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Experimental investigations of linear and
nonlinear periodic travelling waves in a viscous
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Conduits generated by the buoyant dynamics between two miscible Stokes fluids with high
viscosity contrast, a type of core—annular flow, exhibit a rich nonlinear wave dynamics.
However, little is known about the fundamental wave dispersion properties of the medium.
In the present work, a pump is used to inject a time-periodic flow that results in the
excitation of propagating small- and large-amplitude periodic travelling waves along the
conduit interface. This wavemaker problem is used as a means to measure the linear
and nonlinear dispersion relations and corresponding periodic travelling wave profiles.
Measurements are favourably compared with predictions from a fully nonlinear, long-wave
model (the conduit equation) and the analytically computed linear dispersion relation
for two-Stokes flow. A critical frequency is observed, marking the threshold between
propagating and non-propagating (spatially decaying) waves. Measurements of wave
profiles and the wavenumber—frequency dispersion relation quantitatively agree with wave
solutions of the conduit equation. An upshift from the conduit equation’s predicted critical
frequency is observed and is explained by incorporating a weak recirculating flow into the
full two-Stokes flow model. When the boundary condition corresponds to the temporal
profile of a nonlinear periodic travelling wave solution of the conduit equation, weakly
nonlinear and strongly nonlinear, cnoidal-type waves are observed that quantitatively agree
with the conduit nonlinear dispersion relation and wave profiles. This wavemaker problem
is an important precursor to the experimental investigation of more general boundary value
problems in viscous fluid conduit nonlinear wave dynamics.
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1. Introduction

The wavemaker problem consists of waves launched from a boundary into a medium at
rest. It is a fundamental problem for inviscid flows with physical applications, including
surface waves in reservoirs or lakes produced by the movement of a solid body (Chwang
1983b). In the laboratory, wavemakers provide the means to generate finite-amplitude
water waves (Chwang 1983a). Some examples highlighting the rich variety of nonlinear
wave dynamics that is possible include the generation of cnoidal waves (Goring &
Raichlen 1980), interacting undular bores (Trillo et al. 2016) and evidence of a soliton
gas (Redor et al. 2019) from the fission of a sinusoidal wave and the controlled generation
of an isolated rogue wave (Chabchoub, Hoffmann & Akhmediev 2011; Tikan et al. 2022).

This paper presents an alternative fluid medium, called a conduit, in which to investigate
the wavemaker problem in the linear and nonlinear regimes. The pressure-driven, buoyant,
core—annular flow between two miscible Stokes fluids with a small core-to-annular fluid
viscosity ratio is a simple, conducive laboratory setting for the quantitative experimental
study of nonlinear wave propagation (Olson & Christensen 1986; Scott, Stevenson &
Whitehead 1986; Helfrich & Whitehead 1990; Maiden et al. 2016, 2020). This setting
is quite different from more traditional core—annular flows, such as oil-water, subject to
non-negligible inertial and surface tension effects resulting in a variety of instabilities
(Joseph et al. 1997). Instead, we operate in a vanishing Reynolds number regime where
the flow is convectively unstable (d’Olce et al. 2009) and can be effectively interpreted as a
deformable, fluid-filled pipe (Olson & Christensen 1986; Lowman & Hoefer 2013) due to
very slow mass diffusion across the conduit interface (Maiden et al. 2016). Conduits model
viscously deformable media in a variety of physical environments such as magma in the
Earth’s mantle (Whitehead & Helfrich 1990) and channelized water flow under glaciers
(Stubblefield, Spiegelman & Creyts 2020). A schematic of the flow configuration is shown
in figure 1.

In traditional pressure-driven core—annular flows, finite-amplitude dynamics can be
studied in the long-wavelength regime using an approximate interfacial wave model
consisting of nonlinear advective and dissipative terms such as those asymptotically
derived in Camassa & Ogrosky (2015). These models can be viewed as generalizations
of the famous Kuramoto—Sivashinsky equation (Sivashinsky 1977; Kuramoto 1978),
which exhibits spatio-temporal chaos. In contrast, the viscous core—annular flow of a
pressure-driven Stokes core fluid within an annulus of another, miscible, heavier Stokes
fluid is accurately modelled by the so-called conduit equation

A+ (A%, — (A2 (A71A),), =0, (1.1)

for the normalized, axisymmetric cross-sectional area A of a fluid conduit at
non-dimensional vertical height z and time ¢. The conduit equation is an expression
of mass conservation subject to buoyancy-induced nonlinear advection and nonlinear,
non-local dispersion due to interfacial stresses that is obtained from the two-fluid
Navier—Stokes equations in the small Reynolds number, small core-to-annular viscosity
ratio and long-wavelength regime with no assumption on wave amplitude (Olson &
Christensen 1986; Lowman & Hoefer 2013). Unlike models of traditional core—annular
flows, this third-order dispersive nonlinear wave equation is more closely analogous to the
Korteweg-de Vries equation of shallow water wave fame (Korteweg & de Vries 1895).
Much as in the aforementioned hydrodynamic wavemaker case, the viscous conduit
is a laboratory environment for the study of a variety of nonlinear wave dynamics. Past
experimental studies include solitary waves (Olson & Christensen 1986; Scott et al.
1986) and their interactions (Helfrich & Whitehead 1990; Lowman, Hoefer & El 2014),
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Figure 1. Schematic of the core—annular flow configuration. The interior fluid rises buoyantly within the
exterior fluid with densities p® < p© and viscosities 1@ <« 11(©, respectively. The vertical volumetric flow
rate is Q(z, 1), the cross-sectional area of the interface is A(z, ) and Ao is the background, mean area of the
conduit.

periodic waves (Olson & Christensen 1986; Kumagai & Kurita 1998), solitary wave
fission (Anderson, Maiden & Hoefer 2019; Maiden et al. 2020), dispersive shock waves
(DSWs) (Maiden et al. 2016) and interactions between solitary waves and DSWs (Maiden
et al. 2018). Quantitative observational agreement with the conduit equation (1.1) has
been achieved in certain regimes. But such agreement has largely been confined to the
long-wave, nonlinear regime. Herein, we experimentally investigate the generation of long
and short periodic travelling waves in a viscous fluid conduit using a wavemaker with a
view toward understanding their fundamental properties.

Periodic wavetrains have already been observed and studied in viscous fluid conduits.
Some of the earliest studies generated periodic waves by either quickly increasing the
injection rate from one constant value to another constant value (Scott et al. 1986; Kumagai
& Kurita 1998) or tracking the periodic waves that trail a rising diapir from a plume of
injected fluid (Olson & Christensen 1986). However, since the injection rate was held
constant after the initial change, both scenarios involve a different dynamics than we
consider here. In the first case, we now understand that a step up in injection rate from
a non-zero previous rate results in a DSW consisting of a slowly varying, expanding
periodic travelling wave that ultimately returns to a constant injection rate, i.e. it is transient
(Maiden et al. 2016). In the latter case, it is likely that an oscillatory (absolute) instability
(d’Olce et al. 2009) developed due to sufficiently large injection rate rather than the
convective instability regime in which we operate. In this work, we controllably create
high-quality linear and nonlinear periodic travelling waves by use of a carefully selected
time-periodic injection rate by evaluating exact periodic travelling wave solutions of the
model conduit equation.

The major objective of this work is the reliable generation of both linear and nonlinear,
cnoidal-type waves from a wavemaker. Laboratory measurement constrained by boundary
control is realized by injecting an interior fluid of lower viscosity and lower density into
a more viscous exterior fluid using a piston pump. Limitations are investigated, and the
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experiment is compared with the theory of the boundary value problem for the conduit
equation. We find that, although the exact periodic travelling wave solutions to the conduit
equation exhibit quantitative agreement with our experimental observations, a deviation in
the linear dispersion relation occurs for sufficiently short waves. In order to describe the
linear waves in the shorter-wavelength regime, we obtain the exact solution for two-Stokes
flow linear interfacial wave propagation. Previous work by Yih (1963, 1967) and Hickox
(1971) studied the linear instability of core—annular flows for the Navier—Stokes equations.
Within a parameter regime consistent with our experimental conditions, the instability has
been shown to be convective (d’Olce et al. 2009; Selvam et al. 2009). However, none of
these works obtained an analytical solution to the problem, instead relying upon numerical
solutions. Herein, we develop a model for recirculating viscous core—annular flows in
our experiments and obtain the exact solution to the Stokes equations for azimuthally
symmetric, small-amplitude perturbations. The two-Stokes linear dispersion relation is
shown to agree with the conduit equation’s linear dispersion relation in the limit of high
viscosity contrast and long waves.

The paper is structured as follows. First, we provide some background material on
the conduit equation and periodic travelling waves. Then we derive the exact linear
dispersion relation for two-Stokes core—annular flow in §2. Analytical results for an
idealized recirculating flow with azimuthally symmetric linear interfacial waves and their
asymptotic expansions are presented. Section 3 describes linear modulation theory applied
to the initial-boundary value problem for both the conduit equation and two-Stokes flow.
In § 4, experimental methods and analysis of linear and nonlinear periodic travelling waves
in a viscous fluid conduit are provided. Finally, we conclude in § 5.

1.1. The conduit equation

The conduit equation (1.1) is an accurate partial differential equation model of conduit
interfacial waves whose mathematical structure and solutions have been analysed (Harris
& Clarkson 2006; Simpson & Weinstein 2008; Maiden & Hoefer 2016; Johnson & Perkins
2020).

