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Abstract
Quasi-BPS categories appear as summands in semiorthogonal decompositions of DT categories for Hilbert schemes
of points in the three-dimensional affine space and in the categorical Hall algebra of the two-dimensional affine
space. In this paper, we prove several properties of quasi-BPS categories analogous to BPS sheaves in cohomological
DT theory.

We first prove a categorical analogue of Davison’s support lemma, namely that complexes in the quasi-BPS
categories for coprime length and weight are supported over the small diagonal in the symmetric product of the
three-dimensional affine space. The categorical support lemma is used to determine the torsion-free generator of
the torus equivariant K-theory of the quasi-BPS category of coprime length and weight.

We next construct a bialgebra structure on the torsion free equivariant K-theory of quasi-BPS categories for a
fixed ratio of length and weight. We define the K-theoretic BPS space as the space of primitive elements with respect
to the coproduct. We show that all localized equivariant K-theoretic BPS spaces are one-dimensional, which is a
K-theoretic analogue of the computation of (numerical) BPS invariants of the three-dimensional affine space.

1. Introduction

1.1. Quasi-BPS categories

In [PTa, Păda, Păd23], we studied quasi-BPS (named after Bogomol’nyi–Prasad–Sommerfield states)
categories S(𝑑)𝑤 for 𝑑 ∈ N (length) and 𝑤 ∈ Z (weight) in relation to categorical Donaldson–Thomas
(DT) theory and to categorical Hall algebras (of surfaces and of quivers with potentials). They are
defined to be full subcategories of the category of matrix factorizations

S(𝑑)𝑤 := MF(M(𝑑)𝑤 ,Tr𝑊𝑑) ⊂ MF(X (𝑑),Tr𝑊𝑑), (1.1)

where M(𝑑)𝑤 is a twisted noncommutative resolution first considered by Špenko–Van den Bergh
[ŠdB17]; see Subsection 2.6 for more details. Here, the stack X (𝑑) and the regular function Tr𝑊𝑑 are
given by

X (𝑑) := Hom(𝑉,𝑉)⊕3/𝐺𝐿(𝑉), Tr𝑊𝑑 (𝐴, 𝐵, 𝐶) = Tr 𝐴[𝐵,𝐶], (1.2)

where V is a d-dimensional vector space.
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2 T. Pădurariu and Y. Toda

There is also a graded quasi-BPS category Sgr (𝑑)𝑣 , which is equivalent (via Koszul duality) to a
subcategory

T(𝑑)𝑣 ⊂ 𝐷𝑏 (𝒞(𝑑)),

where 𝒞(𝑑) is the derived moduli stack of zero-dimensional sheaves on C2 with length d. We will also
consider T-equivariant versions of these categories, where 𝑇 = (C∗)2 is the Calabi–Yau torus of C3.
We denote by K = 𝐾 (𝐵𝑇) = Z[𝑞±1

1 , 𝑞±1
2 ] and by F the fractional field of K. The (T-equivariant or not)

Grothendieck groups of S(𝑑)𝑤 and Sgr (𝑑)𝑤 � T(𝑑)𝑤 are isomorphic.
The purpose of this paper is to prove several properties of quasi-BPS categories analogous to BPS

sheaves in cohomological DT theory and use these properties to compute the T-equivariant K-theory of
quasi-BPS categories.

1.2. Semiorthogonal decompositions

We briefly review semiorthogonal decompositions with summands given by quasi-BPS categories
proved in [PTa, Păda].

In our previous paper [PTa], we constructed a semiorthogonal decomposition of the categorification
DT (𝑑) of the DT invariant DT𝑑 , which is a virtual count of zero-dimensional closed subschemes in
C3. The category DT (𝑑) is defined by

DT (𝑑) := MF(NHilb(𝑑),Tr𝑊𝑑);

see [PTa, Subsection 1.5]. Here, NHilb(𝑑) is the noncommutative Hilbert scheme of points

NHilb(𝑑) :=
(
𝑉 ⊕ Hom(𝑉,𝑉)⊕3

)ss
/𝐺𝐿(𝑉).

More precisely, in [PTa, Theorem 1.1] we showed that there is a semiorthogonal decomposition

DT (𝑑) =
〈
�𝑘𝑖=1S(𝑑𝑖)𝑣𝑖+𝑑𝑖 (

∑
𝑖> 𝑗 𝑑 𝑗−

∑
𝑗>𝑖 𝑑 𝑗)

���� 0 � 𝑣1/𝑑1 < · · · < 𝑣𝑘/𝑑𝑘 < 1
𝑑1 + · · · + 𝑑𝑘 = 𝑑

〉
. (1.3)

There is also a semiorthogonal decomposition of 𝐷𝑏 (𝒞(𝑑)) in graded quasi-BPS categories; see
[Păda, Theorem 1.1]:

𝐷𝑏 (𝒞(𝑑)) =

〈
�𝑘𝑖=1T(𝑑𝑖)𝑣𝑖

���� 𝑣1/𝑑1 < · · · < 𝑣𝑘/𝑑𝑘
𝑑1 + · · · + 𝑑𝑘 = 𝑑

〉
. (1.4)

1.3. Numerical and cohomological BPS invariants

It is expected that, for any smooth Calabi–Yau threefold X, there are certain deformation invariant
integers called BPS invariants which determine the DT and Gromov–Witten invariants of X; see [PT14,
Section 2 and a half]. Denote by Ω𝑑 the BPS invariants of C3 for 𝑑 � 1. Then

Ω𝑑 = −1 for all 𝑑 � 1. (1.5)

The wall-crossing formula for the DT invariants of C3, see [JS12, Section 6.3], [Tod10, Remark 5.14],
says that ∑

𝑑�0
DT𝑑𝑞

𝑑 =
∏
𝑑�1
(1 − (−𝑞)𝑑)𝑑Ω𝑑 =

∏
𝑑�1

1(
1 − (−𝑞)𝑑

)𝑑 ; (1.6)

see [PTa, Subsection 1.6] for more details.
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Davison–Meinhardt [DM20] constructed a perverse sheaf B𝑃𝑆𝑑 on Sym𝑑 (C3), called BPS sheaf,
whose Euler characteristic recovers the BPS invariant Ω𝑑 . Davison [Davb, Theorem 5.1] showed that

B𝑃𝑆𝑑 = Δ∗ICC3 , (1.7)

where Δ : C3 ↩→ Sym𝑑 (C3) is the small diagonal. Davison [Davb, Lemma 4.1] also proved restrictions
on the support of BPS sheaves for tripled quivers with potentials and used [Davb, Lemma 4.1] to prove
purity results about stacks of representations of preprojective algebras [Davb, Theorem A]. We refer to
Equation (1.7) as Davison’s support lemma. The (cohomological) BPS spaces are the cohomology of
the BPS sheaf.

Properties (and computations in special cases) of BPS sheaves have applications in the study of
Hodge theory of various cohomological DT spaces (in particular, in proving purity of the Borel-Moore
homology of moduli of objects in K3 categories [Davc]) and in the study of Cohomological Hall algebras
[Dava, KV].

Our point of view is that the semiorthogonal decomposition (1.3) may be regarded as a categorification
of the wall-crossing formula (1.6) and the category S(𝑑)𝑤 may be regarded as a categorical analogue of
the BPS invariant (1.5) or BPS sheaf (1.7). In this paper, we make the above heuristic more rigorous. Let
(𝑑, 𝑤) ∈ N × Z be integers with gcd(𝑑, 𝑤) = 1. We first prove a categorical analogue of Equation (1.7),
namely any object of S(𝑑)𝑤 is supported over the small diagonal in Sym𝑑 (C3). Further, for 𝑛 ∈ N, we
define a K-theoretic analogue of the cohomological BPS space:

P(𝑛𝑑)𝑛𝑤 ⊂ 𝐾𝑇 (S(𝑛𝑑)𝑛𝑤 ) � 𝐾𝑇 (T(𝑛𝑑)𝑛𝑤 )

and show that P(𝑛𝑑)𝑛𝑤,F := P(𝑛𝑑)𝑛𝑤 ⊗K F is a one-dimensional F-vector space, compare with
Equation (1.5).

1.4. Support of matrix factorizations in quasi-BPS categories

We prove a version of the support lemma (1.7) for categories S(𝑑)𝑤 with gcd(𝑑, 𝑤) = 1. We consider
the quotient stack X (𝑑) defined in Equation (1.2) together with its good moduli space

𝜋 : X (𝑑) → 𝑋 (𝑑) := Hom(𝑉,𝑉)⊕3 � 𝐺𝐿(𝑉).

Consider the diagram

C𝑜ℎ(C3, 𝑑)

𝜋

��

Crit(Tr𝑊𝑑)
� � �� X (𝑑)

Tr𝑊𝑑

���
��

��
��

�

𝜋

��

Sym𝑑 (C3) �
�

�� 𝑋 (𝑑) �� C,

where C𝑜ℎ(C3, 𝑑) is the stack of sheaves with zero-dimensional support and length d onC3. In Section 3,
we prove the following (see Theorem 3.1 for a more precise statement):

Theorem 1.1 (Theorem 3.1). For a pair (𝑑, 𝑤) ∈ N × Z with gcd(𝑑, 𝑤) = 1, any object in S(𝑑)𝑤 is
supported on 𝜋−1 (Δ).

The categorical support restriction in Theorem 1.1 implies a strong constraint on T-equivariant K-
theory classes of objects of quasi-BPS categories. Let Θ be the forget-the-potential map

Θ : 𝐾𝑇 (MF(X (𝑑),Tr𝑊𝑑)) → 𝐾𝑇 (MF(X (𝑑), 0)) = K[𝑧±1
1 , . . . , 𝑧±1

𝑑 ]
𝔖𝑑 ; (1.8)
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see [Păd22, Proposition 3.6]. In Lemma 4.1, we show that if a complex F is supported on 𝜋−1 (Δ), then
Θ([F]) is divisible by the element

(𝑞1 − 1)𝑑−1(𝑞2 − 1)𝑑−1 (𝑞1𝑞2 − 1)𝑑−1 ∈ K. (1.9)

In [PTa], we introduced certain complexes E𝑑,𝑤 ∈ T(𝑑)𝑤 using a derived stack of pairs of commuting
matrices, both of which have spectrum of cardinality one and have an explicit shuffle description (2.38).
In particular, Lemma 4.1 applies to E𝑑,𝑤 for gcd(𝑑, 𝑤) = 1. We remark that the divisibility by Equation
(1.9) is not obvious from the shuffle description of Θ([E𝑑,𝑤 ]).

1.5. Integral generator of K-theory of quasi-BPS categories

In [PTa, Theorem 1.2], we showed that the localized (i.e., taking ⊗KF) T-equivariant K-theory of T(𝑑)𝑤
(and thus of S(𝑑)𝑤 ) is generated by monomials in [E𝑑′,𝑤′ ] for 𝑑 ′ � 𝑑 and 𝑤

𝑑 = 𝑤′

𝑑′ . The divisibility by
Equation (1.9) will be useful to compute the T-equivariant K-theory of quasi-BPS categories without
localization. For a K-module M, we will use the notation 𝑀 ′ := 𝑀/(K-torsion). Using Lemma 4.1 and
Theorem 1.1, we show that:

Theorem 1.2 (Theorem 4.4). Let (𝑑, 𝑤) ∈ N × Z with gcd(𝑑, 𝑤) = 1. The K-module 𝐾𝑇 (S(𝑑)𝑤 )
′ is

free of rank one with generator
[
E𝑑,𝑤

]
.

For (𝑑, 𝑤) ∈ N × Z with gcd(𝑑, 𝑤) = 1, we believe the category T(𝑑)𝑤 is generated by E𝑑,𝑤 ,
which in particular implies Theorem 1.2. Further, for ∗ ∈ {∅, 𝑇}, we suspect there are equivalences
T∗(1)0

∼
−→ T∗(𝑑)𝑤 , but we do not have much evidence supporting this belief.

