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The scaling and mechanism of the propagation speed of turbulent fronts in pipe flow with
the Reynolds number has been a long-standing problem in the past decades. Here, we
derive an explicit scaling law for the upstream front speed, which approaches a power-law
scaling at high Reynolds numbers, and we explain the underlying mechanism. Our data
show that the average wall distance of low-speed streaks at the tip of the upstream
front, where transition occurs, appears to be constant in local wall units in the wide
bulk-Reynolds-number range investigated, between 5000 and 60 000. By further assuming
that the axial propagation of velocity fluctuations at the front tip, resulting from streak
instabilities, is dominated by the advection of the local mean flow, the front speed can be
derived as an explicit function of the Reynolds number. The derived formula agrees well
with the speed measured by front tracking. Our finding reveals a relationship between the
structure and speed of a front, which enables a close approximation to be obtained of the
front speed based on a single velocity field without having to track the front over time.
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1. Introduction

Front formation and propagation are important processes in nonlinear systems involving
reaction, diffusion and advection, such as combustion, neural systems, epidemics and
turbulent flows. In pipe flow, a localized turbulent region expands via the propagation
of the upstream front (UF) and downstream front (DF) into the laminar region, where the
flow is stable to infinitesimal perturbations (Meseguer & Trefethen 2003; Chen, Wei &
Zhang 2022b) – see figure 1 for an illustration. The front speeds determine the expansion
rate of the turbulent region and consequently the wall friction. Therefore, front speed is an
important characteristic of pipe-flow turbulence and, together with the front structure, has
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Figure 1. The expansion of turbulence at Re = 5000. Contours of the magnitude of transverse velocity
(averaged over the pipe cross-section) are plotted in the space (pipe axis) and time plane. The length unit
in space is the pipe diameter D and the time unit is D/Ub, with Ub being the bulk speed of the flow. The
main stream is from left to right, and time is vertically up. Red shows highly turbulent and blue shows laminar
regions. The different slopes of the two red strips (fronts) indicate different front speeds, i.e. the turbulent
region expands.

been the subject of many studies in the past six decades (Lindgren 1957, 1969; Wygnanski
& Champagne 1973; Darbyshire & Mullin 1995; Shan et al. 1999; Durst & Ünsal 2006;
van Doorne & Westerweel 2008; Nishi et al. 2008; Duguet, Willis & Kerswell 2010;
Holzner et al. 2013; Barkley et al. 2015; Barkley 2016; Song et al. 2017; Rinaldi, Canton &
Schlatter 2019; Chen, Xu & Song 2022a; Wang & Goldenfeld 2022). Yet the mechanism
that determines the front speed and the scaling of the speed with the Reynolds number
(Re) remains largely unclear to date.

Most relevant studies have focused on the narrow regime of transition from localized
puffs to expanding turbulent states, i.e. slugs, at relatively low Reynolds numbers of
O(103). Owing to difficulties of measuring front speed at high Re (Chen et al. 2022a),
especially for the DF, only Wygnanski & Champagne (1973) and Chen et al. (2022a)
considered higher Re at O(104). Reasonable agreement has been obtained among existing
measurements for the UF speed, showing a monotonically decreasing trend as Re
increases – see Chen et al. (2022a) and Avila, Barkley & Hof (2023) for the latest literature
reviews. However, Wygnanski & Champagne (1973) and Chen et al. (2022a) reported
opposite speed trends above Re � 10 000 for the DF. By direct numerical simulations
(DNS) up to Re = 105, Chen et al. (2022a) reported fits c̃UF = 0.024 + (Re/1936)−0.528

for the UF and c̃DF = 1.971 − (Re/1925)−0.825 for the DF, and argued for monotonic
trends of the two front speeds with Re at high Reynolds numbers. Although fitting the
measured speeds well, these are pure data fits with a prescribed form, but the underlying
mechanism was left unexplained. In these fits and throughout this paper, the reference
length and velocity are the pipe diameter D and bulk speed Ub, respectively. The Reynolds
number is defined as Re = UbD/ν, where ν is the kinematic viscosity. We will consider
only the UF speed in this work.