The conduit equation exhibits solutions that are reminiscent of the Korteweg—de Vries
(KdV) and Benjamin—-Bona—Mahoney (BBM) equations, both models of shallow water
waves. In fact, the conduit equation can be reduced to the BBM and KdV equations for
long waves and weak nonlinearity. Let

T =8Y% 7=:5%, (1.2a,b)

and
Az, ) =146uZ,T)+..., (1.3)

where § <« 1 is the small amplitude parameter and u(Z, T) is the scaled, leading-order
deviation in cross-sectional area. Insertion of this ansatz into (1.1) and keeping the leading
and first-order terms results in the BBM equation (Benjamin, Bona & Mahony 1972)

ur + 2uz + 28uuy — duzzr = 0. (1.4)

Since ur = —2uz 4+ O(6) implies uzzr = —2uzzz + O(5), we obtain the KdV equation
ur + 2uz + 28uuz + 28uzzz = 0 to the same order of accuracy (Whitehead & Helfrich
1986). Hence, both the BBM and KdV equations are asymptotically equivalent to the
conduit equation (1.1) in the weakly nonlinear, long-wavelength regime. Notably, the BBM
equation (1.4) with § = 1 has the same linear dispersion relation as the conduit equation
(1.1) on a unit-mean background.
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The travelling wave solutions of both the BBM and KdV equations may be expressed
in terms of the Jacobi cosine elliptic function cn, the so-called cnoidal wave solutions
(Korteweg & de Vries 1899), as

12
uZ, 1) =B+ (y — ,3)0112 |:(]/6_o¢) (Z —=cT); m:| ,
X

26 —
o (a+ﬁ+y)+2, me? ﬂ’
3 Yy —o

(1.5)

where «, B, y are independent, free parameters. The only difference between the KdV

and BBM cnoidal solutions is in the wavenumber coefficient x: xxqv = 2, xsy = ¢. In
the limit 8 — o with 8 #y, (1.5) reduces to a sech? solitary wave solution and in the
small-amplitude limit 0 < y — 8 < 1, (1.5) becomes a sinusoidal travelling wave.

1.2. The wavemaker problem and periodic travelling wave solutions

For a time-harmonic boundary condition in the linear regime, the Sommerfeld radiation
condition (Sommerfeld 1912, 1949) can be used to select a particular solution, either a
propagating wave or a spatially decaying wave, by requiring a causal solution with only
outgoing waves at infinity. The cross-over between the two behaviours occurs at zero
group velocity. This condition has been applied to many problems in fluid dynamics and
elsewhere (see, e.g. Biihler 2014) and will be applied to the conduit equation.

The conduit equation (1.1) obeys the scaling invariance

A== = ATV, =AY, (1.6a—c)
where A > 0, which leaves (1.1) invariant. Owing to this scaling invariance, we will,
without loss of generality, assume that the periodic travelling wave has unit mean. In this
work, we study the wavemaker problem for a viscous fluid conduit subject to a specially
chosen time-dependent, periodic input with amplitude a and injection frequency wq at the
boundary. The wavemaker initial-boundary value problem is

Az, 0)=1, z=0,
27 (1.7)
AQ,)=1+f@®, 120, ft+To) =f1), t>0, To=—,
wQ
where f(¢) is the zero mean periodic profile with frequency wy > 0, f(0) = f/(0) = 0,
[0 f(ryde =o0.

Conduit periodic travelling wave solutions satisfy A(z,t) = ¢(0), 0 = kz — wt, ¢ (6 +
21) = ¢(0) for 6 € R, wavenumber k& > 0, and frequency w > 0 subject to the nonlinear
ordinary differential equation (Olson & Christensen 1986)

— 0’ + k(@) + 0k’ ($*(¢~'¢)) =0. (1.8)
Integrating (1.8) twice results in

2 2 2 9 2
@) =g@)=—70— ¢ Ing +c1 + 207, (1.9)
where c1 2 are integration constants. Conduit solitary wave solutions are asymptotically

stable (Simpson & Weinstein 2008) and periodic travelling waves are modulationally
stable for sufficiently long wavelengths (Maiden & Hoefer 2016; Johnson & Perkins 2020).
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Upon linearization of (1.1) as A(z, #) — 1 o cos(kz — wt), the conduit equation exhibits
a bounded dispersion relation
2k

=—. 1.10
CTre (110)

For the wavemaker problem, it is helpful to invert the linear dispersion relation (1.10)
and solve for k(w). In order to select the correct branch, we apply the radiation condition
(positive group velocity or spatial decay) to obtain

1 — V1 —ow?

, 0<w«l
k(w) = @ , (1.11)
1+ ivo?—1
L A |
w

where wavenumbers k for frequencies 0 < w < 1 are real, implying steady wave
propagation. For w > 1, k(w) exhibits a positive imaginary part so that these waves
spatially decay (equivalent to Gaster 1962). The frequency w. =1 is therefore the
critical frequency, above which waves decay and get arrested. The corresponding critical
wavenumber k., = 1 satisfies k., = k(w¢r).

In the weakly nonlinear regime, we can obtain approximate periodic travelling wave
solutions when the amplitude is small and the wavenumber is sufficiently far away from O.
The weakly nonlinear approximation with three harmonics takes the form

2 2

2 3 4
a” cos(20) + 1536k4a cos(30) +O(a™), (1.12)

( ) =1 = ) ! 5
¢9;k,a + —cos(@) +
2 48k

where @ = kz — wt, the amplitude 0 < a < 1, the wavenumber k% >> a and the frequency
w is approximately

2k , 1—8k2
+a
1+ k? 48k(1 + k?)

wk,a) = + 0(@d*). (1.13)

Alternatively, we can express the weakly nonlinear expansions in terms of @ and obtain

2
a a
¢0,w,a) =14 —cos(0) + cos(26)
2 24 (1 . M)
(—l -1 —a)z)a3
+ cos(30) +..., (1.14a)

768 (—2 ta? 2\/1——w2>

7
-9 4+ —
1—«/1—w2+( vl—w2>a2

k(w,a) =
(@, a) w 96w

+..., (1.14b)

for 0 < w < 1. The induced mean occurs at O(a?) and must be taken into account when
nonlinear modulations are considered (Maiden & Hoefer 2016).
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Figure 2. Contour plot of numerically computed conduit dispersion relation k(w, a). Beyond the red dashed
line, no real k(w, a) is obtained.

The nonlinear dispersion relation is explicitly expressed in terms of three roots 0 < u; <
ur < uz of g(¢) in (1.9) (Lowman & Hoefer 2013) and phase velocity U so that

13 (up+uz) /(uz—up) (y—1y)  —ud(us+uy)/(us—u) (ua—uy) w3 (ua+ur)/(uz—uy)(uz—uz)
expU = u, Uy Us .

(1.15)

The numerically computed conduit nonlinear dispersion relation w = kU is presented
in figure 2, where the red dashed line corresponds to the edge of the existence region.
The wave amplitude, wavenumber and mean are given by

“ du >_1 k " udu

v 2 =z

a=u3—u, k=m ( (1.16a—c)

T Ju, \/g(”)’

where g(u) is defined in equation (1.9). The limits u, — u; and up — u3 correspond to
the solitary wave and linear, harmonic limits, respectively. These periodic travelling wave
solutions are analogous to the cnoidal solutions of KdV and BBM (1.5) and therefore we
will refer to them as cnoidal-like throughout this work.

2. Two-Stokes flow

Since the conduit equation (1.1) and its linear dispersion relation (1.10), (1.11) are derived
under long wavelength assumptions, we now seek a more accurate description of linear
waves by analysing the free interface between two-Stokes fluids.

2.1. Primary recirculating flow

Interfacial waves generated by the buoyant dynamics between two miscible Stokes fluids
with a small viscosity ratio € = u® /41 are described by continuity equations for mass
conservation and Stokes equations for momentum conservation

v .a® =0, (2.1a)
—VplO + v .50 =, (2.1b)

for the interior and exterior fluids, denoted by superscripts i or e, respectively.
The velocity fields &+ = (ié"e), zlg’e)) are given in cylindrical coordinates assuming

954 A14-7


https://doi.org/10.1017/jfm.2022.993

https://doi.org/10.1017/jfm.2022.993 Published online by Cambridge University Press

Y. Mao and M.A. Hoefer

azimuthal symmetry. The pressure deviation from hydrostatic is p¢ and the deviatoric
stress tensor is ¢ = OV + (Vi) T], where 1€ denotes the fluid viscosity. The
kinematic boundary condition between the two fluids at 7 = R(z, t) incorporates the time
dynamics

a0 = R 00k

r ot ¢ 0z

The remaining boundary conditions include the continuity of normal and tangential
velocities

F=RGED). (2.2a,b)

it ]y =i~ 1. =0, F=RG, (2.3a,b)

and continuity of normal and tangential stresses
.- Tenlj=1[t-T-nlj=0, 7=RGED, (2.4a,b)

where []; represents the difference in the exterior and interior fluid quantities, ;216 is the

outward pointing unit normal to the interface and 7. is the unit tangent to the interface.
Here, T¢:9) = (-9 — [p"€) is the stress tensor and I denotes the identity operator. No-slip

and no-penetration boundary conditions at the outer wall 7 = D require ftée) (D) = 0 and

Zt;e) (D) = 0. Boundary conditions along the symmetry axis are imposed as

~ (1) ~(i

ou: , ap®

E oo @ =0 P__0, ati=0o. 2.5)
or r ar

A non-dimensionalization that leads to a maximal balance between buoyancy and
viscous stress effects taking vertical length scale L, velocity scale U and time scale T
as € — 01is (Lowman & Hoefer 2013)

r=¢ V2L, z=%/L, t=1T, (2.6a)
u® = 799y, (2.6b)

, =ie) _ .
P9 = 1%, m=u?u/L, (2.6¢)
o0 — (L/[,L(i’e)U)a'(i’e), (2.6d)

where pg is a constant reference pressure. The vertical spatial variation L is assumed to
be longer than the radial length scale Ry. With constant conduit radius Ry, the scales are
defined as

gR3A 2

L=Ro/v3e, U=522 71_pu =2 2.7a—d)
8u® T

where A = p© — p@ is the difference in the fluid densities. Substituting the
above scalings into the dimensional equations represented by the tilde notation, the
non-dimensional continuity and linear momentum equations for the interior and exterior
fluid are obtained (see Appendix A).