1.6. The coproduct

For the reminder of the introduction, we consider a pair (𝑑, 𝑣) ∈ N × Z with gcd(𝑑, 𝑣) = 1. The
Grothendieck group of the category T(𝑛𝑑)𝑛𝑣 for 𝑛 > 1 contains a contribution from partitions 𝑎 + 𝑏 = 𝑛
because the Hall product restricts to a functor

𝑚𝑎,𝑏 : T(𝑎𝑑)𝑎𝑣 ⊗ T(𝑏𝑑)𝑏𝑑 → T(𝑛𝑑)𝑛𝑣

for 𝑎, 𝑏 � 1 with 𝑎 + 𝑏 = 𝑛; see [PTa, Lemma 4.8]. The category

D𝑑,𝑣 :=
⊕
𝑛�0
T(𝑛𝑑)𝑛𝑣 (1.10)

is thus monoidal. For 𝑛 = 𝑎 + 𝑏, there is a coproduct

Δ𝑎,𝑏 : T(𝑛𝑑)𝑛𝑣 → T(𝑎𝑑)𝑎𝑣 ⊗ T(𝑏𝑑)𝑏𝑣 ; (1.11)

see also [Păda, Section 5]. The construction also provides a T-equivariant version. In Section 5, we
prove that the Hall product is compatible with the above coproduct:

Theorem 1.3 (Corollary 5.6). Let (𝑑, 𝑣) ∈ N × Z be coprime, let 𝑎, 𝑏, 𝑐, 𝑒, 𝑛 ∈ N such that 𝑎 + 𝑏 =
𝑐 + 𝑒 = 𝑛, and let S be the set of tuples ( 𝑓1, 𝑓2, 𝑓3, 𝑓4) such that 𝑎 = 𝑓1 + 𝑓2, 𝑏 = 𝑓3 + 𝑓4, 𝑐 = 𝑓1 + 𝑓3,
𝑒 = 𝑓2 + 𝑓4. The following diagram commutes:

𝐾𝑇 (T(𝑎𝑑)𝑎𝑣 )
′ ⊗ 𝐾𝑇 (T(𝑏𝑑)𝑏𝑣 )

′ 𝐾𝑇 (T(𝑛𝑑)𝑛𝑣 )
′

⊕
𝑆

⊗4
𝑖=1 𝐾𝑇 (T( 𝑓𝑖𝑑) 𝑓𝑖𝑣 )

′ 𝐾𝑇 (T(𝑐𝑑)𝑐𝑣 ) ⊗ 𝐾𝑇 (T(𝑒𝑑)𝑒𝑣 )
′,

𝑚𝑎,𝑏

Δ Δ𝑐,𝑒

𝑚′
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where we have used the shorthand notations Δ :=
⊕

𝑆 Δ 𝑓1 , 𝑓2 ⊗ Δ 𝑓3 , 𝑓4 and 𝑚′ :=
⊕

𝑆 (𝑚 ⊗ 𝑚) (1 ⊗
sw 𝑓2 , 𝑓3 ⊗ 1).

In the proof, we first construct a version of Δ𝑎,𝑏 for the subcategories M(𝑛𝑑)𝑛𝑣 ⊂ 𝐷𝑏 (X (𝑛𝑑))𝑛𝑣 ;
see Equation (1.1). We then construct the functor (1.11) by applying matrix factorizations and using the
Koszul equivalence.

In Propositions 5.7 and 5.8, we show that the product and the coproduct on 𝐾𝑇 (D𝑑,𝑣 )
′ are commu-

tative and cocommutative. We then obtain an isomorphism

𝐾𝑇 (D𝑑,𝑣 )F � ΛF, (1.12)

where ΛF is the F-algebra of symmetric functions; see Subsection 2.12 for its definition. The elementary
functions 𝑒𝑛 ∈ ΛF are sent, up to a factor in F, to E𝑛𝑑,𝑛𝑣 .

1.7. K-theoretic BPS spaces

We define the K-theoretic BPS space to be the space of primitive elements of 𝐾𝑇 (T(𝑛𝑑)𝑛𝑣 ) with respect
to the above coproduct:

P(𝑛𝑑)𝑛𝑣 := ker
����
⊕
𝑎+𝑏=𝑛
𝑎,𝑏�1

Δ𝑎,𝑏 : 𝐾𝑇 (T(𝑛𝑑)𝑛𝑣 ) →
⊕
𝑎+𝑏=𝑛
𝑎,𝑏�1

𝐾𝑇 (T(𝑎𝑑)𝑎𝑣 ⊗ T(𝑏𝑑)𝑏𝑣 )
����. (1.13)

We show that the dimension over F of localized K-theoretic BPS spaces for all pairs (𝑛𝑑, 𝑛𝑣) ∈ N × Z
is the same as the (numerical) BPS invariants (1.5) up to a sign:

Proposition 1.4 (Corollary 5.11). The F-vector space P(𝑛𝑑)𝑛𝑣,F is one-dimensional.

Using the above proposition and [PTa, Theorem 1.1], we obtain a K-theoretic analogue of the wall-
crossing formula (1.6); see Subsection 5.5 and [PTa, Subsection 1.6] for more details.

Corollary 1.5 (Corollary 5.13). There is an isomorphism of N-graded F-vector spaces:⊕
𝑑�0

𝐾𝑇 (DT (𝑑))F �
⊗

0�𝑣<𝑑
gcd(𝑑,𝑣)=1

(⊗
𝑛�1

Sym
(
P(𝑛𝑑)𝑛𝑣,F

))
. (1.14)

We conjecture an integral version of Proposition 1.4, which is a version of Theorem 1.2 for pairs
(𝑛𝑑, 𝑛𝑣) for all 𝑛 ∈ N:

Conjecture 1.6. The K-module P(𝑛𝑑)𝑛𝑣 is free of rank one.

The torsion-free version of the above conjecture for (𝑑, 𝑣) = (1, 0) and 𝑛 = 2 follows from the
discussion in Subsection 4.3. We finally conjecture an analogue of Theorem 1.1 for all 𝑛 ∈ N.

Conjecture 1.7. The subspace P(𝑛𝑑)𝑛𝑣 ⊂ 𝐾𝑇 (T(𝑛𝑑)𝑛𝑣 ) � 𝐾𝑇 (S(𝑛𝑑)𝑛𝑣 ) is supported over 𝜋−1 (Δ),
alternatively, the following composition is zero:

P(𝑛𝑑)𝑛𝑣 → 𝐾𝑇 (S(𝑛𝑑)𝑛𝑣 ) → 𝐾𝑇 (X (𝑛𝑑) \ 𝜋−1 (Δ)).

2. Preliminaries

2.1. Notations

The spaces considered in this paper are defined over the complex field C, and they are quotient stacks
X = 𝐴/𝐺, where A is a dg scheme, the derived zero locus of a section s of a finite rank bundle vector
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bundle E on a finite type separated scheme X over C, and G is a reductive group. For such a dg scheme
A, let dim 𝐴 := dim 𝑋 − rank(E), let 𝐴cl := 𝑍 (𝑠) ⊂ 𝑋 be the (classical) zero locus, and let X cl := 𝐴cl/𝐺.
We denote by OX or O𝐴 the structure sheaf of X .

For G a reductive group and A a dg scheme as above, denote by 𝐴/𝐺 the corresponding quotient
stack and by 𝐴//𝐺 the quotient dg scheme with dg-ring of regular functions O𝐺

𝐴 .
For a classical stack X with a morphism X → 𝑋 to a scheme X and for a closed point 𝑝 ∈ 𝑋 , we

denote by X𝑝 its formal fiber X𝑝 := X ×𝑋 Spec Ô𝑋,𝑝 .
For a (derived) stack X with an action of a torus T, we denote by 𝐷𝑏

𝑇 (X ) the bounded derived
category of T-equivariant coherent sheaves on X and by 𝐺𝑇 (X ) its Grothendieck group. We denote by
Perf𝑇 (X ) the subcategory of T-equivariant perfect complexes and by 𝐾𝑇 (X ) its Grothendieck group.
When T is trivial, we drop T from the notation of the above Grothendieck groups. We introduce more
notations for categories and K-theory in Subsection 2.6.2.

Consider the two-dimensional torus

(C∗)2
�
→ 𝑇 := {(𝑡1, 𝑡2, 𝑡3) ∈ (C∗)×3 | 𝑡1𝑡2𝑡3 = 1} ⊂ (C∗)3. (2.1)

The isomorphism above is given by (𝑡1, 𝑡2) ↦→ (𝑡1, 𝑡2, 𝑡−1
1 𝑡−1

2 ). We denote byK := 𝐾𝑇 (pt) = Z[𝑞±1
1 , 𝑞±1

2 ]
and let F be the fraction field of K. For V a K-module, we use the notations 𝑉 ′ := 𝑉/(K-torsion) and
𝑉F := 𝑉 ⊗K F.

For a dg-category D, a full dg-subcategory C ⊂ D is called dense if any object in D is a direct
summand of an object in C.

2.2. Weights and partitions

2.2.1.
For 𝑑 ∈ N, let V be a C-vector space of dimension d, and let 𝔤 = 𝔤𝔩(𝑉) := End(𝑉). When the dimension
is clear from the context, we drop d from its notation. Let

𝜋 : X (𝑑) := 𝑅(𝑑)/𝐺 (𝑑) := 𝔤𝔩(𝑉)⊕3/𝐺𝐿(𝑉) → 𝑋 (𝑑) := 𝔤𝔩(𝑉)⊕3//𝐺𝐿(𝑉).

Alternatively, X (𝑑) is the stack of representations of dimension d of the quiver Q with one vertex and
three loops {𝑥, 𝑦, 𝑧}:

𝑄

Consider the superpotential 𝑊 = 𝑥 [𝑦, 𝑧] of Q and the regular function

Tr𝑊 = Tr𝑊𝑑 := Tr 𝐴[𝐵,𝐶] : X (𝑑) → C, (2.2)

where (𝐴, 𝐵, 𝐶) ∈ 𝔤𝔩(𝑉)⊕3.
Fix the maximal torus 𝑇 (𝑑) ⊂ 𝐺𝐿(𝑑) to be consisting of diagonal matrices. Denote by 𝑀 = ⊕𝑑𝑖=1Z𝛽𝑖

the weight space of 𝑇 (𝑑), and let 𝑀 (𝑑)R := 𝑀 (𝑑) ⊗Z R, where 𝛽1, . . . , 𝛽𝑑 is the set of simple roots. A
weight 𝜒 =

∑𝑑
𝑖=1 𝑐𝑖𝛽𝑖 is dominant if

𝑐1 � . . . � 𝑐𝑑 ,

We denote by 𝑀+ ⊂ 𝑀 and 𝑀+
R
⊂ 𝑀R the dominant chambers. When we want to emphasize the

dimension vector, we write 𝑀 (𝑑) and so on. Denote by N the coweight lattice of 𝑇 (𝑑) and by 𝑁R :=
𝑁 ⊗Z R. Let 〈 , 〉 be the natural pairing between 𝑁R and 𝑀R.

https://doi.org/10.1017/fms.2023.103 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.103


Forum of Mathematics, Sigma 7

Let 𝑊 = 𝔖𝑑 be the Weyl group of 𝐺𝐿(𝑑). For 𝜒 ∈ 𝑀 (𝑑)+, let Γ𝐺𝐿 (𝑑) (𝜒) be the irreducible
representation of 𝐺𝐿(𝑑) of highest weight 𝜒. We drop 𝐺𝐿(𝑑) from the notation if the dimension vector
d is clear from the context. Let𝑤∗𝜒 := 𝑤(𝜒+𝜌)−𝜌 be the Weyl-shifted action of𝑤 ∈ 𝑊 on 𝜒 ∈ 𝑀 (𝑑)R.
We denote by ℓ(𝑤) the length of 𝑤 ∈ 𝑊 .