Other than direct measurements of the front speed by tracking the front along the pipe
axis, as in most studies, a few theoretical attempts have been made. For example, based
on an energy flux analysis of the front region, without considering the dynamic transition
process, Lindgren (1969) predicted an asymptotic speed of 0.69 as Re → ∞. However,
this prediction was questioned by both experimental (Wygnanski & Champagne 1973)
and numerical (Chen et al. 2022a) measurements, which showed much lower speeds than
the asymptotic prediction of Lindgren (1969). Barkley et al. (2015) and Barkley (2016)
used a theoretical model to investigate the front in the transitional regime, which captures
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the large-scale dynamics of the fronts successfully. The asymptotic analysis explains the
front speed as a combination of the advection of the bulk turbulence and propagation
with respect to the bulk turbulence (see figure 1). However, as a generic model for
one-dimensional reaction–diffusion–advection systems, the model does not account for
the three-dimensionality of the transition for pipe flow and does not give an explicit
relationship between the front speed and Re. Besides, the Re range considered was too
narrow for a scaling with Re to be established. Similar problems apply to the stochastic
prey–predator model recently proposed by Wang & Goldenfeld (2022), which nevertheless
can reproduce the basic phenomenology of the front of pipe flow in the transitional regime.
In a word, there is still a big gap between experiments and theory.

In this paper, our goal is to derive a scaling law of the front speed by accounting for the
transition at the front.

2. Results

Our starting point is the observation of our earlier work (Chen et al. 2022a) that
transition to turbulence occurs continuously at the tip of a front (see the supplementary
movie available at https://doi.org/10.1017/jfm.2023.1015), maintaining a characteristic
propagation speed and a characteristic shape of the front against the distortion of the
mean shear. For a UF, the front tip refers to its most upstream point. We propose that
an evaluation of the radial position of the transition point at the front tip is crucial
for determining the front speed. The questions are how to quantitatively determine this
position and how to relate it to the front speed.

Before presenting our results, the set-up of the flow system and some notation should
be explained. The flow is incompressible and constant-mass-flux-driven, and is solved
in cylindrical coordinates, where (r, θ, z) denote radial, azimuthal and axial coordinates,
respectively, and ur, uθ and uz denote the respective fluctuating velocity components in
the three directions. The axial length of the pipe domain is 17.5D for Re ≤ 10 000 and
5D for higher Re. Readers are referred to Chen et al. (2022a) for more details about the
simulation of a front in a short periodic pipe.

We first show the flow structure at the tip of the UF. In figure 2(a), contours of
the magnitude of transverse velocity fluctuation in the z–r plane show that turbulence
is concentrated near the wall and gradually spreads out towards the pipe centre while
going downstream (see the supplementary movie for more details). Figure 2(b) shows the
distribution of maximum |uz| and |ur| in the r–θ cross-section along the pipe axis. These
curves also reflect that the flow is non-turbulent on the upstream side of the front tip and
turbulent on the downstream side. Figure 2(c) shows that the flow features nearly straight
and streamwise-elongated low-speed (blue) and high-speed (red) streaks on the upstream
side, whereas the flow structure is less regular on the downstream side of the front tip.
These plots (especially figure 2b) suggest that the tip of the UF should sit in the rough
interval z ∈ (3, 3.5). Figure 2(d) shows the contours of uz in the r–θ plane at z = 3.18.
Alternating high-speed (red spots) and low-speed streaks (blue spots) can be seen close to
the wall, while the flow is laminar in the core region of the pipe.

Although a quantitative description of the transition mechanism at the UF tip is still
lacking, the consensus seems to be that the transition is caused by instabilities of the
low-speed streaks (Shimizu & Kida 2009; Duguet et al. 2010; Hof et al. 2010), which
may consist of more fundamental substructures according to Jiang et al. (2020a,b). The
instabilities here possibly coincide with those (either modal or non-modal) proposed for
explaining either subcritical transition or the self-sustaining mechanism of shear-flow
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Figure 2. Structure of a UF. (a) The tip part (the most upstream part) of a UF in a z–r plane at Re = 40 000.
Contours of the transverse velocity (u2

r + u2
θ )