Steady flow requires only that the axial velocity and pressure have initial values

different from zero and the vertical velocity is independent of z, i.e. u% = uie()) =0,

954 Al14-8


https://doi.org/10.1017/jfm.2022.993

https://doi.org/10.1017/jfm.2022.993 Published online by Cambridge University Press

Linear and nonlinear periodic travelling waves in a conduit

814%/ 0z = Bu(e) o/0z = 0. Collecting the governing equations as well as the boundary
conditions, we obtaln the solution for the primary flow

PP ==z + AQ), (2.8a)
2
L0 a=1) 5 2, €n- D
= —D —In —, 2.8b
ulp =" ? )+ 1 ( ) + 5 In ; (2.8b)
2 D
”ie()) . (Z(r2 - DY+ ’7? In 7) ’ (2.8d)

with external fluid pressure gradient A, internal fluid pressure gradient A — 1 and interfacial
radius 7. Pressure is determined up to an arbitrary function of time A(¢). Since the interior
and exterior pressures only play roles in the normal stress balance condition (2.4a,b) (see
also (A5a)) and A(t) cancels in the equation, we set A(f) = 0 without loss of generality.
The vertical volumetric flow rates of the interior and exterior flows through a cross-section
normal to the z axis are

. N
0¥ = 27[/0 u%(r)rdr

B D? D\ ,
=—|1—-—A242€e1—2ed— +4eln— | 7, (2.9a)
8 n? n

0 = 2n/ (e) o(nrdr
n

2 4

D
— —ge (2 +A1-2(1+ /1) A— +4In —) n*. (2.9b)
n

In the case of a motionless external fluid so that € = 0 and A = 0, the interior flow rate
is 0 = (n / 8)174, which, upon dimensionalization (2.7a-d) results in the Poiseuille, pipe
flow scaling law Ré = (8u'? /g A)Qp, where Qy is the interior fluid injection rate. Note
that the external pressure gradient A is a parameter that is constrained by the direction of
fluid flow. Previous studies that derived the conduit equation assumed a high viscosity
contrast (¢ < 1), a zero external pressure gradient (4 = 0) and an infinitely far outer
wall (D — 00). However, in this work, € and A, as well as D are adapted to model our
experiments by introducing an idealized recirculating flow in which the interior fluid rises
upward, dragging some of the exterior fluid with it, while the rest of the exterior fluid flows

downward. Evaluating the sign of uie()) (r) for r near n and D dictates that

<Q>2 1< 2n° ln(D/n)

5 i (2.10)

for recirculating flow. So far, we have only specified the vertical flow directions for
the interior and exterior fluids of an infinitely long conduit. In order to model flow
recirculation, we need to appeal to the observed fluid dynamics in our experimental
apparatus. The rising interior fluid is observed to pool at the very top of the fluid
column, creating a less dense, lower viscosity fluid layer above the exterior fluid (see
figure 6(a) for a schematic). On the other hand, the exterior fluid entrained by the rising
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interior fluid is observed to recirculate downward and, upon reaching the bottom of the
column, recirculates upward (see the supplementary material movies available at
https://doi.org/10.1017/jfm.2022.993). We model this dynamics by invoking the additional
requirement of mass conservation for the exterior fluid (i.e. 0© =0 in (2.9b)), resulting
in the external pressure gradient

_ 2’0 — i — 2° In(D/1))

A
(DZ _ 772)2

@2.11)

The validity of the requirement (2.11) will be discussed in §4.4 using experimental
measurements.

2.2. Linear dispersion relation

The linear dispersion relation for waves on a straight conduit in two-Stokes flow is
investigated by linearizing about the primary flow. Following the procedure as introduced
in Batchelor & Gill (1962) and Hickox (1971), first-order velocities and pressures are
written as

ul) = [g.(r), ie' g, (N1 exp(itkz — w1)), (2.12a)
u\” = [€G,(r), i€ *G,(r)] exp(i(kz — w1)), (2.12b)
P = h(r) exp(itkz — wi)), (2.12¢)

P\ = H(r) exp(ikz — wi)). (2.12d)

The € scalings of the exterior and interior velocity perturbations are chosen to reflect
tangential stress balance and the kinematic boundary condition. We assume a constant
conduit radius 1 subject to a small disturbance so that

R(z,t) = n+ aexp(i(kz — wt)), |a] K 1. (2.13)

Solving the governing equations directly and applying the boundary conditions, the
eigenfunctions g,, g;, h and G,, G;, H are obtained in terms of a linear algebraic system
given in Appendix B. Analytically, inverting the 6 by 6 matrix leads to overly burdensome
expressions, so we either evaluate the linear system numerically or consider its asymptotics
for small €. The linear dispersion relation is given by the kinematic boundary condition as

w(k) = kuly () — gr(n. k). (2.14)

In regions where (2.14) is monotonic in k, we can obtain k(w) for consideration of the
wavemaker problem. In the vicinity of w; = 0, we use the radiation condition to select the
appropriate branch. Selecting 1 = +/8 for convenience when comparing with the € — 0
dispersion relation (1.11), example dispersion curves for waves on a unit-mean background
are shown in figure 3. The maximum of Re(k(w)) occurs at the critical frequency @ = ¢,
defined by the group velocity cg(we,) = dw/dk(wer) = 0, above which k(w) incorporates
a non-zero imaginary part and the wave is spatially damped. The corresponding critical
wavenumber is k., = k(w,,). In the experiments reported in § 4.4, € > 0.01 and the critical
frequency is subject to a deviation from 1.

Consider the limit € — 0. In order for the leading-order behaviour of the two-Stokes
system to be well approximated by the conduit dynamics, we require a maximal balance
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Figure 3. Two-Stokes recirculating flow dispersion relation with D/n = 10, A in (2.11) and different €. Black
squares represent the critical frequency w.,. (@) Real part of the dispersion relation Re(k(w)). (b) Imaginary
part Im(k(w)).
further incorporating the outer wall’s no-slip boundary condition so that

D=e2d, d=o0(1). (2.15a,b)
In this case, the corresponding external pressure gradient (2.11) becomes
=e—+0
2 2
(a2 — 8¢) d

This results in higher-order corrections to the conduit unit-mean linear dispersion relation
as

(2.16)

2 _ J—
o 16€ (d* + 8e(In(8€) — 21In(d)) — 8¢) 16 (ezln(e)).

+ew(k)+..., (2.17)

4eln(1/€) k L+2e
e T
where w; (k) involves a complicated expression that depends on d which can be found in
Appendix B. Following the assumptions of high viscosity contrast and long wavelengths,
the conduit linear dispersion relation is obtained when € — 0 in (2.17).

We provide the 3-term asymptotic expansion (2.17) to the two-Stokes linear dispersion
relation because the 2-term expansion has limited applicability. For example, the absolute
error in the wave frequency for 0 < w < w, between (2.17) and the full dispersion
relation in figure 4 shows that the second term does not significantly improve upon the
leading-order term, even for € ~ 1076 but the 3-term expansion does. Nevertheless, the
2-term expansion predicts an upshift in the critical frequency w. = 1 4+ 3¢ In(1/€) and
the critical wavenumber k. = 1 4 € In(1/¢). While the former is consistent with the
numerical calculation of the full dispersion in our experimental regime where € < 1 (see
figure 3), the latter is not.

wk) =

3. Linear modulation theory

One of the primary techniques to analytically describe the long-time asymptotics of
dispersive wave problems is modulation theory (Whitham 1974). In this section, we use
modulation theory to describe slow modulations of the linear periodic wave’s wavenumber
for the wavemaker problem. We are able to predict the propagation of waves for a specific
range of frequencies.
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Figure 4. Maximum absolute error in the comparison of exact and asymptotic (2.17) solutions to the
two-Stokes linear dispersion relation at d = 5.

The primary modulation equation is the conservation of waves (Whitham 1974)
ki +w; =0, (3.1)

where o is the angular frequency and k(w) is the local linear dispersion relation.
Translating the initial-boundary value problem for u(z, #) to an initial-boundary value
problem for k(z, t), we have

,0)=0, =0,
w(z, 0) z } 32)

w(0,1) =wg, t>0.