Denote by W the multiset of 𝑇 (𝑑)-weights of 𝑅(𝑑). If there is a natural action of a torus T on 𝑅(𝑑),
we abuse notation and write W for the multiset of (𝑇 × 𝑇 (𝑑))-weights of 𝑅(𝑑). For 𝜆 a cocharacter of
𝑇 (𝑑), we denote by 𝑁𝜆>0 the sum of weights 𝛽 in W such that 〈𝜆, 𝛽〉 > 0.

2.2.2.
We denote by 𝜌 half the sum of positive roots of 𝐺𝐿(𝑑). In our convention of the dominant chamber, it
is given by

𝜌 =
1
2

∑
𝑗<𝑖

(𝛽𝑖 − 𝛽 𝑗 ).

We denote by 1𝑑 := 𝑧 · Id the diagonal cocharacter of 𝑇 (𝑑). Define the weights

𝜎𝑑 :=
𝑑∑
𝑗=1

𝛽 𝑗 ∈ 𝑀, 𝜏𝑑 :=
𝜎𝑑
𝑑
∈ 𝑀R.

2.2.3.
Let G be a reductive group (in this paper, G will be a Levi subgroup of 𝐺𝐿(𝑑) for some positive
integer d), let 𝑇𝐺 be a maximal torus of G, let X be a G-representation and let

X = 𝑋/𝐺

be the corresponding quotient stack. Let W be the multiset of 𝑇𝐺-weights of X. For 𝜆 a cocharacter of
𝑇𝐺 , let 𝑋𝜆 ⊂ 𝑋 be the subspace generated by weights 𝛽 ∈ W such that 〈𝜆, 𝛽〉 = 0, let 𝑋𝜆�0 ⊂ 𝑋 be
the subspace generated by weights 𝛽 ∈ W such that 〈𝜆, 𝛽〉 � 0 and let 𝐺𝜆 and 𝐺𝜆�0 be the Levi and
parabolic groups associated to 𝜆. Consider the fixed and attracting stacks

X 𝜆 := 𝑋𝜆/𝐺𝜆, X 𝜆�0 := 𝑋𝜆�0/𝐺𝜆�0

with maps

X 𝜆 𝑞𝜆
←−− X 𝜆�0 𝑝𝜆

−−→ X .

Define the integer

𝑛𝜆 := 〈𝜆, [𝑋𝜆�0] − [𝔤𝜆�0]〉. (2.3)

2.2.4.
Let 𝑑 ∈ N, and recall the definition of X (𝑑) from Subsection 2.2.1. For a cocharacter 𝜆 : C∗ → 𝑇 (𝑑),
consider the maps of fixed and attracting loci

X (𝑑)𝜆 𝑞𝜆
←−− X (𝑑)𝜆�0 𝑝𝜆

−−→ X (𝑑). (2.4)

We say that two cocharacters 𝜆 and 𝜆′ are equivalent and write 𝜆 ∼ 𝜆′ if 𝜆 and 𝜆′ have the same fixed
and attracting stacks as above.

We call 𝑑 := (𝑑𝑖)𝑘𝑖=1 a partition of d if 𝑑𝑖 ∈ N are all nonzero and
∑𝑘
𝑖=1 𝑑𝑖 = 𝑑. In Section 5, we allow

partitions 𝑑 = (𝑑𝑖)𝑘𝑖=1 to have terms 𝑑𝑖 equal to zero. We similarly define partitions of (𝑑, 𝑤) ∈ N × Z.
For a cocharacter 𝜆 of 𝑇 (𝑑), there is an associated partition (𝑑𝑖)𝑘𝑖=1 such that
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X (𝑑)𝜆�0 𝑞𝜆
−−→ X (𝑑)𝜆 � ×𝑘𝑖=1X (𝑑𝑖).

Define the length ℓ(𝜆) := 𝑘 .
Equivalence classes of antidominant cocharacters are in bijection with ordered partitions (𝑑𝑖)𝑘𝑖=1 of

d. For an ordered partition 𝑑 = (𝑑𝑖)𝑘𝑖=1 of d, fix a corresponding antidominant cocharacter 𝜆 = 𝜆𝑑 of
𝑇 (𝑑) which induces the maps

X (𝑑)𝜆 � ×𝑘𝑖=1X (𝑑𝑖)
𝑞𝜆
←−− X (𝑑)𝜆�0 𝑝𝜆

−−→ X (𝑑).

We also use the notations 𝑝𝜆 = 𝑝𝑑 , 𝑞𝜆 = 𝑞𝑑 . The categorical Hall algebra is given by the functor
𝑝𝜆∗𝑞

∗
𝜆 = 𝑝𝑑∗𝑞

∗
𝑑:

𝑚 = 𝑚𝑑 : 𝐷𝑏 (X (𝑑1)) � · · · � 𝐷𝑏 (X (𝑑𝑘 )) → 𝐷𝑏 (X (𝑑)). (2.5)

We may drop the subscript 𝜆 or 𝑑 in the functors 𝑝∗ and 𝑞∗ when the cocharacter 𝜆 or the partition 𝑑 is
clear. We also use the notation ∗ for the Hall product.

2.2.5.
Let (𝑑𝑖)𝑘𝑖=1 be a partition of d. There is an identification

𝑘⊕
𝑖=1

𝑀 (𝑑𝑖) � 𝑀 (𝑑),

where the simple roots 𝛽 𝑗 in 𝑀 (𝑑1) correspond to the first 𝑑1 simple roots 𝛽 𝑗 of d etc.

2.2.6.
Let 𝑒 = (𝑒𝑖)𝑙𝑖=1 and 𝑑 = (𝑑𝑖)𝑘𝑖=1 be two partitions of 𝑑 ∈ N. We write 𝑒 � 𝑑 if there exist integers

𝑎0 = 0 < 𝑎1 < · · · < 𝑎𝑘−1 � 𝑎𝑘 = 𝑙

such that for any 0 � 𝑗 � 𝑘 − 1, we have

𝑎 𝑗+1∑
𝑖=𝑎 𝑗+1

𝑒𝑖 = 𝑑 𝑗+1.

We say 𝑒 is a refinement of 𝑑. There is a similarly defined order on pairs (𝑑, 𝑤) ∈ N × Z.

2.2.7.
Let A be a partition (𝑑𝑖 , 𝑤𝑖)

𝑘
𝑖=1 of (𝑑, 𝑤), and consider its corresponding antidominant cocharacter 𝜆.

Define the weights

𝜒𝐴 :=
𝑘∑
𝑖=1

𝑤𝑖𝜏𝑑𝑖 , 𝜒
′
𝐴 := 𝜒𝐴 + 𝔤

𝜆>0.

Consider weights 𝜒′𝑖 ∈ 𝑀 (𝑑𝑖)R such that

𝜒′𝐴 =
𝑘∑
𝑖=1

𝜒′𝑖 .
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Let 𝑣𝑖 be the sum of coefficients of 𝜒′𝑖 for 1 � 𝑖 � 𝑘; alternatively, 𝑣𝑖 := 〈1𝑑𝑖 , 𝜒′𝑖 〉. We denote the above
transformation by

𝐴 ↦→ 𝐴′, (𝑑𝑖 , 𝑤𝑖)
𝑘
𝑖=1 ↦→ (𝑑𝑖 , 𝑣𝑖)

𝑘
𝑖=1. (2.6)

Explicitly, the weights 𝑣𝑖 for 1 � 𝑖 � 𝑘 are given by

𝑣𝑖 = 𝑤𝑖 + 𝑑𝑖

(∑
𝑗>𝑖

𝑑 𝑗 −
∑
𝑗<𝑖

𝑑 𝑗

)
. (2.7)

2.3. Polytopes

The polytope W(𝑑) is defined as

W(𝑑) :=
3
2

sum[0, 𝛽𝑖 − 𝛽 𝑗 ] + R𝜏𝑑 ⊂ 𝑀 (𝑑)R, (2.8)

where the Minkowski sum is after all 1 � 𝑖, 𝑗 � 𝑑. For 𝑤 ∈ Z, consider the hyperplane

W(𝑑)𝑤 :=
3
2

sum[0, 𝛽𝑖 − 𝛽 𝑗 ] + 𝑤𝜏𝑑 ⊂ W(𝑑). (2.9)

For 𝑟 > 0 and 𝜆 a cocharacter of 𝑇 (𝑑), let 𝐹𝑟 (𝜆) be the face of the polytope 2𝑟W(𝑑) corresponding to
the cocharacter 𝜆, so the set of weights 𝜒 in 𝑀 (𝑑)R such that

𝜒 ∈ 2𝑟W(𝑑), 〈𝜆, 𝜒〉 = 𝑟 〈𝜆, 𝑅(𝑑)𝜆>0〉.

When 𝑟 = 1
2 , we use the notations 𝐹 (𝜆). For 𝜒 ∈ 𝑀 (𝑑)+

R
, its r-invariant 𝑟 (𝜒) is the smallest real number

r such that

𝜒 ∈ 2𝑟W(𝑑).

For a cocharacter 𝜆 of 𝑇 (𝑑), denote by

W(𝜆)0 :=
3
2

sum[0, 𝛽𝑖 − 𝛽 𝑗 ] ⊂ 𝑀 (𝑑)R,

where the sum is after all weights 1 � 𝑖, 𝑗 � 𝑑 such that 〈𝜆, 𝛽𝑖 − 𝛽 𝑗〉 = 0.

2.4. A corollary of the Borel–Weyl–Bott theorem

For future reference, we state a result from [HLS20, Section 3.2]. We continue with the notations from
Subsection 2.2.3. Let M be the weight lattice of 𝑇𝐺 . We assume that X is a symmetric G-representation,
meaning that for any weight 𝛽 of X, the weights 𝛽 and −𝛽 appear with the same multiplicity in X. Let
𝜒 be a weight in M. Let 𝜒+ be the dominant Weyl-shifted conjugate of 𝜒 if it exists and zero otherwise.
For a multiset 𝐽 ⊂ W , let

𝜎𝐽 :=
∑
𝛽∈𝐽

𝛽.

Let w be the element of the Weyl group of minimal length such that 𝑤 ∗ (𝜒 − 𝜎𝐽 ) is dominant or zero.
We let ℓ(𝐽) := ℓ(𝑤).
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Proposition 2.1. Let X be a symmetric G-representation, and let 𝜆 be an antidominant cocharacter
of 𝑇𝐺 . Recall the fixed and attracting stacks and the corresponding maps

𝑋𝜆/𝐺𝜆 𝑞𝜆
←−− 𝑋𝜆�0/𝐺𝜆�0 𝑝𝜆

−−→ 𝑋/𝐺.

For a weight 𝜒 in M, there is a quasi-isomorphism(⊕
𝐽

O𝑋 ⊗ Γ𝐺
(
(𝜒 − 𝜎𝐽 )

+
)
[|𝐽 | − ℓ(𝐽)], 𝑑

)
∼
−→ 𝑝𝜆∗𝑞

∗
𝜆 (O𝑋𝜆 ⊗ Γ𝐺𝜆 (𝜒)),

where the complex on the left-hand side has terms (shifted) vector bundles for all multisets 𝐽 ⊂ {𝛽 ∈
W | 〈𝜆, 𝛽〉 < 0}.