1/2 are plotted in the z–r cross-section. The main flow is from
left to right, the blue shows regions of low velocity fluctuation and the red shows regions of high velocity
fluctuation. (b) The maximum of |ur| and |uz| in the r–θ cross-section plotted along the pipe axis. (c) Contours
of uz in the z–θ plane at r = 0.47, which show low-speed (blue) and high-speed (red) streaks. (d) Contours of
uz in the r–θ cross-section at z = 3.18. The circle, at r = 0.47, shows the radial position of the z–θ plane in
panel (c). This circle approximately shows the average position of low-speed streaks (blue spots) at this axial
position.

turbulence (Swearingen & Blackwelder 1987; Hamilton, Kim & Waleffe 1995; Zikanov
1996; Waleffe 1997; Schoppa & Hussain 1998, 2002; Meseguer 2003). In the following,
we will establish a connection between the low-speed streaks and the front speed based on
a few hypotheses, the first of which reads as follows:

H1 The wall distance of the transition point at the front tip, in local wall units, is
independent of the Reynolds number statistically.

This should be reasonable because the transition takes place near the wall, so that the wall
distance of the transition point can be expected to scale with the wall length, which is the
only length scale that can be derived from viscosity and wall shear. We will verify this
hypothesis by measuring the wall distance of low-speed streaks as a proxy of that of the
transition point.

At a turbulent front, the flow is axially developing, so that low-speed streaks are
not parallel to the pipe wall but oblique, i.e. the wall distance varies along a streak.
Figure 3(a,b) suggest that low-speed streaks are gradually lifted up away from the wall
while going downstream. To show this variation more quantitatively, we take the following
approach to determine the wall distance of low-speed streaks at a given axial location. In
an r–θ cross-section, low-speed streaks can be detected by setting a proper threshold in uz,
and regions enclosed by contour lines of the specified threshold can be considered as (the
cross-sections of) low-speed streaks – see the magenta contour lines in figure 3(a) with a
threshold −0.04. (See Appendix A for a discussion on the threshold selection.) Then, the
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Figure 3. (a–d) Axial variation of the low-speed streaks and (e) mean velocity profiles near the front tip. The
flow field is the same as that shown in figure 2. (a) Contours of uz at z = 3.0. The contour level of −0.04 is
plotted in magenta to highlight the low-speed streaks. (b) Contours at z = 3.3. (c) The variation of the average
wall distance of streaks (thick red) and max(r,θ) |ur| (thin blue) along the pipe axis. (d) Also at z = 3.3, and
the contour level 0.025 of the transverse velocity (u2

r + u2
θ )

1/2 is plotted in magenta to highlight the transverse
velocity fluctuations. (e) The mean velocity profile at z = 3.3, i.e. U(r) = 〈ux(r, θ, 3.3)〉θ , where 〈·〉θ means
the average in the azimuthal direction. The parabolic profile is plotted as a broken line for comparison. The
small window inset highlights the deviation between the two in the near-wall region.

nominal wall distance of a streak can be defined as the wall distance of the minimum of
uz within the streak. The average wall distance is calculated as the arithmetic mean of the
wall distances of all the streaks detected in this pipe cross-section.

Figure 3(c) shows more quantitatively that the wall distance of streaks increases on
going downstream. Therefore, it is necessary to determine the axial position of the front tip
for finally determining the wall distance of the streaks at the front tip. We use max(r,θ) |ur|,
which is a function of z, as an indicator of the local flow state. This curve is smooth
and slowly varying in the laminar region and wiggles around in the turbulent region –
see figures 2(b) and 3(c). The axial location of the front tip can be estimated by the
position separating the smooth and wiggling parts of the curve of maxr,θ |ur|. We use
an algorithm that detects abrupt changes of a curve for this purpose, which is built-in as
the function findchangepts in MATLAB R2018a (see Appendix B for a brief description
of the algorithm). The blue dot in figure 3(c) shows the separating point determined using
this algorithm.

Figure 4(a) shows the average wall distance of streaks y = 0.5 − r at the front tip in
outer units. The larger Re, the smaller y, which can be expected. Figure 4(b) shows y+,
the wall distance in local wall length units

√
ν/τw, where τw is the local wall shear stress.