We seek a self-similar solution such that w = w(§), & = z/¢ in which «'(k) =& or
dw/dé = 0. The solution takes the form

wo,  0< & < cg(wp)
w(§) = 185), cglwo) <& < cg(0) (3.3)
0, &> cg0)

where w is the input frequency, ¢, (wo) represents the group velocity for the wavenumber
ko = k(wo) and g(&) is the solution to k’(g) = 1/&. Comparison between the solution
(3.3) for the conduit and two-Stokes dispersion k(w) is depicted in figure 5. In particular,
the conduit equation admits a plane wave solution with constant frequency wp and

wavenumber kg = (1 — /1 — a)(z)) /o for 0 < & < &, and a decaying oscillatory solution

with w(&) = /1 — 26 + /1 +4E/+/2 and k() = /—1 — & + /T + 4&/JE for & <
& < 2. The two regions are separated by the line & =1 — a)(zJ +,/1 - a)(z). For the
two-Stokes recirculating flow modulation solution, we have a similar profile for w(§)
but the group velocities cg(wy), cg(0) are faster than the corresponding conduit group
velocities. These calculations suggest that for an input wg smaller than the critical
frequency, we can generate a plane wave that will eventually propagate and fill the entire
vertical conduit. We now realize this in experiments described in the next section.
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Figure 5. Solution to the linear modulation equation conservation of waves with an input frequency wg = 0.8
for the conduit equation (black solid) and two-Stokes flow with € = 0.04, D/n =10 and A at (2.11) (blue
dashed).

ut 0.045 Pa s
n® 1.11 Pas

€ 0.041

o® 121 gem™3
o 1.26 g cm™3
Qo 3.00 cm? min~!
2Rg 0.36 cm
2Dg 5.00 cm
Re® 0.47

Re'© 0.020
Camera resolution 375.60 pix cm™!

Table 1. Example fluid properties measured in experiments: viscosities ¢, viscosity ratio e, densities p ),
background flow rate Qo, assocjated conduit diameter 2Ry computed by Poiseuille’s law, outer wall diameter
2Dg and Reynolds numbers Re':¢) for interior and exterior fluids.

4. Experiment
4.1. The set-up

The experimental set-up in figure 6(a) is identical to those used by Anderson et al.
(2019) and Maiden et al. (2020). A conduit is formed in a square acrylic column with
dimensions 5 cm x 5 cm x 180 cm. The exterior fluid is pure glycerin of high viscosity
and the interior fluid consists of a miscible mixture of glycerin (~70 %), water (~20 %)
and food colouring (~10 %), which is less dense and less viscous than the exterior fluid.
The nominal parameter values used in one of the experiments (dataset 3 in §§ 4.4, 4.5) are
presented in table 1. Miscibility of the two fluids implies negligible surface tension at the
interface. A free interface is sustained over the time scale of experiments because mass
diffusion occurs much more slowly than momentum diffusion.

A computer-controlled piston pump is used as a wavemaker to inject the interior fluid
into the extrusive fluid at the nozzle that rises buoyantly. Variation in the flow rate results
in interfacial waves. Periodic waves are created by a suitable periodic injection rate Q¥ (¢):

D@ =g, t=0 t+To) = q(t T=2—K. 3.4a-d
oY) =q), 20, q@t+To) =q(@), To o ( )
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Computer controlled flow \/_ cm
A
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Figure 6. (a) Schematic of the experimental apparatus. (b) Waves wo = (0.85,0.95, 1.00)/£2 with fixed
amplitude a = 0.8 but increasing frequencies from left to right. The spatial wave is observed to be periodic
in the leftmost image, but get damped in the middle and arrested in the rightmost image. Conduit edges are
outlined by the red curves. Measured experimental parameters follows from table 1.

N

Data acquisition is performed using high-resolution cameras with one (camera 1 in
figure 6a) equipped with a macro lens at the injection nozzle for precise data measurement
and one to image the far field (camera 2) and capture fully developed periodic wavetrains.
Spatial calibration is achieved with a ruler inside the column within the camera view.
Example large-amplitude periodic waves generated by time-periodic boundary data with
different injection frequencies and the same wave amplitude are shown in figure 6(b). For a
relatively small frequency, the periodic wave maintains its fully developed structure, i.e. it
propagates. However, by increasing the input frequency, spatial decay of the amplitude is
observed. The middle wave is weakly spatially damped and the rightmost wave is arrested
at a larger frequency.

4.2. Method

Camera images are processed to extract the conduit edges. A low-pass filter is applied to
reduce noise due to pixelation of the photograph and any impurities in the exterior fluid.
The conduit diameter is obtained by calculating the number of pixels between the two
edges and normalizing by the conduit mean diameter. In each experimental trial, images
are taken after the wave has fully developed in the camera view, and we identify ¢ = 0 with
the initiation of imaging. A 3 Hz sampling rate for the close camera and a 1 Hz sampling
rate for the full camera were used.
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We present all dimensional quantities in tilde notations. The circular cross-sectional area
A of the conduit is then modelled by the dimensional conduit equation

- A /- @ 7, .
A48 .(Az) _KE (R (A’IA;> —0, (4.5)
8mu® . 8mu® )

where Z, 7 follow from (2.6) and A = TL’R%A. Profile measurements of linear waves are
conducted by scaling the data to unit mean and fitting at every temporal and spatial
snapshot a sinusoidal plane wave

AZ D=1+ gcos(l?z — o+ ), (4.6)

where v represents the phase. The relative L> norm error in the fit is below 15 % in space
and 10 % in time. To extract the wavenumber for a trial, we compute the mean of k across
arange of times 7; similarly, the angular frequency is obtained by averaging @ over a range
of heights z. The standard error in parameter measurements is roughly as low as 1 % for
k and 0.5 % for &, indicating that the fit (4.6) to the data results in a reliable and accurate
measurement of linear periodic waves. However, this method is not suitable for waves
beyond the linear regime. Instead, larger-amplitude waves with macroscopic edge changes
are processed by directly splitting the waves into periods at each snapshot and computing
the averaged wavelengths and wave periods. The standard error for k, @ measurements
with this technique is typically below 5 %.

To compare the experimental results with theory, we require the vertical length, velocity
and time scales L, U, T = L/U in (2.7a—d) for non-dimensionlization. Upon generation
of linear periodic waves, we non-dimensionalize the wavenumber and angular frequency
data by using two fitting methods: one is to determine L. and U, by fitting the dimensional
data @, k to the conduit linear dispersion relation

k) = —< 4.7)

and the other is by fitting @, k with the two-Stokes linear dispersion relation using the
spatial Lg and velocity Ug scales, as well as €, A and D. Treating €, A and D as effective
fitting parameters, the two-Stokes linear dispersion relation is determined and fitted to
experiments. We note that the fitting method is sensitive to the initial guess for the
fitting parameters. These two techniques, which construct a direct relationship between
experimental data and theory, return reliable approximations of the dimensional scaling
coefficients L and U. Differences in the two methods will be discussed in § 4.4. The scales
in our experiments from either fitting approach are typically in the range

L:03-04cm, U:0.3-04cms !, (4.8a,b)

with camera resolutions of 250—400 pixel cm™'. Although L scales like Ry/+/€ for
modelling long-wavelength wave dynamics, in our experimental regime, it is comparable
to the conduit diameter 2R. Nevertheless, for wavenumbers 0 < k § 1, the wavelengths
are on the centimetre scale while the conduit diameter is on the scale of millimetres.
Prior to each experiment described below, around 10 trials of linear periodic waves were
generated for calibrating L and U according to the method described here.
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Fourier mode

Figure 7. Fourier mode of typical periodic waves in experiments. Waves A, B with dominant a; can be
approximated by a single sine wave. To describe larger-amplitude waves C, D, higher-harmonic terms are
needed. Waves E, F' with the largest amplitudes acquire non-negligible Fourier modes even at the fourth or
fifth order.

4.3. Definition of linear, weakly nonlinear and fully nonlinear regimes

To categorize the periodic travelling waves obtained in experiments, we perform a
preliminary analysis by expressing the spatial waves as a Fourier series at a fixed time
r=1

A ) =ao+ % cos(nk(z — V), (4.9)

n=1

where ap = 1 is the wave mean. Dividing the periodic travelling wave data into periods
and applying the Fourier cosine transform, we obtain the Fourier components a,,. Fourier
components of some selected periodic waves are plotted in figure 7. Waves with negligible
second-order and higher modes |a,| < 0.1, n = 2,3, ... are identified as lying in the
linear regime and can be well described by linear theory. For larger-amplitude waves
(la1] £ 0.5, |az| £ 0.1), a single harmonic is insufficient and higher-order harmonic terms
are needed. A clear distinction between weakly nonlinear and strongly nonlinear waves
occurs when the fourth-order coefficient is sufficiently large. The waves with modes |as| <
0.1 are considered to be in the weakly nonlinear regime. On the other hand, the waves
with |as| £ 0.1 are in the strongly nonlinear regime, in which case the weakly nonlinear
approximation of three harmonics fails. We now assess each wave class beginning with
linear waves.

4.4, Linear periodic travelling waves
An example linear periodic travelling wave launched in a viscous fluid conduit by the
sinusoidal boundary condition Q(7) = Qo(1 + (a/2) cos(&f + 1/2))? for7 > 01is depicted
in figure 8(a). The wave travelling in the positive z direction is periodic in both time and
space. Extracting the spatial wave at a fixed time, we fit the periodic wave with a cosine
function in figure 8(b). A movie of the linear periodic wave propagation can be found in
the supplementary material. This result confirms the prediction from modulation theory
that a fully developed periodic wave is generated for input frequency less than the critical
value (see (1.11) and (3.3)). Three independent experiments with different fluid properties
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Figure 8. (a) Example experimental data of a linear periodic travelling wave in the viscous fluid conduit.