2.5. Matrix factorizations

In the notations from Subsection 2.2.1, we denote by

MF(X (𝑑),Tr𝑊𝑑)

the dg-category of matrix factorizations of the regular function Tr𝑊𝑑 on the smooth stack X (𝑑). Its
objects consist of tuples

(𝛼 : 𝐹 � 𝐺 : 𝛽) such that 𝛼 ◦ 𝛽 = 𝛽 ◦ 𝛼 = ·Tr𝑊𝑑 ,

where 𝐹, 𝐺 ∈ Coh(X (𝑑)); see [PTa, Subsection 2.6] for details. For an objectF ∈ MF(X (𝑑),Tr𝑊𝑑), its
internal homomorphism 𝑅H𝑜𝑚(F ,F) is an object of the Z/2-graded derived category of Coh(X (𝑑)).
The support of F

Supp(F) ⊂ X (𝑑)

is defined to be the support of 𝑅H𝑜𝑚(F ,F), which is a closed substack of X (𝑑). Alternatively, it is
the smallest closed substack Z ⊂ X (𝑑) such that F |X (𝑑)\Z � 0 in MF(X (𝑑) \ Z ,Tr𝑊𝑑).

Similarly to Equation (2.5), for 𝑑 = 𝑑1 + 𝑑2 we have the categorical Hall product

𝑚 = 𝑚𝑑1 ,𝑑2 : MF(X (𝑑1),Tr𝑊𝑑1 ) �MF(X (𝑑2),Tr𝑊𝑑2 ) → MF(X (𝑑),Tr𝑊𝑑);

see [Păd22] for details. We sometimes write 𝑎 ∗ 𝑏 instead of 𝑚(𝑎, 𝑏).
We also consider equivariant and graded matrix factorizations for the regular function (2.2); see

[PTa, Subsection 2.6.2] for details. The group (C∗)3 acts on the linear maps corresponding to the edges
(𝑥, 𝑦, 𝑧) of the quiver Q by scalar multiplication. Consider the two-dimensional subtorus

𝑇 � (C∗)2 ⊂ (C∗)3

which preserves the superpotential𝑊 = 𝑥 [𝑦, 𝑧]; see Equation (2.1). Then T acts on X (𝑑) and preserves
Tr𝑊 . We will also consider graded matrix factorizations, where the grading is given by scaling with
weight 2 the space 𝔤𝔩(𝑉) for V a vector space. For example, we can choose an edge 𝑒 ∈ {𝑥, 𝑦, 𝑧} of Q
and let C∗ scale with weight 2 the linear map corresponding to e. Contrary to the T-action, the regular
function Tr𝑊 has weight 2 with respect to such a grading. The corresponding categories of matrix
factorizations are denoted by

MF•∗ (X (𝑑),Tr𝑊𝑑) for ∗ ∈ {∅, 𝑇}, • ∈ {∅, gr}.
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2.6. Quasi-BPS categories

2.6.1.
For 𝑤 ∈ Z, we denote by 𝐷𝑏 (X (𝑑))𝑤 the subcategory of 𝐷𝑏 (X (𝑑)) consisting of objects of weight w
with respect to the diagonal cocharacter 1𝑑 of 𝑇 (𝑑). We have the direct sum decomposition

𝐷𝑏 (X (𝑑)) =
⊕
𝑤 ∈Z

𝐷𝑏 (X (𝑑))𝑤 .

We define the dg subcategories

M(𝑑) ⊂ 𝐷𝑏 (X (𝑑)), (resp.M(𝑑)𝑤 ⊂ 𝐷𝑏 (X (𝑑))𝑤 )

to be generated by the vector bundles OX (𝑑) ⊗ Γ𝐺𝐿 (𝑑) (𝜒), where 𝜒 is a dominant weight of 𝑇 (𝑑) such
that

𝜒 + 𝜌 ∈W(𝑑), (resp. 𝜒 + 𝜌 ∈W(𝑑)𝑤 ). (2.10)

Note that M(𝑑) decomposes into the direct sum of M(𝑑)𝑤 for 𝑤 ∈ Z. The following is an alternative
description of the categoryM(𝑑)𝑤 :

Lemma 2.2 [HLS20, Lemma 2.9]. The categoryM(𝑑)𝑤 is generated by the vector bundles OX (𝑑) ⊗ Γ
for Γ a 𝐺𝐿(𝑑)-representation such that the 𝑇 (𝑑)-weights of Γ are contained in the set ∇𝑤 defined by

∇𝑤 :=
{
𝜒 ∈ 𝑀R

���� − 1
2
𝑛𝜆 � 〈𝜆, 𝜒〉 �

1
2
𝑛𝜆 for all 𝜆 : C∗ → 𝑇 (𝑑)

}
+ 𝑤𝜏𝑑 .

For a partition 𝐴 = (𝑑𝑖 , 𝑤𝑖)
𝑘
𝑖=1 of (𝑑, 𝑤), define

M𝐴 := �𝑘𝑖=1M(𝑑𝑖)𝑤𝑖 . (2.11)

2.6.2.
Recall the regular function (2.2). We define the subcategory

S(𝑑) := MF(M(𝑑),Tr𝑊𝑑) ⊂ MF(X (𝑑),Tr𝑊𝑑)

to be the subcategory of matrix factorizations (𝛼 : 𝐹 � 𝐺 : 𝛽) with F and G in M(𝑑). It decomposes
into the direct sum of S(𝑑)𝑤 for 𝑤 ∈ Z, where S(𝑑)𝑤 is defined similarly to S(𝑑) usingM(𝑑)𝑤 .

We also consider subcategories for ∗ ∈ {∅, 𝑇}, • ∈ {∅, gr} defined in a similar way

S•∗ (𝑑) := MF•∗ (M(𝑑),Tr𝑊𝑑) ⊂ MF•∗ (X (𝑑),Tr𝑊𝑑).

The subcategory S•∗ (𝑑)𝑤 is also defined in a similar way. For a partition 𝐴 = (𝑑𝑖 , 𝑤𝑖)
𝑘
𝑖=1 of (𝑑, 𝑤),

the category S•
∗,𝐴 is also defined similarly to Equation (2.11). We denote the Grothendieck group of

S•∗ (𝑑)𝑤 by

𝐾∗(S
•(𝑑)𝑤 ), ∗ ∈ {∅, 𝑇}, • ∈ {∅, gr}.

By [Tod23, Corollary 3.13], there are natural isomorphisms (which hold for all graded matrix factor-
izations as in Subsection 2.5):

𝐾 (Sgr (𝑑)𝑤 )
�
→ 𝐾 (S(𝑑)𝑤 ), 𝐾𝑇 (S

gr (𝑑)𝑤 )
�
→ 𝐾𝑇 (S(𝑑)𝑤 ). (2.12)

https://doi.org/10.1017/fms.2023.103 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.103


12 T. Pădurariu and Y. Toda

2.7. Complexes in quasi-BPS categories

Let V be a d-dimensional complex vector space, and recall that we denote by 𝔤 = Hom(𝑉,𝑉) the Lie
algebra of 𝐺𝐿(𝑉). We set

Y (𝑑) := 𝔤⊕2/𝐺𝐿(𝑉),

where 𝐺𝐿(𝑉) acts on 𝔤 by conjugation. The stack Y (𝑑) is the moduli stack of representations of
dimension d of the quiver with one vertex and two loops. Let s be the morphism

𝑠 : Y (𝑑) → 𝔤, (𝑋,𝑌 ) ↦→ [𝑋,𝑌 ] . (2.13)

The morphism s induces a map of vector bundles 𝜕 : 𝔤∨ ⊗ O𝔤⊕2 → O𝔤⊕2 . Let 𝑠−1(0) be the derived
scheme with the dg-ring of regular functions

O𝑠−1 (0) := O𝔤⊕2
[
𝔤∨ ⊗ O𝔤⊕2 [1]; 𝑑𝑠

]
, (2.14)

where the differential 𝑑𝑠 is induced by the map 𝜕. Consider the (derived) stack

𝒞(𝑑) := 𝑠−1(0)/𝐺𝐿(𝑉) ↩→ Y (𝑑). (2.15)

For a smooth variety X, we denote by 𝒞𝑜ℎ(𝑋, 𝑑) the derived moduli stack of zero-dimensional sheaves
on X with length d and by C𝑜ℎ(𝑋, 𝑑) the classical truncation of 𝒞𝑜ℎ(𝑋, 𝑑). Then 𝒞(𝑑) is equivalent
to 𝒞𝑜ℎ(C2, 𝑑).

For a decomposition 𝑑 = 𝑑1 + · · · + 𝑑𝑘 , let 𝒞(𝑑1, . . . , 𝑑𝑘 ) be the derived moduli stack of filtrations
of coherent sheaves on C2:

0 = 𝑄0 ⊂ 𝑄1 ⊂ 𝑄2 ⊂ · · · ⊂ 𝑄𝑘 (2.16)

such that each subquotient 𝑄𝑖/𝑄𝑖−1 is a zero-dimensional sheaf on C2 with length 𝑑𝑖 . There exist
evaluation morphisms

𝒞(𝑑1) × · · · ×𝒞(𝑑𝑘 )
𝑞
← 𝒞(𝑑1, . . . , 𝑑𝑘 )

𝑝
→ 𝒞(𝑑),

where p is proper and q is quasi-smooth. The above diagram for 𝑘 = 2 defines the categorical Hall
product

𝑚 = 𝑚𝑑1 ,𝑑2 = 𝑝∗𝑞
∗ : 𝐷𝑏 (𝒞(𝑑1)) � 𝐷𝑏 (𝒞(𝑑2)) → 𝐷𝑏 (𝒞(𝑑)), (2.17)

which is a special case of the product of categorical Hall algebras for surfaces defined by Porta–Sala
[PS23].

Let T be the two-dimensional torus in Equation (2.1) which acts on C2 by (𝑡1, 𝑡2) · (𝑥, 𝑦) = (𝑡1𝑥, 𝑡2𝑦).
It naturally induces an action on 𝒞(𝑑). There is also a T-equivariant Hall product

𝑚 = 𝑚𝑑1 ,𝑑2 = 𝑝∗𝑞
∗ : 𝐷𝑏

𝑇 (𝒞(𝑑1)) � 𝐷𝑏
𝑇 (𝒞(𝑑2)) → 𝐷𝑏

𝑇 (𝒞(𝑑)). (2.18)

Here, the box product is taken over 𝐵𝑇 . In what follows, whenever we take a box-product in the
T-equivariant setting, we take it over 𝐵𝑇 . We also use the notation ∗ for the Hall product.

2.8. Subcategories T(𝑑)𝑣
Let

𝑖 : 𝒞(𝑑) ↩→ Y (𝑑) (2.19)
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be the natural closed immersion. Define the full triangulated subcategory

T̃(𝑑)𝑣 ⊂ 𝐷𝑏 (Y (𝑑))

generated by the vector bundles OY (𝑑) ⊗ Γ𝐺𝐿 (𝑑) (𝜒) for a dominant weight 𝜒 satisfying

𝜒 + 𝜌 ∈W(𝑑)𝑣 .

Define the full triangulated subcategory

T(𝑑)𝑣 ⊂ 𝐷𝑏 (𝒞(𝑑)) (2.20)

with objects E such that 𝑖∗E is in T̃(𝑑)𝑣 . In [PTa, Lemma 4.8], we showed that the Hall product restricts
to functors

𝑚 : T(𝑑1)𝑣1 ⊗ T(𝑑2)𝑣2 → T(𝑑)𝑣

for (𝑑, 𝑣) = (𝑑1, 𝑣1) + (𝑑2, 𝑣2) and 𝑣1
𝑑1

= 𝑣2
𝑑2

. Also, there is a semiorthogonal decomposition; see [Păd23,
Corollary 3.3]:

𝐷𝑏 (𝒞(𝑑)) =

〈
T(𝑑1)𝑣1 � · · · � T(𝑑𝑘 )𝑣𝑘

���� 𝑣1/𝑑1 < · · · < 𝑣𝑘/𝑑𝑘
𝑑1 + · · · + 𝑑𝑘 = 𝑑

〉
. (2.21)

In the above, each fully faithful functor

T(𝑑1)𝑣1 � · · · � T(𝑑𝑘 )𝑣𝑘 ↩→ 𝐷𝑏 (𝒞(𝑑))

is given by the categorical Hall product (2.17).
Consider the grading induced by the action of C∗ on X (𝑑) scaling the linear map corresponding to

Z with weight 2. The Koszul duality equivalence, also called dimensional reduction in the literature,
gives the following equivalence [Isi13, Hir17, Toda]:

Φ : 𝐷𝑏 (𝒞(𝑑))
∼
→ MFgr (X (𝑑),Tr𝑊). (2.22)

Under this equivalence, we have that Φ : T(𝑑)𝑣
∼
→ Sgr (𝑑)𝑣 .