Considering that the azimuthally averaged velocity profiles at these axial locations are
nearly parabolic (see figure 3e), τw is simply approximated by the value of the parabolic
profile. It appears that y+ stays nearly constant in the wide Re range considered, which
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Figure 4. The average wall distance of the low-speed streaks at the tip of the UF. (a) The distance in the outer
length units. (b) The distance in the local wall units. At each Re, about 10–20 velocity snapshots are collected,
giving approximately 100–200 low-speed streaks for the statistics. The standard deviation is plotted as the error
bars. The dashed lines are (2.1) taking A = 16.7, which is the average of y+ over all Re shown in panel (b).

supports our hypothesis H1 given the crucial role that low-speed streaks play in the
transition.

Assuming this Re independence, we derive the scaling law for the speed of the UF as
follows. First, take the wall distance of the transition point at the front tip to be y+

F = A,
where A is independent of Re. Then, in outer units, we have

yF = y+
F /Reτ = A/Reτ . (2.1)

The local mean flow speed, i.e. the azimuthally averaged streamwise velocity at the radial
position of the transition point, in outer units, can be approximated by the local laminar
value

U( yF) ≈ 2 − 8(0.5 − yF)2 = 8(A/Reτ − A2/Re2
τ ), (2.2)

given that the mean velocity profile is nearly parabolic at the front tip. As the relationship
between Re and Reτ is

Reτ =
√

− dU(r)
dr

∣∣∣∣
r=0.5

Re = 2
√

2Re (2.3)

for a parabolic velocity profile, we have

U( yF) ≈ 2
√

2 A Re−0.5 − A2Re−1. (2.4)

Now we come to our further hypotheses:

H2 The wall distance of velocity perturbations at the front tip, resulting from streak
instabilities, can be closely approximated by the wall distance of the streaks.

H3 The front speed is determined by the axial propagation speed of these velocity
perturbations, which approximately equals the local mean flow speed.

H2 should be reasonable, especially when perturbations appear at the flanks of the streaks.
In fact, the data seem to support this hypothesis – see figure 3(d) where most of the
strong perturbation region, enclosed by magenta contour lines, seems to be at the flanks
of the low-speed streaks. H3 is based on our presumption that streak instabilities generate
streamwise vortices, which further generate streaks while being advected downstream,
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Figure 5. (a) Comparison of derived and measured front speeds. The circles show the speeds measured by
front tracking using DNS (Chen et al. 2022a). The solid black line shows the approximation (2.5) with A =
16.7, which is the average of the y+ (black circles in figure 4b) over all Re values. The dashed red line shows
the approximation (2.6) with A = 16.7 also. (b) The same plot in linear scale for the speed where some data
sets from the literature falling in this Re range are also included.

seeding new transition and closing the self-sustaining cycle of the dynamics at the front
tip. Therefore, the propagation speed of these vortices likely determines that of the front
tip and consequently the front speed. The propagation of vortical structures, at least in
fully developed wall turbulence above the viscous sublayer, was shown to be dominated
by the advection of the local mean flow (Wu & Moin 2008; Del Álamo & Jiménez 2009;
Pei et al. 2012).

Following these hypotheses, we finally have an approximation of the front speed as

cUF ≈ U( yF) ≈ 2
√

2 A Re−0.5 − A2Re−1, (2.5)

and an asymptotic approximation at large Re,

cUF ≈ U( yF) ≈ 2
√

2 A Re−0.5, (2.6)

where A can be approximated by the wall distance of low-speed streaks at the front tip.
Figure 5 concludes the speed measurements and our derivation. The filled circles are

the DNS data from Chen et al. (2022a) (up to Re = 60 000) and the open symbols show
the literature data in the Re range investigated here. In order to show that the formula is
predictive, DNS at Re = 80 000 is performed here, and the front speed is measured by
front tracking and plotted as filled circles also. The black solid line shows our derivation
(2.5) by setting A = 16.7, which is the average of y+ of streaks at all Re values as shown in
figure 4(b). The relative error of the prediction is on the level of a few per cent compared
to the DNS measurement. The red dashed line shows the asymptotic speed (2.6) with the
same A. Some former experimental measurements are also included in the figure. It should
be noted that this formula can also be considered as a model for the front speed with only
one parameter A, which has a physical meaning and, more precisely, should be interpreted
as the wall distance of the transition point at the front tip. This formula can be used for
other Re after calibrating the parameter A at one Re with the measured front speed.

