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Matrix metalloproteinase (MMP)-2 and MMP-9 are a family of Zn2+ and Ca2+-dependent gelatinase MMPs that regulate muscle
development and disease treatment, and they are highly conservative during biological evolution. Despite increasing knowledge of
MMP genes, their evolutionary mechanism for functional adaption remains unclear. Moreover, analysis of codon usage bias
(CUB) is reliable to understand evolutionary associations. However, the distribution of CUB of MMP-2 and MMP-9 genes in
mammals has not been revealed clearly. Multiple analytical software was used to study the genetic evolution, phylogeny, and
codon usage pattern of these two genes in seven species of mammals. Results showed that the MMP-2 and MMP-9 genes have
CUB. By comparing the content of synonymous codon bases amongst seven mammals, we found thatMMP-2 andMMP-9 were
low-expression genes in mammals with high codon conservation, and their third codon preferred the G/C base. RSCU analysis
revealed that these two genes preferred codons encoding delicious amino acids. Analysing what factors influence CUB showed
that the third base distributors of these two genes were C/A and C/T, and GC3S had a wide distribution range on the ENC plot
reference curve under no selection or mutational pressure. 1us, mutational pressure is an important factor in CUB. 1is study
revealed the usage characteristics of the MMP-2 and MMP-9 gene codons in different mammals and provided basic data for
further study towards enhancing meat flavour, treating muscle disease, and optimizing codons.

1. Introduction

Codon usage bias (CUB) is defined as unequal utilisation in
the frequency of synonymous codons in coding amino acids
(AAs), and it has been used extensively for investigating gene
phylogeny [1]. 1e synonymous codon characteristics in-
clude universality, degeneracy, and wobble, and they should
be used randomly to encode corresponding AAs with no
pressure of interference pressure. However, CUB can be
affected by nucleotides composition, translation, hydro-
phobicity, tRNA abundance, and protein structure [2–6].
Notably, natural selection and mutational pressure, which
drive the correct translation process, are the major factors
associated with CUB [7, 8]. Natural selection affects the

pattern of codon usage in organisms, and mutational
pressure may arise whilst the proportion of codon bases
changes. CUB greatly increases the variability of genetic
information and reflects the genetic drift of codons to a
certain extent [9].1erefore, CUB can reveal the evolution of
genes or organisms and environmental adaptation [10].

CUB is assessed by using the effective number of codons
(ENC), codon adaptation index (CAI), frequency of optimal
codons (FOP), codon bias index (CBI), and relative usage of
synonymous codons (RSCU). ENC is calculated by com-
paring the GC content of synonymous codon positions [11].
CAI is 0-1; the closer the value is to 1, the stronger the
nucleotide bases prefer synonymous codons [12]. FOP and
CBI are both 0-1. 1ese two indicators are close to 1, and the
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optimal codon for encoding amino acids is preferred.
However, if CBI is negative, the optimal codon usage is less
than the average number of codons used [3, 13]. RSCU is the
specific value between the actual observation and theoretical
observation, amongst which the theoretical observation
value is the observation value when the synonymous codon
usage frequency is the same, namely, there is no codon bias.
If RSCU� 1, there is no CUB. If RSCU> 1, the appearance
frequency of the codon is higher than the other synonymous
codon. By contrast, it indicates lower genes. If RSCU> 2,
then the frequency of CUB is extremely high [14].

Matrix metalloproteinases (MMPs) are a family of Zn2+
and Ca2+-dependent proteolytic enzymes that are widely
expressed in animal tissues and highly conservative during
biological evolution [15]. MMP-2 and MMP-9 can regulate

muscle growth, repair, and some relative processes that
affect biochemical reactions for muscle regulation [16].
Although recent research mainly focused on exploring
MMP-2 and MMP-9 function for animal skeletal muscle
development, healing diseased muscle and even meat
[17–23], studies on MMP codons is rare. 1erefore, there is
an urgent need for exploring mammals’MMP-2 andMMP-9
genetic evolution and codon usage pattern regulating muscle
growth.