2.9. Constructions of objects in T(𝑑)𝑣
Here, we review the construction of objects E𝑑,𝑣 ∈ T(𝑑)𝑣 (which also produces an object in T𝑇 (𝑑)𝑣 )
following [PTa, Subsection 4.3]. Let Z ⊂ 𝒞(1, 1, . . . , 1) be the closed substack defined as follows. Let
𝜆 be the cocharacter

𝜆 : C∗ → 𝐺𝐿(𝑉), 𝑡 ↦→ (𝑡𝑑 , 𝑡𝑑−1, . . . , 𝑡). (2.23)

The attracting stack of Y (𝑑) with respect to 𝜆 is given by

Y (𝑑)𝜆�0 :=
(
𝔤𝜆�0

) ⊕2/
𝐺𝐿(𝑉)𝜆�0, (2.24)

where 𝐺𝐿(𝑉)𝜆�0 ⊂ 𝐺𝐿(𝑉) is the subgroup of upper triangular matrices. Then the morphism (2.13)
restricts to the morphism

𝑠𝜆�0 : Y (𝑑)𝜆�0 → 𝔤𝜆�0 (2.25)
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whose derived zero locus 𝒞(𝑑)𝜆�0 is equivalent to 𝒞(1, . . . , 1). Let 𝑋 = (𝑥𝑖, 𝑗 ) and 𝑌 = (𝑦𝑖, 𝑗 ) be
elements of 𝔤𝜆�0 for 1 � 𝑖, 𝑗 � 𝑑, where 𝑥𝑖, 𝑗 = 𝑦𝑖, 𝑗 = 0 for 𝑖 > 𝑗 . Then the equation 𝑠𝜆�0(𝑋,𝑌 ) = 0 is
equivalent to the equations ∑

𝑖�𝑎� 𝑗

𝑥𝑖,𝑎𝑦𝑎, 𝑗 =
∑
𝑖�𝑎� 𝑗

𝑦𝑖,𝑎𝑥𝑎, 𝑗 ,

for each (𝑖, 𝑗) with 𝑖 � 𝑗 . We call the above equation E𝑖, 𝑗 . The equation E𝑖,𝑖 is 𝑥𝑖,𝑖𝑦𝑖,𝑖 − 𝑦𝑖,𝑖𝑥𝑖,𝑖 = 0,
which always holds but imposes a nontrivial derived structure on 𝒞(1, . . . , 1). The equation E𝑖,𝑖+1 is

(𝑥𝑖,𝑖 − 𝑥𝑖+1,𝑖+1)𝑦𝑖,𝑖+1 − (𝑦𝑖,𝑖 − 𝑦𝑖+1,𝑖+1)𝑥𝑖,𝑖+1 = 0.

The above equation is satisfied if the following equation F𝑖,𝑖+1 is satisfied:

{𝑥𝑖,𝑖 − 𝑥𝑖+1,𝑖+1 = 0, 𝑦𝑖,𝑖 − 𝑦𝑖+1,𝑖+1 = 0}.

We define the closed derived substack

Z := Z (𝑑) ⊂ Y𝜆�0 (𝑑) (2.26)

to be the derived zero locus of the equations F𝑖,𝑖+1 for all i and E𝑖, 𝑗 for all 𝑖 + 2 � 𝑗 . We usually
drop d from the notation if the dimension is clear from the context. Then Z is a closed substack of
𝒞(𝑑)𝜆�0 = 𝒞(1, . . . , 1). Note that, set theoretically, the closed substack Z corresponds to filtrations
(2.16) such that each 𝑄𝑖/𝑄𝑖−1 is isomorphic to O𝑥 for some 𝑥 ∈ C2 independent of i.

We have the diagram of attracting loci

𝒞(1)×𝑑 = 𝒞(𝑑)𝜆
𝑞
← 𝒞(𝑑)𝜆�0 𝑝

→ 𝒞(𝑑),

where p is a proper morphism. We set

𝑚𝑖 :=
⌈
𝑣𝑖

𝑑

⌉
−

⌈
𝑣(𝑖 − 1)

𝑑

⌉
+ 𝛿𝑑𝑖 − 𝛿

1
𝑖 ∈ Z, (2.27)

where 𝛿 𝑗𝑖 is the Kronecker delta function defined by 𝛿
𝑗
𝑖 = 1 if 𝑖 = 𝑗 and 𝛿

𝑗
𝑖 = 0 otherwise. For a weight

𝜒 =
∑𝑑
𝑖=1 𝑛𝑖𝛽𝑖 with 𝑛𝑖 ∈ Z, we denote by C(𝜒) the one-dimensional 𝐺𝐿(𝑉)𝜆�0-representation given by

𝐺𝐿(𝑉)𝜆�0 → 𝐺𝐿(𝑉)𝜆 = 𝑇 (𝑑)
𝜒
→ C∗,

where the first morphism is the projection.

Definition 2.3 [PTa, Definition 4.2]. We define the complex E𝑑,𝑣 by

E𝑑,𝑣 := 𝑝∗(OZ ⊗ C(𝑚1, . . . , 𝑚𝑑)) ∈ 𝐷
𝑏 (𝒞(𝑑))𝑣 . (2.28)

The construction above is T-equivariant, so we also obtain an object E𝑑,𝑣 ∈ 𝐷𝑏
𝑇 (𝒞(𝑑))𝑣 .

In [PTa, Lemma 4.3], we showed that E𝑑,𝑣 is an object of T(𝑑)𝑣 and T𝑇 (𝑑)𝑣 .
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2.10. Shuffle algebras

2.10.1.
Consider the N-graded K-module:

Sℎ :=
⊕
𝑑�0
K

[
𝑧±1

1 , . . . , 𝑧±1
𝑑

]𝔖𝑑
.

We define a shuffle product on Sℎ as follows. Let 𝜉 (𝑥) be defined by

𝜉 (𝑥) :=
(1 − 𝑞−1

1 𝑥) (1 − 𝑞−1
2 𝑥) (1 − 𝑞−1𝑥−1)

1 − 𝑥
,

where 𝑞 := 𝑞1𝑞2. For 𝑓 ∈ K
[
𝑧±1 , . . . , 𝑧

±
𝑎

]
and 𝑔 ∈ K

[
𝑧±𝑎+1, . . . , 𝑧

±
𝑎+𝑏

]
, we set

𝑓 ∗ 𝑔 :=
1

𝑎!𝑏!
Sym

����� 𝑓 𝑔 ·
∏

1�𝑖�𝑎,
𝑎< 𝑗�𝑎+𝑏

𝜉 (𝑧𝑖𝑧
−1
𝑗 )

�����, (2.29)

where we denote by Sym(ℎ(𝑧1, . . . , 𝑧𝑑)) the sum of ℎ(𝑧𝜎 (1) , . . . , 𝑧𝜎 (𝑑) ) after all permutations 𝜎 ∈ 𝔖𝑑 .
Let S ⊂ Sℎ be the subalgebra generated by 𝑧𝑙1 for 𝑙 ∈ Z. Let SF := S ⊗K F. It is proved in [Neg23,
Theorem 4.6] that there is an isomorphism

𝑖∗ :
⊕
𝑑�0

𝐺𝑇 (𝒞(𝑑)) ⊗K F
�
→ SF. (2.30)

The above isomorphism is induced by the algebra homomorphism which will be defined in Equation
(2.37).

2.10.2.
Let

S ′ ⊂
⊕
𝑑�0
K(𝑧1, . . . , 𝑧𝑑)

𝔖𝑑

be the K-subalgebra generated by elements of the form

𝐴′𝑘• := Sym

(
𝑧𝑘1

1 · · · 𝑧
𝑘𝑑
𝑑

(1 − 𝑞−1𝑧−1
1 𝑧2) · · · (1 − 𝑞−1𝑧−1

𝑑−1𝑧𝑑)
·
∏
𝑗>𝑖

𝑤(𝑧𝑖𝑧
−1
𝑗 )

)
(2.31)

for various (𝑘1, . . . , 𝑘𝑑) ∈ Z
𝑑 and 𝑑 � 1, for the shuffle product (2.29) where we replace 𝜉 (𝑥) with

𝑤(𝑥) defined by

𝑤(𝑥) :=
(1 − 𝑞−1

1 𝑥) (1 − 𝑞−1
2 𝑥)

(1 − 𝑥) (1 − 𝑞−1𝑥)
.

Let S ′
F

:= S ′ ⊗K F. Consider the morphism⊕
𝑑�0
F[𝑧±1

1 , . . . , 𝑧±1
𝑑 ]

𝔖𝑑 →
⊕
𝑑�0
F(𝑧1, . . . , 𝑧𝑑)

𝔖𝑑 (2.32)
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16 T. Pădurariu and Y. Toda

defined by

𝑓 (𝑧1, . . . , 𝑧𝑑) ↦→ 𝑓 (𝑧1, . . . , 𝑧𝑑) ·
∏
𝑖≠ 𝑗

(1 − 𝑞−1𝑧𝑖𝑧
−1
𝑗 )
−1.

Then Equation (2.32) induces an algebra homomorphism S → S ′. There is an isomorphism

SF
�
→ S ′F, (2.33)

see [PTa, Proof of Lemma 4.11]. For (𝑑, 𝑣) ∈ N × Z, we set 𝐴′𝑑,𝑣 to be 𝐴′𝑚• for the choice of 𝑚• in
Equation (2.27). By [Neg22, Equation (2.12)], we have the following isomorphism of K-modules:

S ′ =
⊕

𝑣1/𝑑1� · · ·�𝑣𝑘/𝑑𝑘

K · 𝐴′𝑑1 ,𝑣1
∗ · · · ∗ 𝐴′𝑑𝑘 ,𝑣𝑘 , (2.34)

where the tuples (𝑑𝑖 , 𝑣𝑖)𝑘𝑖=1 appearing above are unordered for subtuples (𝑑𝑖 , 𝑣𝑖)𝑏𝑖=𝑎 with 𝑣𝑎/𝑑𝑎 = · · · =
𝑣𝑏/𝑑𝑏 . We also define

𝐴𝑑,𝑣 := Sym

(
𝑧𝑚1

1 · · · 𝑧
𝑚𝑑

𝑑

(1 − 𝑞−1𝑧−1
1 𝑧2) · · · (1 − 𝑞−1𝑧−1

𝑑−1𝑧𝑑)
·
∏
𝑗>𝑖

𝜉 (𝑧𝑖𝑧
−1
𝑗 )

)
, (2.35)

where the exponents 𝑚𝑖 for 1 � 𝑖 � 𝑑 are given by Equation (2.27).

2.10.3.
The T-equivariant Hall product (2.18) induces an associative algebra structure

𝑚 : 𝐺𝑇 (𝒞(𝑑1)) ⊗K 𝐺𝑇 (𝒞(𝑑2)) → 𝐺𝑇 (𝒞(𝑑)). (2.36)

Let 𝑖 : 𝒞(𝑑) ↩→ Y (𝑑) be the closed immersion. The pull-back via Y (𝑑) → 𝐵𝐺𝐿(𝑑) gives the isomor-
phism ⊕

𝑑�0
𝐾𝑇 (𝐵𝐺𝐿(𝑑)) =

⊕
𝑑�0
K

[
𝑧±1

1 , . . . , 𝑧±1
𝑑

]𝔖𝑑 �
→

⊕
𝑑�0

𝐾𝑇 (Y (𝑑)).

