂q
RHilb and

∂

∂ t̃
RSym

=
∂

∂u
RSym

therefore exactly match via (9.10) and the variable change (9.11). Hence, by
Proposition 9, we need only match

RHilb
|q=−1 = [RHilb

|−q=eiu ]u=0

with RSym
|u=0.

The matching RHilb
|q=−1 = RSym

|u=0 is a nontrivial assertion. The difficulty
can be summarized as follows. While we have closed forms for

RHilb
|q=0 and RSym

|u=0,

by Propositions 16 and 17, respectively, we must control the q = −1 evaluation
of RHilb which is far away from q = 0.

The issue is resolved by the analytic continuation of the solution to the QDE of
Hilbn

(C2) computed in [30]. The study of the QDE of Hilbn
(C2) in [30] concerns
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only the small quantum cohomology (all the coordinates of V are set to 0). The
results of Propositions 21 and 24 show the R-matrix associated to the solution S
of the QDE has asymptotics

RHilb
|q=0 = R|q=0 and RSym

|u=0 = R|q=−1.

Since R matches RHilb for small q by Proposition 23 and is analytic along the
path γ connecting 0 to −1, we conclude

RHilb
|q=−1 = RSym

|u=0 (9.12)

at least when all the coordinates of V are set to 0. By Proposition 8, any difference
between two operators (9.12) persists after setting the coordinates of V to 0.
Hence, the equality (9.12) is valid when the dependence on V is included.

The proof of Theorem 4 not only yields the series result

〈µ1, µ2, . . . , µr
〉

Hilbn(C2)
g

= (−i)
∑r

i=1 `(µ
i )−|µi

|
〈µ1, µ2, . . . , µr

〉
Symn(C2)
g after − q = eiu

but matches the full CohFTs

Ωg,r = Ω̃g,r after V→ Ṽ and − q = eiu.

9.3. Proof of Theorem 2. We obtain a tetrahedron of equivalences of
CohFTs:

�
�
�
�
�

@
@
@
@
@

@
@

@
@

@

�
�

�
�

�

Ωg,r from Hilbn
(C2)

Ω̃g,r from Symn
(C2)

Λg,r from DT theory of

π : C2
× C →Mg,r

Λ̃g,r from GW theory of

π : C2
× C →Mg,r

Both the CohFTs Ω and Λ are based on

A = Q(t1, t2)[[q]]
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and (V, η). The exact matching

Ω = Λ

is Proposition 15. Similarly, Ω̃ and Λ̃ are based on

Ã = Q(t1, t2)[[u]]

and (Ṽ, η̃). The exact matching

Ω̃ = Λ̃

is Proposition 12. Finally, we have the crepant resolution matching

Ωg,r = Ω̃g,r after V→ Ṽ and − q = eiu

from Section 9.2. As a result, we also obtain the GW/DT matching

Λ̃g,r = Λg,r after Ṽ← V and − q = eiu.

The proof of Theorem 2 is complete.

Acknowledgements

We are grateful to J. Bryan, A. Buryak, R. Cavalieri, T. Graber, J. Guéré,
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