Now we revisit the fit c̃UF = 0.024 + (Re/1936)−0.528 given by Chen et al. (2022a).
This was obtained by assuming a form of a + b Reβ without any explanation of the
underlying physics. In other words, this form is not unique. Besides, the small constant
0.024 implies that the front speed would not approach zero as Re approaches infinity, which
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was unexplained and seems counter-intuitive. It is probably just a result of measurement
errors and the specific prescribed form of the fit. In contrast, our derivation (2.5) makes
no assumption on the specific form of the formula. It follows naturally from the dynamics
we observed at the front tip, with a few hypothetical but reasonable assumptions of the
physics.

Our derivation (2.5) may suffer larger errors at lower Re. The low-speed streaks would be
larger in transverse size at lower Re; therefore, the position of a streak estimated simply by
the position of the minimum of uz in each streak becomes less representative. Besides, the
streak position may not exactly coincide with the position of velocity fluctuations resulting
from the streak instability. But these positions are close to each other at sufficiently high
Re, so that our derivation will be more accurate.

As for the DF, the front speed is probably determined by the advection of the local mean
flow at the front tip also. However, transition to turbulence occurs close to the pipe centre
(Chen et al. 2022a) and the transition may not be triggered by streak instabilities as known
for near-wall turbulence. Therefore, the location of the transition point may not scale with
the wall length units, and cannot be explicitly related to Re as shown here for the UF at the
present. This problem has to be left for future studies.

3. Conclusions

In summary, the speed of the UF of pipe-flow turbulence was derived as an explicit
function of Re based on the dynamics at the front tip. To our knowledge, this is the first
such work since the seminal measurements and theoretical analysis of Lindgren (1957,
1969) about six decades ago. The agreement with speed measurements (see figure 5)
suggests that the mechanism proposed here captures the core of the physics, i.e. the front
speed is largely determined by the advection of velocity fluctuations by the local mean flow
at the front tip where transition takes place. This mechanism may also apply to turbulent
fronts in other shear flows where turbulence propagates into the subcritical laminar flow
region. Although the local mean flow is different in higher dimensions such as planar
shear flows (see e.g. Duguet & Schlatter 2013; Tao, Eckhardt & Xiong 2018; Tuckerman,
Chantry & Barkley 2020; Klotz, Pavlenko & Wesfreid 2021), our work will be helpful for
elucidating the physics of front propagation in those flows.

Supplementary movie. A supplementary movie is available at https://doi.org/10.1017/jfm.2023.1015.
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Appendix A. Threshold for detecting streaks

The results presented in the main text take the threshold of −0.04. Here we explain the
selection of this value. Figure 6 shows the contour levels of −0.02, −0.04 and −0.06 in
the r–θ cross-section at z = 3.18, which is the same position as shown in figure 2(d) of the
main text, plotted as magenta lines. It can be seen that −0.02 cannot very well separate
adjacent streaks, whereas −0.06 may miss out many streaks. We checked multiple velocity
snapshots and Reynolds numbers and found this to be often the case. The threshold −0.04
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Figure 6. (a–c) Thresholds for detecting low-speed streaks: −0.02, −0.04 and −0.06, respectively. Contours
of streamwise velocity fluctuation in the r–θ cross-section for Re = 40 000, as also shown in figure 2 of the
main text. Contour levels of −0.02, −0.04 and −0.06 are plotted as magenta lines. (d) The average wall distance
of low-speed streaks in wall units determined with thresholds of −0.02 (blue triangles), −0.04 (black circles)
and −0.06 (red squares) in uz for detecting the streaks.

is a reasonable choice because, in most cases, it separates streaks well and is able to detect
most of the low-speed streaks.