Therefore, the push-forward by i induces a morphism

𝑖∗ :
⊕
𝑑�0

𝐺𝑇 (𝒞(𝑑)) →
⊕
𝑑�0
K

[
𝑧±1

1 , . . . , 𝑧±1
𝑑

]𝔖𝑑
. (2.37)

The product (2.36) is compatible with a shuffle product defined on the right-hand side of Equation
(2.37); see [PTa, Subsection 4.5]. In [PTa, Lemma 4.11], we showed that

𝑖∗ [E𝑑,𝑣 ] = (1 − 𝑞−1
1 )

𝑑−1(1 − 𝑞−1
2 )

𝑑−1𝐴𝑑,𝑣 . (2.38)

2.11. Compatibility of the Hall product under the Koszul equivalence

In this subsection, we denote by m the Hall product (2.17) and by 𝑚 the Hall product for the quiver
with potential (𝑄,𝑊) from Subsection 2.2.1. Using the results in [Toda, Section 2.4], Koszul duality
equivalences are compatible with the Hall products by the following commutative diagram (see [Păd23,
Proposition 3.1]):
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𝐷𝑏 (𝒞(𝑑1)) � 𝐷𝑏 (𝒞(𝑑2))
𝑚 ��

Φ̃
��

𝐷𝑏 (𝒞(𝑑))

Φ
��

MFgr (X (𝑑1),Tr𝑊𝑑1) �MFgr(X (𝑑2),Tr𝑊𝑑2 )
𝑚̃ �� MFgr (X (𝑑),Tr𝑊𝑑),

(2.39)

where the left arrow Φ̃ is the composition of Koszul duality equivalences (2.22) with the tensor product of

det((𝔤𝜈>0)∨(2)) [− dim𝔤𝜈>0] = (det𝑉1)
−𝑑2 ⊗ (det𝑉2)

𝑑1 [𝑑1𝑑2] . (2.40)

The cocharacter 𝜈 : C∗ → 𝑇 (𝑑) is 𝜈(𝑡) = (

𝑑1︷��︸︸��︷
𝑡, . . . , 𝑡,

𝑑2︷���︸︸���︷
1, . . . , 1), the vector spaces 𝑉𝑖 have dim𝑉𝑖 = 𝑑𝑖 for

𝑖 = 1, 2 and (1) is a twist by the weight one C∗-character, which is isomorphic to the shift functor [1]
of the category of graded matrix factorizations.

2.12. Symmetric polynomials

LetΛ be theZ-algebra of symmetric polynomials [Mac79, Chapter I, Section 2], [Sch12, Subsection 2.4]:

Λ � lim
←−−
Z[𝑥1, . . . , 𝑥𝑛]

𝔖𝑛 ,

with multiplication defined by

𝑓 (𝑥1, . . . , 𝑥𝑎) ★ 𝑔(𝑥𝑎+1, . . . , 𝑥𝑎+𝑏) :=
∑

𝔖𝑎+𝑏/𝔖𝑎×𝔖𝑏

𝑤( 𝑓 (𝑥1, . . . , 𝑥𝑎)𝑔(𝑥𝑎+1, . . . , 𝑥𝑎+𝑏))

and comultiplication induced by the restriction map

Z[𝑥1, . . . , 𝑥𝑎+𝑏]
𝔖𝑎+𝑏 → Z[𝑥1, . . . , 𝑥𝑎]

𝔖𝑎 ⊗ Z[𝑥𝑎+1, . . . , 𝑥𝑎+𝑏]
𝔖𝑏 .

Alternatively, Λ is isomorphic to the Grothendieck group of the monoidal category

R :=
⊕
𝑛�0

Rep(𝔖𝑛),

where Rep(𝔖𝑛) is the abelian category of finite-dimensional𝔖𝑛-representations, multiplication is given
by the induction functor

Ind : Rep(𝔖𝑎 ×𝔖𝑏) → Rep(𝔖𝑎+𝑏),

and comultiplication is given by the restriction functor

Res : Rep(𝔖𝑎+𝑏) → Rep(𝔖𝑎 ×𝔖𝑏).

The isomorphism R �
→ Λ is given by sending an irreducible 𝔖𝑛-representation 𝑊𝜆 corresponding to a

partition 𝜆 of n to the Schur function 𝑠𝜆, see [Mac79, Chapter I, Equation (7.5)].
For R a ring with a map Z → 𝑅, denote by Λ𝑅 := 𝑅 ⊗Z Λ the R-algebra with multiplication and

comultiplication induced from those of Λ. Consider the elementary symmetric functions

𝑒𝑛 :=
∑

𝑖1<...<𝑖𝑛

𝑥𝑖1 . . . 𝑥𝑖𝑛 ∈ Λ
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18 T. Pădurariu and Y. Toda

and the power sum functions

𝑝𝑛 :=
∑
𝑖

𝑥𝑛𝑖 ∈ Λ.

We also denote by 𝑒𝑛 and 𝑝𝑛 the images of these symmetric functions in Λ𝑅. Let t be a formal variable.
These functions are connected via the identity∑

𝑛�0
𝑒𝑛𝑡

𝑛 = exp

(∑
𝑛�1

(−1)𝑛+1

𝑛
𝑝𝑛𝑡

𝑛

)
. (2.41)

There are isomorphisms (see [Mac79, Chapter I, Equations (2.4), (2.14)]):

ΛQ � Q[𝑒1, 𝑒2, . . .] � Q[𝑝1, 𝑝2, . . .] . (2.42)

For 𝑛 � 1, let 𝑃(𝑛) be the free one-dimensional Z-module with generator 𝑝𝑛. By Equation (2.42), there
is an isomorphism of N-graded Q-vector spaces

ΛQ �
⊗
𝑛�1

Sym
(
𝑃(𝑛)Q

)
. (2.43)

3. The support of complexes in quasi-BPS categories

Recall the regular function (2.2). Consider the commutative diagram

C𝑜ℎ(C3, 𝑑)

𝜋

��

Crit(Tr𝑊𝑑)
� � �� X (𝑑)

Tr𝑊𝑑

���
��

��
��

�

𝜋

��

Sym𝑑 (C3) �
�

�� 𝑋 (𝑑) �� C,

(3.1)

where the vertical arrows are good moduli space morphisms and the horizontal arrows are closed im-
mersions. The left vertical arrow sends a zero-dimensional sheaf to its support. Let Δ : C3 ⊂ Sym𝑑 (C3)
be the small diagonal

C3 ⊂ Sym𝑑 (C3), 𝑥 ↦→ (𝑥, . . . , 𝑥).

We abuse notation and denote the image of Δ also by Δ � C3. We consider the pull-back 𝜋−1 (Δ) ⊂
C𝑜ℎ(C3, 𝑑), which is a closed substack of Crit(Tr𝑊𝑑) ⊂ X (𝑑). Davison [Davb, Theorem 5.1] showed
that the BPS sheaf for the moduli stack of degree d sheaves on C3 is

B𝑃𝑆𝑑 = Δ∗ICC3 .

Recall the notations involving formal completions from Subsection 2.1. The following is the main result
of this section, which will be proved in Subsection 3.1:

Theorem 3.1. Consider a pair (𝑑, 𝑤) ∈ N × Z, and let F be an object in S(𝑑)𝑤 . Assume there exists
𝑝 ∈ Sym𝑑 (C3) \ Δ such that the support of F intersects 𝜋−1 (𝑝). Write 𝑝 =

∑𝑙
𝑖=1 𝑝

(𝑖) , 𝑝 (𝑖) =
𝑑 (𝑖)𝑥 (𝑖) , 𝑑 (𝑖) ∈ Z>0, 𝑥 (𝑖) ≠ 𝑥 (𝑖

′) for 𝑖 ≠ 𝑖′ and 𝑙 � 2. Then there exist nonzero objects F𝑖 ∈

MF(X𝑝 (𝑖) (𝑑
(𝑖) ),Tr𝑊𝑑 (𝑖) )𝑤 (𝑖) for 1 � 𝑖 � 𝑙 with

𝑤 (1)

𝑑 (1)
= · · · =

𝑤 (𝑙)

𝑑 (𝑙)
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and 𝑤 (1) + · · · + 𝑤 (𝑙) = 𝑤. In particular, if gcd(𝑑, 𝑤) = 1, then any object in S(𝑑)𝑤 is supported on
𝜋−1 (Δ). The same result holds for the categories S•∗ (𝑑)𝑤 introduced in Subsection 2.6.2.

In Subsection 4.1, we discuss divisibility properties of complexes supported on 𝜋−1 (Δ); see
Lemma 4.1. In Subsection 4.2, we use Theorem 3.1 and Lemma 4.1 to show that 𝐾𝑇 (S(𝑑)𝑤 )′ is a
free K-module with generator [E𝑑,𝑤 ] when gcd(𝑑, 𝑤) = 1.

3.1. Proof of the main result

Proof of Theorem 3.1. Suppose that an object F ∈ S(𝑑)𝑤 has support not contained in 𝜋−1 (Δ). Then
there is 𝑝 ∈ Sym𝑑 (C3) \ Δ such that F |X𝑝 (𝑑) ≠ 0 in MF(X𝑝 (𝑑),Tr𝑊𝑑), where X𝑝 (𝑑) is the formal
fiber of p along the good moduli space morphism X (𝑑) → 𝑋 (𝑑). Since 𝑝 ∉ Δ , it is written as

𝑝 =
𝑙∑
𝑖=1

𝑝 (𝑖) , 𝑝 (𝑖) = 𝑑 (𝑖)𝑥 (𝑖) , 𝑑 (𝑖) ∈ Z>0, 𝑥
(𝑖) ≠ 𝑥 (𝑖

′) for 𝑖 ≠ 𝑖′, 𝑙 � 2.

The unique closed point in 𝜋−1 (𝑝) corresponds to the semisimple Q-representation

𝑅 =
𝑙⊕
𝑖=1

𝑉 (𝑖) ⊗ 𝑅 (𝑖) ,

where 𝑅 (𝑖) is the one-dimensional Q-representation corresponding toO𝑥 (𝑖) and𝑉 (𝑖) is a 𝑑 (𝑖) -dimensional
vector space such that 𝑑 (1) + · · · + 𝑑 (𝑙) = 𝑑. Below we write a basis of 𝑉 (𝑖) as 𝛽 (𝑖)1 , . . . , 𝛽 (𝑖)

𝑑 (𝑖)
and set

{𝛽1, . . . , 𝛽𝑑} = {𝛽
(1)
1 , . . . , 𝛽 (1)

𝑑 (1)
, 𝛽 (2)1 , . . . , 𝛽 (2)

𝑑 (2)
, . . .}.