Measured wave parameters are a = (.12, k=1.34+0.04rad cm! and @ = 0.86 + 0.01 rad s~ . (b) Linear
wave data in the spatial domain at 7 = 39 s fitted with a sinusoidal waveform. The non-dimensionalization

scales are L = 0.35 4+ 0.01 cm and U = 0.39 = 0.01 cm s~ !.

resulting in three datasets of measured wavenumbers k and wave frequencies @ were
collected. In figure 9, we compare the dimensionless experimental observations of k(w)
with the conduit linear dispersion relation (1.11). Across all three datasets, good agreement
between the experimental data and the theoretical prediction is achieved for sufficiently
long wavelengths g: = 27w /k)L, % 2.3 cm (k < 0.8). The linear dispersion relation of
the conduit equation is quantitatively verified in this regime. However, the experimental
critical frequency w., and critical wavenumber k., corresponding to the values between the
last datapoint of each dataset in figure 9 and the first point where the wave is damped are
subject to a significant shift from 1, the prediction from the conduit equation. The relative
discrepancies in w., and k¢ are (Awer, Aker) = (5 %, 27 %), (7T %, 33 %), (6 %, 29 %),
respectively. It is notable that the observed critical frequency and wavenumber vary across
the three datasets where the fluid properties differ. The interior flow rate is calculated
using Poiseuille’s law and (2.7a—d) for a motionless external fluid so that 0% = nUR?,
where U = U, is the fitted velocity scale and Ry is the conduit radius measured from
experiments. Datasets 1-3 have measured radii Ry = 0.19, 0.17, 0.18 cm. As expected for
the asymptotic validity of the conduit equation, the vertical wavelength is much larger
than the horizontal diameter, i.e. g“ > 2Ry. We obtain Q¥ =2.7,1.7,2.5 ml min~' for
each dataset compared with the nominal input flow rates Qp = 3.0 £0.1,2.0 £ 0.1, 3.0 +
0.1 ml min~', respectively.

To further interpret the linear periodic waves obtained in experiments and investigate
the shorter-wave regime in the neighbourhood of the critical frequency, we compare the
experimental results with the linear dispersion relation for two-Stokes interfacial waves
(2.14) subject to the assumption 0 =0 in (2.9b) so that A follows from (2.11). We
fit the experimental data k(®) in the subcritical regime with the two-Stokes dispersion
relation using effective fitting parameters €, D, as well as the scales Lg and Ug to give
an exactly matched critical frequency w.,. Each dataset was collected independently and
therefore possesses distinct fluid parameters, although they are all similar. Figure 10 shows
the fits and table 2 reports the corresponding w., and k... It is demonstrated that this
fitting procedure results in an upshift in the critical frequency and a downshift in the
critical wavenumber. Two-Stokes linear dispersion curves well describe the dispersion
relation k(w) and provide improved predictions for the critical values. Errors in the critical
wavenumber k., are caused by the step size of the input w in experiments, the sensitivity
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Figure 9. Fit of the experimental measurements k(w) (dots) to the conduit linear dispersion relation
(black curve). Error bars take account of the errors in measurements using (4.6) and errors in
non-dimensionalization.
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Figure 10. Experimental results of linear periodic waves k(w) (dots) fitted with the two-Stokes dispersion
relation assuming (2.11) (black curve). Insets report predicted recirculating vertical flow velocities.

of k. on fluid parameters and limitations in the fitting method. As w approaches w;,
k'(w) — o0 so that a small change in w will lead to a substantial difference in k, leading to
difficulties in approximating k... The predicted interior flow rates from the fits using (2.9a)
for dataset 1 to 3 are Q¥ = 3.1, 1.9,2.7 ml min™", reasonably consistent with the input
Qo = 3.0,2.0,3.0 ml min—!, and the predicted interior radii obtained from (2.7a—d) are
Ry = 0.20, 0.17, 0.18 cm, respectively. The two-Stokes dispersion relation follows from
the physical scenario that we observed in experiments where the interior fluid flows up
and pools at the top over time while the exterior flow recirculates with a zero net flow rate.
We have shown that the two-Stokes recirculating flow that includes an external fluid
pressure gradient and exterior flow mass conservation is a slightly more accurate model of
propagating linear waves generated by a wavemaker than the long-wave conduit equation
for describing relatively short waves between two viscous fluids in the linear regime. It is
notable, however, that the conduit equation accurately reproduces the subcritical data.

4.5. Linear wave damping and arresting

Linear periodic waves in the short-wave, supercritical regime when the injection frequency
o exceeds the critical frequency w.- exhibit spatial amplitude damping and do not
propagate unhindered. Figures 11(a) and 11(b) demonstrate an example of a damped wave
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Measured Two Stokes Relative error
Dataset Wer ker Wer ker Ak
01 1.04 +0.01 0.75 £ 0.01 1.04 0.88 15 %
02 1.08 +0.07 0.71 £0.05 1.08 0.90 21 %
03 1.07 £0.05 0.73 +0.03 1.07 0.90 19 %

Table 2. Comparison of w,, and k., between experimental measurements and the two-Stokes linear dispersion
relation assuming (2.11) (fittings are reported in figure 10). The fitting method requires an exactly correct w,.
Ak, reports the relative difference of k..
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Figure 11. (a) Surface and (b) contour plots of an experimental small-amplitude, damped, non-propagating
wave when the injection frequency at the boundary exceeds the critical value. Dimensional wave parameters
are @ = 1.12+0.03 rad s~! and k = 2.32 £ 0.04 rad cm~! with scales L = 0.35 & 0.01 cm, U =040+
0.0 cm s—!. (c) Amplitude decay (dotted blue) fitted with a exp(—bz), a = 0.26 +0.01, b = 0.027 £ 0.001
(solid red).

observed in a viscous fluid conduit (see the supplementary material for movies). The wave
generated by a time-harmonic injection rate at the nozzle quickly decays spatially while
maintaining periodicity in time at each fixed spatial location. By measuring the spatial
dependence of the amplitude of the wave in figure 11(c), we find that it is well fitted by an
exponential function in space. This agrees with our hypothesis derived from the radiation
condition (1.11) so that for complex dispersion k = kre + ikim, the plane wave solution
takes the form

A(z, t) = aexp(—kimz) cos(krez + wt + V), (4.10)

where kry, is the spatial damping rate and k = k(w) is obtained from the linear dispersion
relation in the supercritical regime.
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Figure 12. Comparison between experimental measurements (red dots) of the exponential spatial decay rate
(a,c), spatial frequency (b,d) and theory (black line) for waves in the supercritical regime w > w,,. (a,c) The
conduit linear dispersion relation. (b,d) The two-Stokes dispersion relation.

The exact linear dispersion relation of the conduit equation and the two-Stokes flow
system obtained in § 2 are used to compare with the experimental wave profiles. Here, we
report the data points in figure 12 as collected using the same experimental set-up as those
in figures 9(c) and 10(c); therefore, identical parameters and non-dimensionalization scales
are used. No new fitting is applied. For a total of 18 experimental trials, k1, is obtained
as the spatial amplitude damping rate by fitting an exponential to the wave amplitude,
w is the averaged frequency over a spatial window size of z € [0,2] — [0,0.7 cm]
(250 data points) measured through the cosine fitting method described in §4.2, and
kre 1s the slope of the temporal wave phase over the same spatial window. Figure 12
reports the comparison of the linear dispersion relation in the supercritical regime from
experiments and theory. It is shown that the experimental results closely match the
two-Stokes theoretical predictions and the first data point of the damping wave is also
well approximated by the two-Stokes predicted w,, k¢r. The conduit dispersion relation
also performs well at describing kyy, but significantly overshoots kge.

Damped waves are found to exhibit a spatially dependent frequency and wavenumber, as
shown in figure 13. Through temporal data fitting with the function ¢ (f) = a cos(—wt +
), we obtain the amplitude a, frequency w and phase 1/, whose slope is the real part of the
local wavenumber kge. The amplitude fits well to an exponential oc e~¥m? that is consistent
with linear theory. Additionally, the local temporal w and spatial kre frequencies are also
observed to spatially decrease, which we suspect to be a nonlinear effect.

Nevertheless, the conduit equation again provides a reasonable description of part of the
supercritical data. We now focus solely on the conduit equation to model nonlinear waves.
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Figure 13. Investigation of a spatially damped wave profile. (a¢) The amplitude decay is fitted with an
exponential function. The decay rate b is equivalent to ki, in (4.10). (b) The frequency is also found to slightly
decrease (~3 %) in space. (c¢) The real part of the wavenumber is subject to a decay of ~20 % in space.

4.6. Periodic travelling waves in the weakly nonlinear regime

Larger-amplitude, periodic travelling waves in the weakly nonlinear regime are
distinguished from their linear counterpart by no longer maintaining symmetry about the
wave mean and cannot be described by a single trigonometric harmonic. The waves are
more accurately modelled by the weakly nonlinear approximation (1.14a), (1.14b) of the
conduit equation obtained via the amplitude expansions ¢ ~ 1 4 a¢; + a*¢y + a>¢3 and
k ~ ko 4 a’ky, where 0 < a < 1 is an amplitude scale. An experimental weakly nonlinear
wave is shown in figure 14. Length and velocity scales for non-dimensionalization

are (Lc, U.) = (0.33 £0.01 cm, 0.38 +0.01 cm s~!). The dimensional spatial wave in
figure 14(a) is fitted with the three harmonic expansion (1.13) at 7 = 7
5 a; . 1+K , - 1+i -
= 1 - k < 2 k — < 3 k N
169) + > cos(kz + Y1) + 1302 a; cos(2(kz + Y1) + 1536k4az cos(3(kz + ¥1))
4.11)

where a, = 1.10 & 0.01, k = 0.50 + 0.01 (k = 1.52 £ 0.01 rad cm™!) and | = 2.05 £
0.01. The approximate frequency is derived from figure 14(c), where the dimensional
temporal wave is approximated by (1.14a) at z = Zg

2
~ A o~ al‘ o~
o) =1+ — cos(of + Yp) + cos(2(at + Yr))
2 ? 24(1—\/1—5)2> ’

(—1 — \/1——5)2) a
768 (—2 +a? 4 2@)

with a; = 1.06 £ 0.02, @ = 0.78 £0.01 (@ = 0.90 +0.01 rad s~!) and ¥, = —2.97 &
0.03. The fits exhibit a maximum absolute error of 0.11 and have larger discrepancies at
the wave peaks. Adding higher-order harmonic terms yield an even better approximation.