It can be expected that the value of this threshold will affect the average position of the
streaks. A higher threshold may drop out weaker streaks and only retain stronger streaks.
Stronger streaks are often more lifted up away from the wall (as can be seen in figure 6),
and, therefore, a higher threshold will give a larger average wall distance of the streaks.
Here we measured the average wall distance y+ of the streaks determined using thresholds
−0.02 and −0.06; see the blue triangles and red squares, respectively, in figure 6(d). It can
be seen that −0.02 gives slightly lower and −0.06 gives slightly higher y+ compared to
the black circles (with a threshold of −0.04 for detecting streaks). But the important point
is that y+ also appears to be a constant in the Re range considered using either threshold
for detecting the streaks.

Appendix B. The algorithm for determining the axial location of the front tip

In the main text, we use the algorithm that is built-in as the function findchangepts in
MATLAB to detect abrupt changes in a signal sequence [x1, x2, . . . , xn]. The key is to
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minimize the target function

J(k) =
k−1∑
i=1

{xi − mean([x1, x2, . . . , xk−1])}2 +
n∑

i=k

{xi − mean([xk, xk+1, . . . , xn])}2

(B1)

by modifying the index k. The resulting k is regarded as the separation point of the slowly
varying and abruptly varying parts of the sequence. The data sequence of maxr,θ |ur|,
containing both the laminar and turbulent parts on the upstream and downstream sides
of the front tip, respectively, is fed in as the input. The output will be taken as the point
separating the laminar part and the turbulent part of the curve, which we define as the axial
location of the front tip. Readers are referred to the documentation of MATLAB (version
R2018a) for more details about the algorithm.

REFERENCES

AVILA, M., BARKLEY, D. & HOF, B. 2023 Transition to turbulence in pipe flow. Annu. Rev. Fluid Mech. 55,
575–602.

BARKLEY, D. 2016 Theoretical perspective on the route to turbulence in a pipe. J. Fluid Mech. 803, P1.
BARKLEY, D., SONG, B., MUKUND, V., LEMOULT, G., AVILA, M. & HOF, B. 2015 The rise of fully

turbulent flow. Nature 526, 550–553.
CHEN, K., XU, D. & SONG, B. 2022a Propagation speed of turbulent fronts in pipe flow at high Reynolds

numbers. J. Fluid Mech. 935, A11.
CHEN, Q., WEI, D. & ZHANG, Z. 2022b Linear stability of pipe Poiseuille flow at high Reynolds number

regime. Commun. Pure Appl. Maths 76, 1868–1964.
DARBYSHIRE, A.G. & MULLIN, T. 1995 Transition to turbulence in constant-mass-flux pipe flow. J. Fluid

Mech. 289, 83–114.
DEL ÁLAMO, J.C. & JIMÉNEZ, J. 2009 Estimation of turbulent convection velocities and corrections to

Taylor’s approximation. J. Fluid Mech. 640, 5–26.
VAN DOORNE, C.W.H. & WESTERWEEL, J. 2008 The flow structure of a puff. Phil. Trans. R. Soc. Lond. A

367, 489–507.
DUGUET, Y. & SCHLATTER, P. 2013 Oblique laminar-turbulent interfaces in plane shear flows. Phys. Rev.

Lett. 110, 034502.
DUGUET, Y., WILLIS, A.P. & KERSWELL, R.R. 2010 Slug genesis in cylindrical pipe flow. J. Fluid Mech.

663, 180–208.
DURST, F. & ÜNSAL, B. 2006 Forced laminar to turbulent transition in pipe flows. J. Fluid Mech. 560,

449–464.
HAMILTON, J.M., KIM, J. & WALEFFE, F. 1995 Regeneration mechanisms of near-wall turbulent structures.

J. Fluid Mech. 287, 317–348.
HOF, B., DE LOZAR, A., AVILA, M., TU, X. & SCHNEIDER, T.M. 2010 Eliminating turbulence in spatially

intermittent flows. Science 327, 1491–1494.
HOLZNER, M., SONG, B., AVILA, M. & HOF, B. 2013 Lagrangian approach to laminar-turbulent interfaces.