The étale slice theorem implies that

X𝑝 (𝑑) � Êxt
1
𝑄 (𝑅, 𝑅)/𝐺 𝑝, (3.2)

where 𝐺 𝑝 = Aut(𝑅) =
∏𝑙

𝑖=1 𝐺𝐿(𝑉
(𝑖) ) and Êxt

1
𝑄 (𝑅, 𝑅) is the formal fiber of the origin along the

morphism Ext1𝑄 (𝑅, 𝑅) → Ext1𝑄 (𝑅, 𝑅)//𝐺 𝑝. By Lemma 3.2, the Ext-group Ext1𝑄 (𝑅, 𝑅) is computed as
follows:

Ext1𝑄 (𝑅, 𝑅) =
𝑙⊕
𝑖=1

End(𝑉 (𝑖) , 𝑉 (𝑖) ) ⊕3 ⊕
⊕
𝑖≠ 𝑗

Hom(𝑉 (𝑖) , 𝑉 ( 𝑗) ) ⊕2. (3.3)

Note that the maximal torus 𝑇 (𝑑) ⊂ 𝐺𝐿(𝑉) is contained in 𝐺 𝑝 .
We define

S𝑝 (𝑑)𝑤 ⊂ MF(X𝑝 (𝑑),Tr𝑊𝑑)

to be the full subcategory generated by matrix factorizations whose entries are of the form Γ𝐺𝑝 (𝜒) ⊗O,
where 𝜒 is a 𝐺 𝑝-dominant 𝑇 (𝑑)-weight satisfying

𝜒 + 𝜌𝑝 ∈W𝑝 (𝑑)𝑤 . (3.4)

Here, 𝜌𝑝 is half the sum of positive roots of 𝐺 𝑝 and W𝑝 (𝑑)𝑤 is defined as in Equation (2.9) for the
𝐺 𝑝-representation Ext1𝑄 (𝑅, 𝑅)

W𝑝 (𝑑)𝑤 :=
1
2

sum[0, 𝛽] + 𝑤𝜏𝑑 ,
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where the Minkowski sum is after all weights 𝛽 in Ext1𝑄 (𝑅, 𝑅). By Lemma 3.5, we have F |X𝑝 (𝑑) ∈

S𝑝 (𝑑)𝑤 , in particular S𝑝 (𝑑)𝑤 ≠ 0.
Below, in order to simplify the notation, we treat the case 𝑙 = 2. Since any zero-dimensional sheaf Q

on C3 supported on p decomposes into 𝑄 (1) ⊕ 𝑄 (2) , where 𝑄 (𝑖) is supported on 𝑥 (𝑖) , we have

Ĉ𝑜ℎ𝑝 (C3, 𝑑) = Crit(Tr𝑊𝑑 |X𝑝 (𝑑) ) = Ĉ𝑜ℎ𝑝 (1) (C3, 𝑑 (1) ) × Ĉ𝑜ℎ𝑝 (2) (C3, 𝑑 (2) ). (3.5)

Here, Ĉ𝑜ℎ𝑝 (C3, 𝑑) is the formal fiber of the left vertical arrow in Equation (3.1) at p. Indeed, by
Lemma 3.3, we can show that, by replacing the isomorphism (3.2) if necessary, the regular function
Tr𝑊𝑑 restricted to X𝑝 (𝑑) is written as

Tr𝑊𝑑 |X𝑝 (𝑑) = Tr𝑊𝑑 (1) � Tr𝑊𝑑 (2) � 𝑞. (3.6)

Here, Tr𝑊𝑑 (𝑖) is the regular function (2.2) on X (𝑑 (𝑖) ) restricted to X𝑝 (𝑖) (𝑑
(𝑖) ) and q is a nondegenerate

𝐺 𝑝-invariant quadratic form on 𝑈 ⊕ 𝑈∨ given by 𝑞(𝑢, 𝑣) = 〈𝑢, 𝑣〉, where U is the following self-dual
𝐺 𝑝-representation

𝑈 := Hom(𝑉 (1) , 𝑉 (2) ) ⊕ Hom(𝑉 (2) , 𝑉 (1) ).

The decomposition (3.6) in particular implies Equation (3.5).
We have the following diagram

U � � 𝑖 ��

𝑝

��

U ⊕ U∨ X𝑝 (𝑑)
𝑗

��

X𝑝 (1) (𝑑
(1) ) × X𝑝 (2) (𝑑

(2) ),

where U is the vector bundle on X𝑝 (1) (𝑑
(1) ) × X𝑝 (2) (𝑑

(2) ) determined by the 𝐺 𝑝-representation U, i
is the closed immersion 𝑥 ↦→ (𝑥, 0), and j is the natural morphism induced by the formal completion
which induces the isomorphism on critical loci of Tr𝑊𝑑 . We have the following functors

Ψ := 𝑗∗𝑖∗𝑝
∗ : MF(X𝑝 (1) (𝑑

(1) ),Tr𝑊𝑑 (1) ) �MF(X𝑝 (2) (𝑑
(2) ),Tr𝑊𝑑 (2) ) (3.7)

∼
→ MF(U ⊕ U∨,Tr𝑊𝑑)

𝑗∗

↩→ MF(X𝑝 (𝑑),Tr𝑊𝑑).

Here, the first arrow is an equivalence by Knörrer periodicity (see [Hir17, Theorem 4.2]), and the second
arrow is fully faithful with dense image (see [Todb, Lemma 6.4]). By Lemma 3.4, the above functor
restricts to the fully faithful functor⊕

𝑤 (1) +𝑤 (2)=𝑤
𝑤 (1) /𝑑 (1)=𝑤 (2) /𝑑 (2)

S𝑝 (1) (𝑑
(1) )𝑤 (1) � S𝑝 (2) (𝑑

(2) )𝑤 (2) → S𝑝 (𝑑)𝑤 . (3.8)

Below, we show that the above functor (3.8) has dense image, and thus the conclusion follows. By
the semiorthogonal decomposition (2.21) together with Equation (2.39), we have

MF(X (𝑑),Tr𝑊𝑑) (3.9)

=

〈
∗𝑘𝑖=1S(𝑑𝑖)𝑣𝑖+𝑑𝑖 (

∑
𝑖> 𝑗 𝑑 𝑗−

∑
𝑗>𝑖 𝑑 𝑗 )

���� 𝑣1
𝑑1

< · · · <
𝑣𝑘
𝑑𝑘

, 𝑑1 + · · · + 𝑑𝑘 = 𝑑

〉
.
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The weights 𝑤𝑖 := 𝑣𝑖 + 𝑑𝑖 (
∑
𝑖> 𝑗 𝑑 𝑗 −

∑
𝑗>𝑖 𝑑 𝑗 ) are computed as in Equation (2.7):

𝑘∑
𝑖=1

𝑤𝑖𝜏𝑑𝑖 =
𝑘∑
𝑖=1

𝑣𝑖𝜏𝑑𝑖 − 𝔤
𝜆>0, (3.10)

where 𝔤 is the Lie algebra of 𝐺𝐿(𝑑) and 𝜆 is the antidominant cocharacter corresponding to the
decomposition 𝑑 = 𝑑1 + · · · + 𝑑𝑘 :

𝜆(𝑡) = (

𝑑1︷�����︸︸�����︷
𝑡𝑘 , . . . , 𝑡𝑘 ,

𝑑2︷�����������︸︸�����������︷
𝑡𝑘−1, . . . , 𝑡𝑘−1, . . . ,

𝑑𝑘︷��︸︸��︷
𝑡, . . . , 𝑡). (3.11)

For 𝑥 ∈ C3, let 𝑞 = 𝑑 [𝑥] := (𝑥, . . . , 𝑥) ∈ Sym𝑑 (C3). Since 𝐺𝑞 = 𝐺𝐿(𝑉) and X𝑞 (𝑑) � 𝔤⊕3
𝑑 [0]/𝐺𝐿(𝑉),

the argument showing Equation (3.9) applies verbatim to show the semiorthogonal decomposition

MF(X𝑞 (𝑑),Tr𝑊𝑑) (3.12)

=

〈
∗𝑘𝑖=1S𝑞 (𝑑𝑖)𝑣𝑖+𝑑𝑖 (

∑
𝑖> 𝑗 𝑑 𝑗−

∑
𝑗>𝑖 𝑑 𝑗 )

���� 𝑣1
𝑑1

< · · · <
𝑣𝑘
𝑑𝑘

, 𝑑1 + · · · + 𝑑𝑘 = 𝑑

〉
.

From Equation (3.12), the left-hand side of Equation (3.7) admits a semiorthogonal decomposition
S whose summands are of the form

∗𝑎𝑖=1S𝑝 (1)𝑖
(𝑑 (1)𝑖 )𝑣 (1)𝑖 +𝑑

(1)
𝑖 (

∑
𝑖> 𝑗 𝑑

(1)
𝑗 −

∑
𝑗>𝑖 𝑑

(1)
𝑗 )
� ∗𝑏𝑖=1S𝑝 (2)𝑖

(𝑑 (2)𝑖 )𝑣 (2)𝑖 +𝑑
(2)
𝑖 (

∑
𝑖> 𝑗 𝑑

(2)
𝑗 −

∑
𝑗>𝑖 𝑑

(2)
𝑗 )

. (3.13)

Here, the left-hand side in Equation (3.8) comes to the rightmost part of the semiorthogonal decompo-
sition S, 𝑝 ( 𝑗)𝑖 = 𝑑

( 𝑗)
𝑖 𝑥 ( 𝑗) , the integers 𝑑 ( 𝑗)𝑖 satisfy

𝑑 (1)1 + · · · + 𝑑
(1)
𝑎 = 𝑑 (1) , 𝑑 (2)1 + · · · + 𝑑

(2)
𝑏 = 𝑑 (2) ,

and we have the inequalities

𝑣 (1)1

𝑑 (1)1

< · · · <
𝑣 (1)𝑎

𝑑 (1)𝑎
,
𝑣 (2)1

𝑑 (2)1

< · · · <
𝑣 (2)𝑏

𝑑 (2)𝑏

.

We write {
𝑣 (1)1

𝑑 (1)1

, . . . ,
𝑣 (1)𝑎

𝑑 (1)𝑎
, . . . ,

𝑣 (2)1

𝑑 (2)1

, . . . ,
𝑣 (2)𝑏

𝑑 (2)𝑏

}
= {𝜇1 < · · · < 𝜇𝑘 },

where k is the number of distinct elements in the left-hand side. For 1 � 𝑖 � 𝑘 , we replace (𝑑 ( 𝑗)𝑖 , 𝑣
( 𝑗)
𝑖 ) by

(𝑑
( 𝑗)
𝑖 , 𝑣

( 𝑗)
𝑖 ) ↦→

{
(𝑑
( 𝑗)
𝑙 , 𝑣

( 𝑗)
𝑙 ), if 𝜇𝑖 = 𝑣

( 𝑗)
𝑙 /𝑑

( 𝑗)
𝑙 for some 𝑙,

(0, 0), otherwise.

The subcategory (3.13) of Equation (3.8) is unchanged under the above replacement. Therefore, we may
assume that 𝑎 = 𝑏 = 𝑘 and, by setting (𝑑𝑖 , 𝑣𝑖) = (𝑑 (1)𝑖 , 𝑣 (1)𝑖 ) + (𝑑

(2)
𝑖 , 𝑣 (2)𝑖 ), we have

𝑣𝑖
𝑑𝑖

=
𝑣
( 𝑗)
𝑖

𝑑
( 𝑗)
𝑖

,
𝑣1
𝑑1

< · · · <
𝑣𝑘
𝑑𝑘

.

Here, the first identity holds whenever (𝑑 ( 𝑗)𝑖 , 𝑣
( 𝑗)
𝑖 ) ≠ (0, 0).
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Let us take decompositions 𝑉 ( 𝑗) = ⊕𝑘𝑖=1𝑉
( 𝑗)
𝑖 with dim𝑉

( 𝑗)
𝑖 = 𝑑

( 𝑗)
𝑖 and a cocharacter as in Equation

(3.11)

𝜆 : C∗ → 𝐺𝐿(𝑉 (1) ) × 𝐺𝐿(𝑉 (2) ) (3.14)

which acts on 𝑉
( 𝑗)
𝑖 with weight 𝑘 + 1 − 𝑖. The diagrams of attracting loci with respect to 𝜆 give the

commutative diagram; see [Todb, Proposition 2.5]:

�𝑘𝑖=1(MF(X
𝑝
(1)
𝑖
(𝑑 (1)𝑖 ),Tr𝑊

𝑑
(1)
𝑖
) � (MF(X

𝑝
(2)
𝑖
(𝑑 (2)𝑖 ),Tr𝑊

𝑑
(2)
𝑖
)) ��

∗�∗

��

�𝑘𝑖=1MF(X𝑝𝑖 (𝑑𝑖),Tr𝑊𝑑𝑖 )

∗

��

MF(X𝑝 (1) (𝑑
(1) ),Tr𝑊𝑑 (1) ) �MF(X𝑝 (2) (𝑑

(2) ),Tr𝑊𝑑 (2) )
�� MF(X𝑝 (𝑑),Tr𝑊𝑑).