A total of 11 trials were measured in the weakly nonlinear regime with the same
input amplitude and various input frequencies. Wave profiles are measured as follows.
Fitting the spatial and temporal waves with the weakly nonlinear expansions (4.11),
(4.12), we obtain dimensionless k = kL, w = w(L/U) as well as a = (a; + a;)/2 for
those 11 trials as the red circles in figure 15. Experimental results are then compared
with the weakly nonlinear dispersion relation (1.14b) and the linear dispersion relation
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Figure 14. Measured periodic waves (blue dots) and the weakly nonlinear approximation (red solid lines).
Error bars are represented by grey dashed lines and the horizontal black dashed line is the wave mean. (a) The
spatial wave at a fixed 7 fitted with expansion (4.11). (b) Percentage relative error in space. (c) Wave in the time
domain at a fixed Z fitted with expansion (4.12). (d) Percentage relative error in time.

(1.10) in figure 15. Although weak nonlinearity does not lead to a significant deviation
from the linear dispersion relation, we have shown that the corresponding wave profiles
require amplitude-dependent higher harmonics to quantitatively model the experimental
observations. We have quantitatively validated the weakly nonlinear approximation
for measured conduit periodic travelling waves of sufficiently large amplitude and
demonstrated the necessity of including higher-order harmonic terms in this regime.

4.7. Cnoidal-like nonlinear periodic waves

We now investigate periodic travelling waves with large amplitudes in the fully nonlinear
regime (see the supplementary material for movies). We refer to these waves as cnoidal
like, owing to their similarities to the KdV/BBM cnoidal wave solutions (1.5). First,
we generate linear periodic waves for calibrating the scales L. = 0.26 & 0.01 cm and
U. =0.25=+0.01 cm s~!. We then utilize a numerical database of pre-computed conduit
cnoidal-like solutions (Maiden & Hoefer 2016) to experimentally generate and analyse the
observed large-amplitude periodic waves. Waves are generated by varying the injection
flow rate according to

() = Qo> (—a0), (4.13)

where ¢ is a cnoidal-like solution with unit mean satisfying (1.9). Measured waves are
processed by dividing each space and time window into spatial and temporal periods.
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Figure 15. Non-dimensional experimental wave profiles k(w) (circles) compared with the weakly nonlinear
dispersion relation (1.14b) at a = 1.04 (black solid line) and the linear dispersion relation (blue dashed line).

The average of all processed periods and wave profiles are then reported. Figure 16 displays
two example wave profiles, separately in space and time. By direct comparison, it is clear
that the observed large-amplitude waves cannot be described by linear or weakly nonlinear
approximations. Instead, we compare the observed waves with cnoidal-like solutions to the
conduit equation. The amplitude is obtained as a, = max(¢(z)) — min(¢ (z)) for waves in
the spatial domain, and a; = max(¢ (#)) — min(¢ (¢)) for waves in the temporal domain.
Here, w and k are measured by the relation w = 21t /Ty, k = 27 /¢{ with non-dimensional

averaged time period T and averaged wavelength ¢. The set of unit-mean cnoidal-like
solutions is a two-parameter family. Taking (a., k) as the parameters for spatial waves
and (a;, w) as the parameters for temporal waves, the corresponding cnoidal-like solutions
are compared with the experiments in figure 16. The cnoidal-like wave profiles are barely
distinguishable from the observed wave profiles. We stress that we have not performed
any fitting in this procedure other than the independent determination of the scales L. and
U, from linear wave dispersion measurements. The cnoidal-like solution of the conduit
equation is uniquely selected from the two-parameter family using the extracted (a., k) in
the spatial case or (g, w) in the temporal case. No profile fitting was performed. However,
discrepancies in spatial and temporal profile measurements lead to (a;, k) and (a;, ®)
belonging to two slightly different cnoidal-like solutions for the same trial. We report the
average of the two amplitudes a4y = (a; + a,)/2 in table 3. To see how close the solutions
are, measurements of wave parameters for 15 trials are reported in table 3 and figure 17.

The nonlinear dispersion relation k(w, aqyg) is compared between experiments and
cnoidal-like solutions in figure 17. Agreement is quantitatively achieved for all but three
trials within 5 % relative error, with at most 10 % error otherwise. These measurements
are across a range of wave amplitudes a,q; € (0.89, 2.2) and frequencies w € (0.44, 0.62).
The trials in figure 17 are numbered from highest amplitude to lowest, as shown in table 3.
Notably, the experimentally measured wavenumbers exceed the predicted values across
all 15 trials. Although a different class of waves, we remark that previous measurements
of large-amplitude soliton solutions in Olson & Christensen (1986) found that the
soliton speed was consistently underpredicted by conduit equation soliton solutions. We
hypothesize that inclusion of the weakly recirculating flow in the model could improve
upon the already good predictions.
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Figure 16. Averaged experimental wave profiles over one wavelength or period (blue dots) compared with
linear (green dashed), weakly nonlinear (red dash-dotted) approximations and cnoidal-like solutions (black
solid) in both spatial (a,c) and temporal (b,d) domains. (a,b) The extracted wave parameters are (agyg, @, k) =
(2.20,0.44,0.24) (trial 1 in figure 17). (c.d) The extracted parameters are (daqug, @, k) = (1.71,0.50, 0.28)
(trial 3 in figure 17).
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Figure 17. (a) Comparison of the conduit equation nonlinear dispersion relation for cnoidal-like solutions.
Data points are from the trials reported in table 3. Utilizing measured (aqyg, @) as the parameters, experimental
wavenumbers (blue circles) are compared with the numerically computed nonlinear dispersion relation
k(aavg, ) (black squares). (b) Percentage relative error in k for each trial.
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Trial Aavg w(rad) k(rad) k(aag, @) Relative error in k
01 2.20+0.03 0.44 £0.02 0.24 £ 0.01 0.22 9 %
02 2.13+£0.01 0.45 +0.02 0.24 +0.01 0.23 8 %
03 1.71 £ 0.01 0.50 £ 0.01 0.28 £ 0.01 0.26 6 %
04 1.42 +0.01 0.54 +0.01 0.30+0.01 0.29 4%
05 1.30 +0.01 0.62 £ 0.02 0.37 £ 0.01 0.36 2 %
06 1.27 +0.01 0.61 +0.03 0.36 +0.01 0.35 4%
07 1.26 +0.01 0.61 £0.02 0.36 £ 0.01 0.34 5 %
08 1.25 +0.01 0.60 £ 0.01 0.35 £+ 0.01 0.34 3%
09 1.24 £ 0.01 0.60 £ 0.03 0.34 £ 0.01 0.34 3%
10 1.23 £ 0.01 0.59 +0.01 0.33+0.01 0.33 2 %
11 1.22 £ 0.01 0.57 £0.01 0.32 £ 0.01 0.31 2 %
12 1.18 £ 0.01 0.54 +0.02 0.30+£0.01 0.29 5%
13 1.15+£0.01 0.52 £0.02 0.28 £ 0.01 0.27 4%
14 1.09 £ 0.01 0.59 +0.01 0.33 £0.01 0.32 2 %
15 0.89 £ 0.01 0.60 £ 0.01 0.35+£0.01 0.34 2 %

Table 3. Nonlinear periodic wave measurements. Columns 2—4: measured wave parameters. Column 5:
numerically computed solution k at measured (dqyg, ®). Column 6: relative error between experimental k and
cnoidal-like wave solutions. Trials 1 and 3 are depicted in figure 16. All trials are shown in figure 17.

5. Discussion and conclusion

The main result of this study is the reliable generation of periodic travelling waves in a
viscous fluid conduit across a wide range of amplitudes and long to short wavelengths that
are well modelled by the conduit equation. This provides further evidence of the viscous
fluid conduit as an accessible and flexible laboratory system for the study of nonlinear wave
dynamics with an accurate partial differential equation model in the conduit equation. In
order to quantitatively model shorter small-amplitude waves, we found it helpful to derive
the full two-Stokes linear dispersion relation that accounts for the actual conditions in our
experiment. Radial variation in the vertical velocity allows for a non-negligible exterior
pressure gradient and recirculating flow. Together with an outer wall, these two main
factors give rise to an upshifted critical frequency for the transition from propagating to
non-propagating, spatially damped waves. This upshift from the conduit equation’s critical
frequency in the short-wave regime is observed and verified quantitatively. The two-Stokes
recirculating flow system with exterior flow mass conservation is therefore considered to
be a more precise model in which we successfully extend the linear dispersive properties
of the model to a shorter-wave regime. The two-Stokes linear dispersion relation is exactly
obtained in terms of Bessel functions. Nevertheless, the conduit equation remains an
excellent model of propagating linear waves.

Another key result of this experimental investigation is the existence and stability of
periodic travelling waves in the fluid conduit wavemaker problem. Low-frequency periodic
waves generated at the boundary with a time-periodic injection rate are observed to
coherently propagate as travelling waves. Arrested wave propagation for waves generated
above the critical injection frequency was observed and found to quantitatively match
the two-Stokes dispersion relation for real frequencies and complex wavenumbers. These
observations are explained in terms of the radiation condition and linear wave modulation
theory.