In this study, sevenmammals (Bos grunniens, Bos taurus,
and Sus scrofa among Artiodactyla; Macaca mulatta in
Primates; Canis lupus familiaris in Carnivora; Oryctolagus
cuniculus in Lagomorpha; and Mus musculus in Rodentia)
were chosen to analyse CUB and base pair composition
dynamics. 1is study would give insight into the factors
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Figure 1: NJ trees of MMP-2 (a) and MMP-9 (b) genes of seven mammal species.
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affecting CUB for MMP-2 and MMP-9 genes and provide
basic data for enhancing the meat flavour and finding a
promising gene treatment for muscle disease.

2. Materials and Methods

2.1. Software. MEGA 7.0, CodonW 1.4.2, pheatmap, and
ggplot packages based on R 4.4.3 software were used to
complete the relevant analysis.

2.2. Base Composition of MMP Genes’ CDS in Different
Mammals. 1e coding sequence (CDS) of yak MMP-2 and
MMP-9 genes were obtained in our laboratory, and the
NCBI accession numbers were MZ476247 and MZ476248,
respectively. 1e CDS of other animals’ genes were from

NCBI GenBank, and their accession numbers are shown in
Figure 1.

CodonW 1.4.2 software developed by J. Peden was used
to analyse the MMP-2 and MMP-9 CDS in seven mammals
for calculating A/T (A/T base content, the same below), G/C,
T3S (third base of the codon is T content, the same below),
C3S, A3S, G3S, GC3S, AT3S, ENC, CAI, CBI, FOP, and RSCU
[24]. R packages pheatmap and ggplot2 were used to analyse
the data.

2.3. PR2 Plot. PR2 plot could analyse the bias amongst
ATCG under gene mutation [25]. If the frequency of the
third base is A>T, then dots are scattered on the top of the
PR2 plot. If the frequency is C>G, then dots are on the left.

Table 1: Nucleotide composition in the sequence of MMP-2 gene.

Species A/T (%) G/C (%) T 3S (%) C 3S (%) A 3S (%) G 3S (%) GC3S (%) AT3S (%)
Bos grunniens 0.415 0.585 0.2093 0.372 0.2081 0.3703 0.637 0.363
Bos taurus 0.384 0.616 0.2638 0.3049 0.34 0.2724 0.488 0.512
Macaca mulatta 0.409 0.591 0.2247 0.3128 0.2741 0.3031 0.551 0.449
Mus musculus 0.433 0.567 0.2974 0.3234 0.3212 0.2566 0.482 0.518
Oryctolagus cuniculus 0.4 0.6 0.1997 0.5452 0.1304 0.3621 0.73 0.27
Sus scrofa 0.393 0.607 0.1871 0.5485 0.1404 0.3488 0.731 0.269
Canis lupus familiaris 0.417 0.583 0.284 0.3302 0.3285 0.2415 0.482 0.518

Table 2: Nucleotide composition in the sequence of MMP-9 gene.

Species A/T (%) G/C (%) T 3S (%) C 3S (%) A 3S (%) G 3S (%) GC3S (%) AT3S (%)
Bos grunniens 0.366 0.634 0.1842 0.5263 0.1981 0.2891 0.685 0.315
Bos taurus 0.378 0.622 0.173 0.5554 0.1202 0.3781 0.759 0.241
Macaca mulatta 0.379 0.621 0.1766 0.5135 0.1277 0.3978 0.747 0.253
Mus musculus 0.433 0.567 0.2776 0.3436 0.3056 0.2458 0.503 0.497
Oryctolagus cuniculus 0.345 0.655 0.2237 0.3099 0.1976 0.3431 0.606 0.394
Sus scrofa 0.385 0.615 0.1814 0.5411 0.1207 0.3852 0.752 0.248
Canis lupus familiaris 0.373 0.627 0.1554 0.5702 0.1143 0.39 0.779 0.221

Table 3: Codon analysis of MMP-2 gene.

Species ENC CAI CBI Fop GC1S (%) GC2S (%) GC12 (%)
Bos grunniens 48.04 0.193 −0.004 0.416 0.4932 0.5961 0.54465
Bos taurus 53.82 0.129 −0.006 0.386 0.7471 0.576 0.66155
Macaca mulatta 52.31 0.157 0.006 0.413 0.4982 0.6751 0.58665
Mus musculus 55.09 0.163 0.034 0.416 0.6238 0.5439 0.58385
Oryctolagus cuniculus 43.1 0.29 0.193 0.539 0.565 0.491 0.528
Sus scrofa 44.62 0.261 0.17 0.524 0.5579 0.52 0.53895
Canis lupus familiaris 55.29 0.146 0.014 0.4 0.6706 0.5569 0.61375

Table 4: Codon analysis of MMP-9 gene.