J. Fluid Mech. 723, 140–162.
JIANG, X.Y., LEE, C.B., CHEN, X., SMITH, C.R. & LINDEN, P.F. 2020a Structure evolution at early stage

of boundary-layer transition: simulation and experiment. J. Fluid Mech. 890, A11.
JIANG, X.Y., LEE, C.B., SMITH, C.R., CHEN, J.W. & LINDEN, P.F. 2020b Experimental study on low-speed

streaks in a turbulent boundary layer at low Reynolds number. J. Fluid Mech. 903, A6.
KLOTZ, L., PAVLENKO, A.M. & WESFREID, J.E. 2021 Experimental measurements in plane

Couette–Poiseuille flow: dynamics of the large-and small-scale flow. J. Fluid Mech. 912, A24.
LINDGREN, E.R. 1957 The transition process and other phenomena in viscous flow. Ark. Fys. 12, 1–169.
LINDGREN, E.R. 1969 Propagation velocity of turbulent slugs and streaks in transition pipe flow. Phys. Fluids

12, 418–425.
MESEGUER, A. 2003 Streak breakdown instability in pipe Poiseuille flow. Phys. Fluids 15, 1203–1213.
MESEGUER, A. & TREFETHEN, L.N. 2003 Linearized pipe flow to Reynolds number 107. J. Comput. Phys.

186, 178–197.

977 R4-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
15

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1015


Speed of the upstream turbulent front in pipe flow

NISHI, M., ÜNSAL, B., DURST, F. & BISWAS, G. 2008 Laminar-to-turbulent transition of pipe flows through
puffs and slugs. J. Fluid Mech. 614, 425–446.

PEI, J., CHEN, J., SHE, Z.-S. & HUSSAIN, F. 2012 Model for propagation speed in turbulent channel flows.
Phys. Rev. E 86, 046307.

RINALDI, E., CANTON, J. & SCHLATTER, P. 2019 The vanishing of strong turbulent fronts in bent pipes.
J. Fluid Mech. 866, 487–502.

SCHOPPA, W. & HUSSAIN, F. 1998 Formation of near-wall streamwise vortices by streak instability. AIAA
Paper 98, 3000.

SCHOPPA, W. & HUSSAIN, F. 2002 Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453,
57–108.

SHAN, X., MA, B., ZHANG, Z. & NIEUWSTADT, F.T.M. 1999 Direct numerical simulation of a puff and a
slug in transitional cylindrical pipe flow. J. Fluid Mech. 387, 39–60.

SHIMIZU, M. & KIDA, S. 2009 A driving mechanism of a turbulent puff in pipe flow. Fluid Dyn. Res. 41,
045501.

SONG, B., BARKLEY, D., HOF, B. & AVILA, M. 2017 Speed and structure of turbulent fronts in pipe flow.
J. Fluid Mech. 813, 1045–1059.

SWEARINGEN, J.D. & BLACKWELDER, R.F. 1987 The growth and breakdown of streamwise vortices in the
presence of a wall. J. Fluid Mech. 182, 255–290.

TAO, J.J., ECKHARDT, B. & XIONG, X.M. 2018 Extended localized structures and the onset of turbulence in
channel flow. Phys. Rev. Fluids 3, 011902(R).

TUCKERMAN, L.S., CHANTRY, M. & BARKLEY, D. 2020 Patterns in wall bounded shear flows. Annu. Rev.
Fluid Mech. 52, 343–367.

WALEFFE, F. 1997 On a self-sustaining process in shear flows. Phys. Fluids 9, 883–900.
WANG, M. & GOLDENFELD, N. 2022 Stochastic model for quasi-one-dimensional transitional turbulence

with streamwise shear interactions. Phys. Rev. Lett. 129, 034501.
WU, X. & MOIN, P. 2008 A direct numerical simulation study on the mean velocity characteristics in turbulent

pipe flow. J. Fluid Mech. 608, 81–112.
WYGNANSKI, I.J. & CHAMPAGNE, F.H. 1973 On transition in a pipe. Part 1. The origin of puffs and slugs

and the flow in a turbulent slug. J. Fluid Mech. 59, 281–335.
ZIKANOV, O.Y. 1996 On the instability of pipe Poiseuille flow. Phys. Fluids 8, 2923–2932.

977 R4-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
15

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1015

	1 Introduction
	2 Results
	3 Conclusions
	Appendix A. Threshold for detecting streaks
	Appendix B. The algorithm for determining the axial location of the front tip
	References