In addition to presenting a careful analysis of linear periodic waves, our work
also contributes to an understanding of conduit periodic travelling waves in the
weakly nonlinear and strongly nonlinear regimes. Nonlinear periodic waves are found
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to require more Fourier harmonics with strongly nonlinear waves well described by
cnoidal-like solutions of the conduit equation. Quantitative agreement is achieved between
experimental results and conduit cnoidal-like solutions for both the nonlinear dispersion
relation and the wave profiles. The characterization of strongly nonlinear periodic
travelling waves and their reliable generation in a viscous fluid conduit hold promise
for future studies of more general boundary value problems in dispersive hydrodynamics
(El & Hoefer 2016), including the generalized Riemann problem and the generation of
breathers and breather trains.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.993.
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Appendix A. Two-Stokes flow and non-dimensionalization

The governing equations (2.1a) for continuity and momentum conservation will now
be non-dimensionalized according to (2.6). Equations for the interior fluid take the
non-dimensional form

@)
10 ; 1 zau
;5(””9)) +el/ 8_; =0, (Ala)
o Q)
-3/2 g’ +v2 ﬁ’) 6—1”% =0, (A1b)
r r
I
—€” s +V ué” =0, (Alc)
z

where V2 = ¢! (1/r)(0/0r)(r(d/0r)) + 82/3z2. For the exterior fluid, the equations are

S ) + an (A2a)
_6—1/231;_;6) + V2l — e_li =0, (A2D)
—8";—(;) + V29 = 0. (A20¢)
The kinematic boundary condition is
ul =€l/? (%—I: - u;”%—f) , r=R(@0. (A3a,b)
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Equations for continuity of the velocity components are

. oR .
W ) = P — ), r=RGo. (Ada)
. oR .
W —u?) = € Pom ) =), r =R 1. (A4b)

The non-dimensional stress balance conditions in the normal and tangential directions are,
respectively,

oR AR\ 2
[—nncnzmx(arr—zel/za—zarz+e(a—z) a)} =0, r=R@1, (ASa)
J

2
[K {— (1 —e (%) >arz+e”@<ozz—arr>ﬂ =0, r=R@1n, (ASh)
0z az i

U k@ =1 are the fluid-specific coefficients, n. = [_61/213R/3Z] is the

where k(© = e~
normal vector for the conduit and P is the scaled, absolute pressure with pl.e) — p(i’e) —

097/ (p© — p®). The normalized deviatoric stress tensor is

(i,e) (i,e) (ie)
ou ou du
S0 (i) 22—~ < el/2——
o = { o )} =< o " (i.e) " (i )BZ - (A0)
e e 1e e e
fo g fops du; Ll auy 21/ du;
ar 0z 0z

The above non-dimensional governing equations associated with the interfacial boundary

conditions, as well as the boundary conditions along the symmetry axis u? = aug) /or =
ap®/dr =0 at r =0 and the outer wall uﬁe) = uge) =0 at r = D provide a complete

description of the dynamics of the two-Stokes interfacial flow.

Appendix B. Two-Stokes exact linear dispersion relation

In this section, we derive the solutions for the eigenfunctions in the two-Stokes flow
linearization (2.12a)-(2.12d) and compute the exact linear dispersion relation. The
differential equations for two-Stokes flow disturbances are

dgr(r) & (r)

+ + kg.(r) =0, (Bla)
dr
/
gl + Lf’ — K2, — % +il () = 0, (B1b)
g/
g+ 72 — k*eg, — ikh(r) = 0, (Blc)
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for the interior fluid on the interval 0 < r < n and

dG,(r) G, (r)

P + keG (r) = 0, (B2a)
G G
G+ - keG, — r—; +iH'(r) = 0, (B2b)
G’ + G _ kK*eG. —ikH(r) = 0 (B2¢)
z r < -

for the exterior fluid on the interval n < r < D. Along with the interfacial boundary
conditions expanded about r = R(z, t) = n + aexp(i(kz — wt))

kuly () — gr(n) — w0 = 0, (B3a)
ekl () — kully () + g+(n) — Gr(n) = 0, (B3b)
s )
€ ar’ (n) — 81” (m) — g:(n) + €G;(n) =0, (B3c)
9 (e) 9 (i)
. 470 . U0 B -~ _
~2iek—=2 (1) + 2iek— =2 () — 2ieg, (1) + 2iG,(n) + h(n) = eH() =0, (B3d)
82u(e()) azu(l%)
- arZZy (n) + 8r; (n) — €kgr(n) + kG,(n) + g.(n) — G.(n) =0, (B3e)

and g,(0) =0, gQ(O) =0, G-(D) = 0, G;(D) = 0, the equations can be solved in terms of
modified Bessel functions. The internal flow admits the general solution

gr(r) = a1K; (el/zkr> + axlj (el/zkr) + azrKy (el/zkr) ~+ aqrly (61/2kr) , (B4a)

2
g.(r) = a161/2K0 (el/zkr) — a261/210 <el/2kr> — %Ko <el/2kr> + a361/2rl(1 (el/2kr)

2
- %10 ("72kr) — age! oy (2r) (B4b)
ih(r) = —2e (a31<0 (el/zkr) + asl (el/zkr» . (B4c)
The solution set is linearly independent since the Wronskian W = —4k?e /r? is non-zero.

Symmetry along » = 0 requires a; = a3 = 0. Similarly, we obtain the general solution for
the extrusive velocities and pressure as

G,(r) = b1Kj (el/zkr) + b1 (el/zkr> + b3rKy (el/zkr> + byrly (el/zkr) ,  (B5a)
1 12 12 12 12 2b3 12
G.(r) = - | b1e!?K, (e kr) — byl (a kr) - 22K (a kr)
€
2b
T byel 2K, (el/zkr) — 7410 (el/zkr) — by 1, (el/zkr)] , (B5b)

H(r) = —2 (b3K0 (el/zkr> + bal <61/2kr)) . (B5¢)
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Applying the interfacial boundary conditions and no-slip, no-penetration outer conditions,
a linear system is derived for the coefficients a 4, b1—_4

a 0
a4 —2(1—e)(1—2)
b | 0
A b | = 1 , (B6)
b3 0
by 0
where
I Ion —Ki I —Kon —Ion
Ay Ax A3 Aq Azs A6
Azl A A33 Azq A3s Az6
A=|An Ap Aq3 Agq Ags, Ag6 (B7)
0 0 Ki(e/?Dk) I,(e'?Dk) DKy(e'/>?Dk) DIy(e'/?Dk)
0 0 Ko(e'?Dk)y —Iy(e'/*Dk) Acs Ass
with Io = Io(e'/?nk), I} = I1(¢'/*nk), Ko = Ko(¢'/*nk), Ky = K, (€'/*nk) and
I
Aoy =€l Ay = 2£ +enm, Ay = €2k,
K I
Ay =—€'Ply,  Ays = —270 +e' Ky, A= —2£ — €1,
2 2
Azl = — <—611 + 63/210k77> . An =2k, A== <K1 + 61/2K0k77) ,
n n
2
Ay = — (11 - 61/210k77> , Ays =2e'PKikn,  Aze = —2€'21ikn,
n
Ay = —2ehik, Ap = —261/211 —2elpkn, A4z = 2Kk,
2 214
Agg = 2I1k, Ags = ——pkKi+ 2Kokn, A4 = —a T 21pkn,
€ €
Acs = —— (-21{0(61/20@ + 2Dk, (e]/sz)> :
el/2k
Ags = (—Zlo(el/sz) - el/szll(el/sz)) .
el/2k
(B)

Varying €, D leads to changes in the dispersion curves from the conduit dispersion relation
as well as changes in the critical frequency w,, critical wavenumber k., and inflection
point k;,r (see figure 18).
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Figure 18. Investigation of (@) the critical frequency w,,, (b) the critical wavenumber k., and (c) the
inflection point k;;¢ at selected parameters €, D for recirculating flow (2.11).

Following the asymptotic behaviour D = e 124 and 1= e(l6/d2) + O(e%1n(e)),
where d = O(1), we expand the modified Bessel functions in the linear system (B6) for
€ — 0. We seek solutions to the system (B6) with the asymptotic expansions

e3/2 (azo + elIn(e)ar; + €ar + €2 In(e)ars + €2a24 + .. )

a e (aso + €In(e)as + eas + € In(e)ass + €?ass + . ..)

. Z? _ €2 (bio + €In(€)b1y + €bin + € In(e)b13 + €*biy + .....) (89)
Zi €'/ (bao + € In(€)bat + €bxy + €2 In(€)boz + 2bog +...) |
by € (b30 + €In(e)b3; + €bxr + €% In(e)b33 + €2bss + ...

€ (bao + € In(€)bar + €bar + €> In(€)by3 + €*bas + ...