Species ENC CAI CBI Fop GC1S (%) GC2S (%) GC12 (%)
Bos grunniens 44.44 0.256 0.24 0.558 0.6713 0.5295 0.6004
Bos taurus 42.48 0.291 0.249 0.566 0.6015 0.4955 0.5485
Macaca mulatta 44.99 0.252 0.191 0.53 0.5997 0.5045 0.5521
Mus musculus 56.96 0.16 0.042 0.419 0.6105 0.5448 0.57765
Oryctolagus cuniculus 54.05 0.154 0.011 0.419 0.5065 0.8191 0.6628
Sus scrofa 43.79 0.282 0.222 0.549 0.5958 0.4863 0.54105
Canis lupus familiaris 40.95 0.287 0.243 0.563 0.6025 0.4916 0.54705
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When the codon does not show usage bias, the dots are in the
centre of the graph [26].

2.4. Codon Neutral Analysis. Codon neutral analysis was
carried out by the correlation analysis of GC12 (the average
of the GC content of the first and second bases) and GC3S to
compare the influence of natural selection pressure and
mutational pressure on CUB [27]. A significant correlation
between GC12 and GC3S indicated that mutational pressure
had a strong influence on codon preference; otherwise,
natural selection influenced CUB [28].

2.5. ENC Plot. 1e relationship between ENC and GC3S
without environmental selection pressure could be simu-
lated by the following formula (1). 1e ENC/GC3S reference
curve shows themain characteristics of codon usage patterns
[24]. If CUB is more affected by natural selection, it should
be below the standard curve. By contrast, it should be above
the standard curve if it is more affected by other factors such
as gene mutation. In general, the ENC is from 35 to 61. If
ENC> 35, CUB is weak [11].

ENC � 2 + GC3S +
29

GC3S( 􏼁
2

+ 1 − GC3S( 􏼁
2. (1)

3. Results

3.1. Phylogenetic Analysis. Neighbour joining (NJ) trees
were established based on the MMP-2 and MMP-9 CDS in
seven mammals. 1e results (Figure 1) showed that the
MMP-2 and MMP-9 genes of Bos grunniens were similar to
those of B. taurus. 1ese two genes of S. scrofa were similar
to those of B. grunniens and B. taurus. Interestingly, the
MMP-9 genes of C. lupus familiaris showed closer proximity
to those of S. scrofa but those of theMMP-2 gene was farther.

3.2. Nucleotide Composition of MMP-2 and MMP-9 Genes.
Compared with the content of codon bases of the MMP-2
and MMP-9 genes in seven mammals, the results showed
(Tables 1 and 2) that the G/C content was higher than the

Table 5: RSCU for MMP-2 gene among seven species.

AA Codon Frequency RSCU

Phe UUU 66 0.675714
UUC∗ 142 1.324286

Leu

UUA 28 0.268571
UUG 71 0.732857
CUU∗ 127 1.09
CUC 101 1.011429
CUA 53 0.468571
CUG∗∗ 239 2.428571

Ile
AUU 34 0.801429
AUC∗ 67 1.28
AUA 34 0.918571

Met AUG 110 1

Val

GUU 65 0.861429
GUC 47 0.715714
GUA 39 0.522857
GUG∗ 122 1.902857

Ser

UCU∗ 89 1.078571
UCC∗ 104 1.27
UCA 70 0.904286
UCG 23 0.317143

Pro

CCU 157 0.974286
CCC∗ 256 1.641429
CCA 124 0.75
CCG 102 0.635714

1r

ACU 74 0.795714
ACC∗ 134 1.365714
ACA∗ 108 1.142857
ACG 64 0.697143

Ala

GCU∗ 128 1.047143
GCC∗ 199 1.585714
GCA 99 0.735714
GCG 79 0.631429

Tyr UAU 30 0.678571
UAC∗ 75 1.321429

His CAU 92 0.74
CAC∗ 148 1.26

Gln CAA 144 0.864286
CAG∗ 132 1.135714

Asn AAU 40 0.787143
AAC∗ 75 1.212857

Lys AAA 58 0.822857
AAG∗ 138 1.178571

Asp GAU 94 0.835714
GAC∗ 131 1.164286

Glu GAA 116 0.944286
GAG∗ 121 1.055714

Cys UGU 73 0.69
UGC∗ 151 1.31

Trp UGG 206 1

Arg

CGU 34 0.428571
CGC∗ 104 1.327143
CGA 68 0.772857
CGG∗ 92 1.177143

Ser AGU 66 0.897143
AGC∗ 112 1.534286

Table 5: Continued.

AA Codon Frequency RSCU

Arg AGA∗ 109 1.212857
AGG∗ 93 1.08

Gly

GGU 71 0.527143
GGC∗ 207 1.371429
GGA∗ 156 1.074286
GGG∗ 149 1.03

TER
UAA 21 0.374286
UAG 21 0.425714
UGA∗∗ 132 2.201429

Note.∗RSCU> 1; ∗∗RSCU> 2; AA. amino acid; TER. termination codon; the
same below.
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A/T content. Most mammals’ MMP-2 and MMP-9 GC3S
were larger than AT3S, except for the MMP-2 gene of
B. taurus andM.musculus. 1e above findings indicated that
the MMP-2 and MMP-9 gene codons preferred GC3S.

1e codon usage results (Tables 3 and 4) showed that
ENCs of the MMP-2 and MMP-9 genes in seven mammals
were 40–56, indicating that these two genes had low ex-
pression and their codon conservation was high.

CAI showed that the preference for synonymous codons
of the MMP-9 genes in seven mammals was significantly
better than that of MMP-2, but both were lower than 0.3,
indicating that it failed to reflect the preference of synon-
ymous codons.

FOP and CBI results of the MMP-2 and MMP-9 genes
showed that the optimal codon usage of MMP-2 in
B. grunniens and B. taurus was inferior to the five other
animals, whilst the optimal codon usage of MMP-9 was
better than that of MMP-2.

3.3. RSCU Analysis. 1e RSCU results of the MMP-2 and
MMP-9 genes showed that these two genes had a preference
for 27 and 20 codons, respectively (Tables 5 and 6). Amongst
them, CUG (encoding leucine, Leu) of MMP-2, CUG
(encoding leucine, Leu), ACC (encoding threonine, 1r),
and CGC (encoding arginine, Arg) of MMP-9 had strong
high CUB (RSCU> 2).

Heat map analysis of the correlation between codon base
composition and GC3S (Figure 2) showed that most of the
codons of the MMP-2 and MMP-9 genes in different
mammals were positively correlated with GC3S and in line
with AC-, CG-, AT-, TC-, GG-, CC-, GC-, and other codons
whose third base was C.

Cluster analysis of the RSCU of theMMP-2 andMMP-9
genes showed that the MMP-2 gene preferred CUG, GUG,
UCC, GAG, AUC, AAC, UAC, GCC, AGA, UUG, and AGG
codons, which were mainly involved in encoding Leu
(leucine), Val (valine), Ser (serine), Glu (glutamic acid), Iso
(isoleucine) Asn (asparagine), Tyr (tyrosine), Gly (glycine),
and Arg (arginine), respectively (Figures 3 and 4). In ad-
dition to B. taurus and C. lupus familiaris, the five other
species had a strong preference for CUG and GUG
(RSCU> 2), amongst which the RSCU of O. cuniculus and

Table 6: RSCU for MMP-9 gene among seven species.