Collecting (B6) with (B9) at each order and applying the kinematic boundary condition
(B3a), we achieve the asymptotic expression (2.17) for the linear dispersion relation with

d V2k(1 + 2k%)
w (k) = 4k (—1 +1In (ﬁ)) e b 2/2b40

* :st(lzfr k2)2 [dZ (6F <k4 - 2% - 1)
FI*(In(8) — 19) — 6k2(4 + In(2)) — 6 — 1n(8))
+6d° (k4 22— 1) In(k) — 48 <k2 + 1)] : (B10)
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where I is the Euler—Mascheroni constant (0.5772 . ..) and the coefficients are

4:/2k>
bip = ——75,
1+k
To(dk) (K (dk) (d*kb3o + 2b10) + dkbioKo(dk)) + dkIy (dk) (b1oK, (dk)
b — + db3oKo(dk))
0= dklo(dk)? — 211 (dk)Io(dk) — dkIy (dk)> ’
e V2k(1 + 3k%)
0= 1+k2
klo(dk)(b10K1(dk) + db3oKo(dk)) + 11 (dk)(Ko(dk) (kbio — 2b30)
b = — + dkboK, (dk))
0= dklo(di)2 — 21, (dk)Io (dk) — dkIy (dk)?

(B11)

REFERENCES

ANDERSON, D.V., MAIDEN, M.D. & HOEFER, M.A. 2019 Controlling dispersive hydrodynamic
wavebreaking in a viscous fluid conduit. Phys. Rev. Fluids 4 (7), 074804.

BATCHELOR, G.K. & GILL, A.E. 1962 Analysis of the stability of axisymmetric jets. J. Fluid Mech. 14 (4),
529-551.

BENJAMIN, T.B., BONA, J.L. & MAHONY, J.J. 1972 Model equations for long waves in nonlinear dispersive
systems. Phil. Trans. R. Soc. Lond. A 272 (1220), 47-78.

BUHLER, O. 2014 Waves and Mean Flows. Cambridge University Press.

CAMASSA, R. & OGROSKY, H.R. 2015 On viscous film flows coating the interior of a tube: thin-film and
long-wave models. J. Fluid Mech. 772, 569—-599.

CHABCHOUB, A., HOFFMANN, N.P. & AKHMEDIEV, N. 2011 Rogue wave observation in a water wave tank.
Phys. Rev. Lett. 106 (20), 204502.

CHWANG, A.T. 1983a Nonlinear hydrodynamic pressure on an accelerating plate. Phys. Fluids 26 (2),
383-387.

CHWANG, A.T. 1983b A porous-wavemaker theory. J. Fluid Mech. 132, 395-406.

EL, G.A. & HOEFER, M.A. 2016 Dispersive shock waves and modulation theory. Physica D 333, 11-65.

GASTER, M. 1962 A note on the relation between temporally-increasing and spatially-increasing disturbances
in hydrodynamic stability. J. Fluid Mech. 14 (2), 222-224.

GORING, D. & RAICHLEN, F. 1980 The generation of long waves in the laboratory. In Coastal Engineering
1980, vol. 1, pp. 763-783. ASCE.

HARRIS, S.E. & CLARKSON, P.A. 2006 Painlevé analysis and similarity reductions for the magma equation.
Symmetry Integr. Geom. 2, 068.

HELFRICH, K.R. & WHITEHEAD, J.A. 1990 Solitary waves on conduits of buoyant fluid in a more viscous
fluid. Geophys. Astrophys. Fluid Dyn. 51 (1-4), 35-52.

Hickox, C.E. 1971 Instability due to viscosity and density stratification in axisymmetric pipe flow. Phys.
Fluids 14 (2), 251-262.

JOHNSON, M.A. & PERKINS, W.R. 2020 Modulational instability of viscous fluid conduit periodic waves.
SIAM J. Math. Anal. 52 (1), 277-305.

JOSEPH, D.D., BAI, R., CHEN, K.P. & RENARDY, Y.Y. 1997 Core-annular flows. Annu. Rev. Fluid Mech.
29 (1), 65-90.

KORTEWEG, D.J. & DE VRIES, G. 1895 XLI. On the change of form of long waves advancing in a rectangular
canal, and on a new type of long stationary waves. Lond. Edinb. Dublin Philos. Mag. J. Sci. 39 (240),
422-443.

KUMAGALI, I. & KURITA, K. 1998 Interaction of periodic wave trains in magma conduits. Phys. Earth Planet.
Inter. 107 (1-3), 131-141.

KURAMOTO, Y. 1978 Diffusion-induced chaos in reaction systems. Prog. Theor. Phys. Suppl. 64, 346-367.

LowMAN, N.K. & HOEFER, M.A. 2013 Dispersive hydrodynamics in viscous fluid conduits. Phys. Rev. E
88 (2), 023016.

LowMAN, N.K., HOEFER, M.A. & EL, G.A. 2014 Interactions of large amplitude solitary waves in viscous
fluid conduits. J. Fluid Mech. 750, 372-384.

954 A14-31


https://doi.org/10.1017/jfm.2022.993

https://doi.org/10.1017/jfm.2022.993 Published online by Cambridge University Press

Y. Mao and M.A. Hoefer

MAIDEN, M.D., ANDERSON, D.V., FRANCO, N.A., EL, G.A. & HOEFER, M.A. 2018 Solitonic dispersive
hydrodynamics: theory and observation. Phys. Rev. Lett. 120 (14), 144101.

MAIDEN, M.D., FRANCO, N.A., WEBB, E.G., EL, G.A. & HOEFER, M.A. 2020 Solitary wave fission of a
large disturbance in a viscous fluid conduit. J. Fluid Mech. 883, A10.

MAIDEN, M.D. & HOEFER, M.A. 2016 Modulations of viscous fluid conduit periodic waves. Proc. R. Soc.
Lond. A 472 (2196), 20160533.

MAIDEN, M.D., LOWMAN, N.K., ANDERSON, D.V., SCHUBERT, M.E. & HOEFER, M.A. 2016 Observation
of dispersive shock waves, solitons, and their interactions in viscous fluid conduits. Phys. Rev. Lett.
116 (17), 174501.

D’OLCE, M., MARTIN, J., RAKOTOMALALA, N., SALIN, D. & TALON, L. 2009 Convective/absolute
instability in miscible core-annular flow. Part 1:eExperiments. J. Fluid Mech. 618, 305-322.

OLSON, P. & CHRISTENSEN, U. 1986 Solitary wave propagation in a fluid conduit within a viscous matrix.
J. Geophys. Res. 91 (B6), 6367-6374.

REDOR, 1., BARTHELEMY, E., MICHALLET, H., ONORATO, M. & MORDANT, N. 2019 Experimental
evidence of a hydrodynamic soliton gas. Phys. Rev. Lett. 122 (21), 214502.

ScoTT, D.R., STEVENSON, D.J. & WHITEHEAD, J.A. 1986 Observations of solitary waves in a viscously
deformable pipe. Nature 319 (6056), 759-761.

SELVAM, B., TALON, L., LESSHAFFT, L. & MEIBURG, E. 2009 Convective/absolute instability in miscible
core-annular flow. Part 2. Numerical simulations and nonlinear global modes. J. Fluid Mech. 618, 323-348.

SIMPSON, G. & WEINSTEIN, M.I. 2008 Asymptotic stability of ascending solitary magma waves. SIAM J.
Math. Anal. 40 (4), 1337-1391.

SIVASHINSKY, G.I. 1977 Nonlinear analysis of hydrodynamic instability in laminar flames—I. Derivation of
basic equations. Acta Astronaut. 4, 1177-1206.

SOMMERFELD, A. 1912 Die greensche funktion der schwingungsgleichung. J.-Ber. Deutsch Math.-Verein 21,
309-353.

SOMMERFELD, A. 1949 Partial Differential Equations in Physics. Academic.

STUBBLEFIELD, A.G., SPIEGELMAN, M. & CREYTS, T.T. 2020 Solitary waves in power-law deformable
conduits with laminar or turbulent fluid flow. J. Fluid Mech. 886, A10.

TIKAN, A., et al. 2022 Prediction and manipulation of hydrodynamic rogue waves via nonlinear spectral
engineering. Phys. Rev. Fluids 7 (5), 054401.

TRILLO, S., DENG, G., BIONDINI, G., KLEIN, M., CLAUSS, G.F., CHABCHOUB, A. & ONORATO, M.
2016 Experimental observation and theoretical description of multisoliton fission in shallow water. Phys.
Rev. Lett. 117 (14), 144102.

WHITEHEAD, J.A. & HELFRICH, K.R. 1986 The Korteweg-deVries equation from laboratory conduit and
magma migration equations. Geophys. Res. Lett. 13 (6), 545546.

WHITEHEAD, J.A. & HELFRICH, K.R. 1990 Magma waves and diapiric dynamics. In Magma Transport and
Storage (ed. M.P. Ryan), pp. 53-76. John Wiley & Sons.

WHITHAM, G.B. 1974 Linear and Nonlinear Waves. John Wiley & Sons Inc.

Y1H, C.-S. 1963 Stability of liquid flow down an inclined plane. Phys. Fluids 6 (3), 321-334.

YIH, C.-S. 1967 Instability due to viscosity stratification. J. Fluid Mech. 27 (2), 337-352.

954 A14-32


https://doi.org/10.1017/jfm.2022.993

	1 Introduction
	1.1 The conduit equation
	1.2 The wavemaker problem and periodic travelling wave solutions

	2 Two-Stokes flow
	2.1 Primary recirculating flow
	2.2 Linear dispersion relation

	3 Linear modulation theory
	4 Experiment
	4.1 The set-up
	4.2 Method
	4.3 Definition of linear, weakly nonlinear and fully nonlinear regimes
	4.4 Linear periodic travelling waves
	4.5 Linear wave damping and arresting
	4.6 Periodic travelling waves in the weakly nonlinear regime
	4.7 Cnoidal-like nonlinear periodic waves

	5 Discussion and conclusion
	Appendix A. Two-Stokes flow and non-dimensionalization
	Appendix B. Two-Stokes exact linear dispersion relation
	References