AA Codon Frequency RSCU

Phe UUU 72 0.584285714
UUC∗ 197 1.415714286

Leu

UUA 17 0.17
UUG 44 0.621428571
CUU 76 0.848571429
CUC∗ 107 1.362857143
CUA 33 0.357142857
CUG∗∗ 195 2.641428571

Ile
AUU 30 0.811428571
AUC∗ 61 1.881428571
AUA 11 0.308571429

Met AUG 49 1

Val

GUU 48 0.684285714
GUC 66 0.957142857
GUA 29 0.375714286
GUG∗ 147 1.978571429

Ser

UCU 75 0.994285714
UCC∗ 118 1.862857143
UCA 41 0.494285714
UCG 55 0.832857143

Pro

CCU 117 0.85
CCC∗ 209 1.644285714
CCA 108 0.735714286
CCG 102 0.774285714

1r

ACU 74 0.688571429
ACC∗∗ 208 2.145714286
ACA 54 0.484285714
ACG 82 0.684285714

Ala

GCU 84 0.792857143
GCC∗ 175 1.731428571
GCA 71 0.655714286
GCG 87 0.815714286

Tyr UAU 35 0.54
UAC 119 1.46

His CAU 39 0.441428571
CAC∗ 116 1.558571429

Gln CAA 62 0.537142857
CAG∗ 136 1.462857143∗

Asn AAU 33 0.664285714
AAC∗ 72 1.335714286

Lys AAA 41 0.598571429
AAG∗ 105 1.401428571

Asp GAU 70 0.571428571
GAC∗ 210 1.428571429

Glu GAA 72 0.592857143
GAG∗ 159 1.407142857

Cys UGU 46 0.417142857
UGC 135 1.582857143

Trp UGG∗ 128 1

Arg

CGU 45 0.532857143
CGC∗∗ 134 2.072857143
CGA 54 0.667142857
CGG 77 0.965714286

Ser AGU 31 0.418571429
AGC∗ 91 1.395714286

Table 6: Continued.

AA Codon Frequency RSCU

Arg AGA 63 0.752857143
AGG∗ 79 1.011428571

Gly

GGU 77 0.615714286
GGC∗ 219 1.738571429
GGA 86 0.654285714
GGG 124 0.991428571

TER
UAA 18 0.571428571
UAG∗ 20 1.538571429
UGA 37 0.89
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B. grunniens> 3. 1e MMP-9 gene preferred UCC, ACC,
CGC, CUG, and AUC codons, which are mainly involved in
Ser, 1r, Arg, Leu, and Iso, respectively. Except for
M.musculus andO. cuniculus, the last five species had strong
preferences similar to one another, indicating that theMMP-
9 gene was more conservative than MMP-2.

3.4. Factors InfluencedCUB. 1e PR2 plot result (Figure 5)
showed that the ATCG base distribution of the MMP-2
and MMP-9 genes amongst seven mammals was above
0.5 on the x-axis. 1e bases distribution of the MMP-2
genes was mainly on the x-axis and the upper right of the
y-axis and that of the MMP-9 genes was to the x-axis and
the upper right of the y-axis. 1e above results indicated
that the contents of A3S and C3S for the MMP-2 gene and
the content of T3S and C3S for theMMP-9 gene were high,
respectively.

Neutral analysis (Figure 6 and Table 7) showed that
GC3S of these two genes was in the range of 0.44–0.78,
whereas GC12 was from 0.52 to 0.67. 1e difference was
that GC12 and GC3S of the MMP-2 gene were strongly
negatively correlated (Pearson r � −0.851, p value < 0.05),
whilst GC12 and GC3S of the MMP-9 gene were not
significantly correlated, indicating that the base com-
position of the MMP-2 gene codons was susceptible to
mutational pressure, but the factor influencing theMMP-
9 gene was natural selection.

1e ENC plot showed (Figure 7 and Table 7) that all
ENC/GC3S dots of the MMP-2 and MMP-9 genes were
distributed below the reference line. ENC and GC3S had a
strongly negative correlation (MMP-2: Pearson r� −0.993, p

value< 0.01; MMP-9: Pearson r� −0.963, p value< 0.01),
and the distribution range of GC3S was large, indicating that
the CUB of these two genes was affected by mutational
pressure.

4. Discussion

1is study found that gelatinase MMP genes had CUB for
encoding amino acids such as Ile, Arg, Glu, and Ser related to
muscle development andmeat quality. Gly, Arg, and Leu can
promote collagen synthesis, and animal muscle is the main
way to obtain natural collagen for humans [29, 30]. Delicious
amino acids (DAAs), including Glu, Gly, Ser, Asp, Arg, and
Ile, are known as precursor substances that determine the
flavour of meat and can improve the taste of chicken and
keep the meat soft [31]. Recent research found that the
quality of chicken improves and the content of DAAs in-
creases [32]. Otherwise, Strecker amino acids (SAAs), in-
cluding Phe (phenylalanine), Cys (cysteine), Ile (isoleucine),
and Leu (leucine), are highly related to the production of
flavour. 1e higher their content, the stronger the fragrance
[33]. For theMMP-2 andMMP-9 genes, the RSCUs of AUC
encoding Ile; UCC and AGC encoding Ser; CGC encoding
Arg; GAC encoding Asp; GAG encoding Glu; UUC
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Figure 2: Heat maps of MMP-2 (a) and MMP-9. (b) Correlation coefficient of codons with GC3S.
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encoding Phe; and GGA, GGC, and GGG encoding Gly
were> 1. In particular, the RSCUs of CUG encoding Leu and
CGC encoding Arg> 2; this value indicated thatMMP-2 and
MMP-9 demonstrated CUB for DAAs and SAAs. Besides,
Leu, Ile, and Val belong to branched-chain amino acids
(BCAAs), and they are essential AAs in humans and

animals, accounting for about 35% of muscle protein.
Previous studies have found that skeletal muscle, as the
initial site of BCAAs catabolism, can be activated by
branched-chain keto acids (BCKAs) to increase BCAAs
synthesis to relieve muscle wasting disorders [34]. Also, Leu
supplementation could be the prevention and treatment of
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sarcopenia with aging [35]. 1us, BCAAs are important
regulators of metabolism and metabolic health in in vivo
[36]. 1e gelatinase MMP CUB associated with corre-
sponding AAs can provide basic data for the improvement of
meat quality and muscle disease of MMP molecular
modification.

Mutational pressure may be the main factor influencing
the CUB of MMPs. 1is study found that the clustering
results of the RSCU were different from the NJ trees of the
genes, indicating that the MMP genes were highly conserved
but maybe subjected to mutations during the evolution of
different species. 1is influence caused a decline in the
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Figure 4: Clustering of RSCU values of each codon in MMP-9 gene.
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accuracy of single-gene species classification. Nucleotide AT
(U) CG base composition is an important feature of genes,
and the GC content can reflect the overall trend of gene
mutation which is a decisive factor affecting the frequency of

nucleotide use. Changes in the third base of the codon did
not affect the encoded AAs, so GC3S could be an important
reference for analysing the codon usage pattern. 1e gene
mutation will affect the composition of the synonymous
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Figure 5: PR2 plot among seven species.
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Table 7: Pearson relative analysis with GC3S.

Pearson r (MMP-2) P values (MMP-2) Pearson r (MMP-9) P values (MMP-9)
ENC −0.993 0.000∗∗ −0.963 0.000∗∗
GC12 −0.851 0.015∗ −0.589 0.164
Note.∗P value< 0.05; ∗∗p value< 0.01; red represents strong correlation, blue represents moderate correlation, and black represents irrelevance.
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Figure 7: ENC plot among seven species.

Genetics Research 9

https://doi.org/10.1155/2022/2823356 Published online by Cambridge University Press

https://doi.org/10.1155/2022/2823356


codon third bases with no natural selection, and the stronger
the CUB, the more the codon is inclined to GC3S [37, 38].
Novembre et al. also found that the third base distribution of
the MMP-2 and MMP-9 genes is mainly AC3S and CT3S,
respectively, and the ENC/GC3S dot distribution can reach a
wide range compared with the reference curve with gene
mutation pressure. 1us, mutational pressure may play an
important role in affecting the CUB forMMP-2 andMMP-9
genes, which also explains the difference in RSCU clustering
in the seven mammals.

Interestingly, we also found that the clustering results
based on the RSCU of theMMP-2 gene were not completely
consistent with the phylogenetic results based on theMMP-2
gene’s CDS. Given that wild yak and Tibetan antelope grow
in harsh environments with low altitudes and oxygen
consumption, their EGLN1 gene has mutated changing
nucleotide bases and leading to CUB changes [39, 40].
1erefore, we believe that the phylogenetic evolution of
MMP-2 genes should not only refer to gene sequence but
also CUB, which could be a supplement to species
classification.

5. Conclusion

MMP-2 and MMP-9 are low-expression genes in mammals,
and their codons are highly conservative. Both have a CUB at
GC3S and prefer codons encoding DAAs and SAAs for
improving soft meat and muscle disease treatment.
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