Here, the vertical arrows are categorical Hall products determined by 𝜆, 𝑝𝑖 := 𝑝 (1)𝑖 + 𝑝
(2)
𝑖 , the bottom

horizontal arrow is Equation (3.7), and the top horizontal arrow is the composition of the Knörrer
periodicity equivalences with the tensor product of (a shift of)

det
(
(𝑈𝜆>0)∨

)
=

𝑘⊗
𝑖=1

(
(det𝑉 (1)𝑖 )

∑
𝑖> 𝑗 𝑑

(2)
𝑗 −

∑
𝑗>𝑖 𝑑

(2)
𝑗 ⊗ (det𝑉 (2)𝑖 )

∑
𝑖> 𝑗 𝑑

(1)
𝑗 −

∑
𝑗>𝑖 𝑑

(1)
𝑗

)
.

By the above commutative diagram together with the fact that Equation (3.7) restricts to the functor
(3.8), the functor (3.7) sends Equation (3.13) to

∗𝑘𝑖=1S𝑝𝑖 (𝑑𝑖)𝑣𝑖+𝑑𝑖 (
∑

𝑖> 𝑗 𝑑 𝑗−
∑

𝑗>𝑖 𝑑 𝑗 ) ⊂ MF(X𝑝 (𝑑),Tr𝑊𝑑). (3.15)

Let us take a decomposition

𝑤 = 𝑣1 + · · · + 𝑣𝑘 = 𝑤1 + · · · + 𝑤𝑘 ,

where 𝑤𝑖 is given in Equation (3.10). Then by Lemma 3.6, the subcategory (3.15) for 𝑘 � 2 is right
orthogonal to S𝑝 (𝑑)𝑤 . Together with the semiorthogonal decomposition S with summands (3.13),
we conclude that the functor (3.8) has dense image. Indeed, for an object 𝐴 ∈ S𝑝 (𝑑)𝑤 , there is a
distinguished triangle

𝐴1
𝛼
−→ 𝐴

𝛽
−→ 𝐴2, (3.16)

where 𝐴1 is a direct summand of an object Ψ(𝐵1) for some 𝐵1 in the left-hand side of Equation (3.8)
and 𝐴2 is a direct summand of an object Ψ(𝐵2) for some 𝐵2 in Equation (3.13) for 𝑎 = 𝑏 � 2. Then
Ψ(𝐵2) is an object of Equation (3.15) for 𝑘 � 2, hence 𝛽 is a zero map by Lemma 3.6. So 𝛼 is an
isomorphism, hence the functor (3.8) has dense image. �

We have postponed several lemmas, which are given below:

Lemma 3.2. The Ext-group Ext1𝑄 (𝑅, 𝑅) is computed as Equation (3.3).

Proof. By the Euler pairing computation, we have 𝜒𝑄 (𝑅 (𝑖) , 𝑅 ( 𝑗) ) = −2. Since Hom(𝑅 (𝑖) , 𝑅 ( 𝑗) ) = C𝛿𝑖 𝑗 ,
we have

Ext1𝑄 (𝑅
(𝑖) , 𝑅 ( 𝑗) ) =

{
C2, 𝑖 ≠ 𝑗 ,

C3, 𝑖 = 𝑗 .

Therefore, Equation (3.3) holds. �
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Lemma 3.3. By replacing the isomorphism (3.2) if necessary, the identity (3.6) holds.

Proof. We may assume 𝑥 (1) = (0, 0, 1) and 𝑥 (2) = (0, 0, 0). We write an element of Ext1𝑄 (𝑅, 𝑅) as

(𝑋 (1) , 𝑌 (1) , 𝑍 (1) , 𝑋 (2) , 𝑌 (2) , 𝑍 (2) , 𝐴(12) , 𝐴(21) , 𝐵 (12) , 𝐵 (21) ), (3.17)

where 𝑋 (𝑖) ∈ End(𝑉 (𝑖) ) and 𝐴(𝑖 𝑗) ∈ Hom(𝑉 (𝑖) , 𝑉 ( 𝑗) ). We have the morphism of algebraic stacks

𝜈 : Êxt
1
𝑄 (𝑅, 𝑅)/𝐺 𝑝 → X𝑝 (𝑑)

which sends Equation (3.17) to((
𝑋 (1) 𝐴(12)

𝐴(21) 𝑋 (2)

)
,

(
𝑌 (1) 𝐵 (12)

𝐵 (21) 𝑌 (2)

)
,

(
𝑍 (1) + 𝐼 0

0 𝑍 (2)

))
∈ 𝔤⊕3.

Indeed, the above correspondence is 𝐺𝐿(𝑉)-equivariant using the embedding 𝐺 𝑝 ⊂ 𝐺𝐿(𝑉), so it
determines a morphism 𝜈. Note that 𝜈(0) corresponds to the polystable Q-representation 𝑅 = (𝑉 (1) ⊗
𝑅 (1) ) ⊕ (𝑉 (2) ⊗ 𝑅 (2) ), where 𝑅 (𝑖) corresponds to O𝑥 (𝑖) .

We now explain that the morphism 𝜈 is étale at 𝜈(0). The tangent complex of X (𝑑) at 𝜈(0) is

TX (𝑑) |𝜈 (0) =
(
End(𝑉) → End(𝑉)⊕3

)
, 𝛼 ↦→ (0, 0, [𝛼, 𝑢]), 𝑢 =

(
𝐼 0
0 0

)
.

The kernel of the above map is End(𝑉 (1) ) ⊕End(𝑉 (2) ), and the cokernel is Ext1𝑄 (𝑅, 𝑅), so the morphism
𝜈 induces a quasi-isomorphism on tangent complexes at 𝜈(0).

A straightforward computation shows that

𝜈∗ Tr𝑊𝑑 = Tr(𝑍 (1) [𝑋 (1) , 𝑌 (1) ]) + Tr(𝑍 (2) [𝑋 (2) , 𝑌 (2) ])

+ Tr(𝐴(12) (𝐵 (21) + 𝐵 (21)𝑍 (1) − 𝑍 (2)𝐵 (21) ))

+ Tr(𝐵 (12) (𝑍 (2) 𝐴(21) − 𝐴(21)𝑍 (1) − 𝐴(21) )).

By the following 𝐺 𝑝-equivariant variable change

𝐴(21) ↦→ 𝑍 (2) 𝐴(21) − 𝐴(21)𝑍 (1) − 𝐴(21) , 𝐵 (21) ↦→ 𝐵 (21) + 𝐵 (21)𝑍 (1) − 𝑍 (2)𝐵 (21) ,

we obtain the identity (3.6). �

Lemma 3.4. The functor (3.7) restricts to the functor (3.8).

Proof (cf. the proof of [KT21, Theorem 2.7]). For a cocharacter 𝜆 : C∗ → 𝑇 (𝑑), let

𝑛𝜆,𝑝 :=
〈
𝜆,L𝜆>0

X𝑝 (𝑑)

��
0

〉
, 𝑛′𝜆,𝑝 :=

〈
𝜆,L𝜆>0

X
𝑝 (1) (𝑑

(1) )×X
𝑝 (2) (𝑑

(2) )

��
0

〉
.

Define the sets of weights

∇𝑝,𝑤 :=
{
𝜒 ∈ 𝑀R

���� − 1
2
𝑛𝜆,𝑝 � 〈𝜆, 𝜒〉 �

1
2
𝑛𝜆,𝑝 for all 𝜆

}
+ 𝑤𝜏𝑑 ,

∇′𝑝,𝑤 :=
{
𝜒 ∈ 𝑀R

���� − 1
2
𝑛′𝜆,𝑝 � 〈𝜆, 𝜒〉 �

1
2
𝑛′𝜆,𝑝 for all 𝜆

}
+ 𝑤𝜏𝑑 .

Then an object in the right- (resp. left-) hand side of Equation (3.7) lies in the right- (resp. left-) hand
side of Equation (3.8) if and only if its 𝑇 (𝑑)-weights are contained in ∇𝑝,𝑤 (resp. ∇′𝑝,𝑤 ); see [HLS20,
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Lemma 2.9]. Let E be an object in the left-hand side of Equation (3.8). Using a Koszul resolution, the
complex Ψ(E) is generated by 𝑝∗(E) ⊗∧•𝑈. Let 𝜒 be a 𝑇 (𝑑)-weight of 𝑝∗(E) ⊗∧•𝑈. We then have that

−
1
2
𝑛′𝜆,𝑝 + 〈𝜆,𝑈

𝜆<0〉 � 〈𝜆, 𝜒〉 �
1
2
𝑛′𝜆,𝑝 + 〈𝜆,𝑈

𝜆>0〉.

Since U is self-dual, we have 〈𝜆,𝑈𝜆<0〉 = −〈𝜆,𝑈𝜆>0〉. Moreover, from Equation (3.3), it is easy to see
that

1
2
𝑛′𝜆,𝑝 + 〈𝜆,𝑈

𝜆>0〉 =
1
2
𝑛𝜆,𝑝 .

Therefore, Ψ(E) is an object of the right-hand side of Equation (3.8). �

Lemma 3.5. If a 𝑇 (𝑑)-weight 𝜒 satisfies Equation (3.4), then

𝜒 + 𝜌 ∈W(𝑑)𝑤 . (3.18)

Conversely if a 𝐺𝐿(𝑉)-dominant 𝑇 (𝑑)-weight 𝜒 satisfies Equation (3.18), then it satisfies Equation
(3.4).

Proof. If a 𝑇 (𝑑)-weight 𝜒 satisfies Equation (3.4), it is written as

𝜒 + 𝜌𝑝 =
∑
𝑖, 𝑗 ,𝑎

𝑐 (𝑎)𝑖 𝑗 (𝛽
(𝑎)
𝑖 − 𝛽

(𝑎)
𝑗 ) +

∑
𝑖, 𝑗 ,𝑎≠𝑏

𝑐 (𝑎𝑏)𝑖 𝑗 (𝛽
(𝑎)
𝑖 − 𝛽

(𝑏)
𝑗 ), (3.19)

where 0 � 𝑐 (𝑎)𝑖 𝑗 � 3/2 and 0 � 𝑐 (𝑎𝑏)𝑖 𝑗 � 1. Since we have

𝜌 − 𝜌𝑝 =
1
2

∑
𝑖, 𝑗 ,𝑎<𝑏

(𝛽 (𝑏)𝑖 − 𝛽
(𝑎)
𝑗 ), (3.20)

the weight 𝜒+ 𝜌 satisfies Equation (3.18). Conversely, if 𝜒 is a𝐺𝐿(𝑉)-dominant𝑇 (𝑑)-weight satisfying
Equation (3.18), from [PTa, Proposition 3.5] it is written as

𝜒 + 𝜌 =
∑
𝑖> 𝑗

𝑐𝑖 𝑗 (𝛽𝑖 − 𝛽 𝑗 )

for 0 � 𝑐𝑖 𝑗 � 3/2. Therefore, from Equation (3.20), the weight 𝜒+ 𝜌𝑝 is written as Equation (3.19). �

Lemma 3.6. The subcategory (3.15) for 𝑘 � 2 is right orthogonal to S𝑝 (𝑑)𝑤 for 𝑤 = 𝑤1 + · · · + 𝑤𝑘 ,
where 𝑤𝑖 is given in Equation (3.10).

Proof. Recall that 𝑤𝑖 = 𝑣𝑖 + 𝑑𝑖 (
∑
𝑖> 𝑗 𝑑 𝑗 −

∑
𝑗>𝑖 𝑑 𝑗 ). Choose weights 𝜓𝑖 ∈ W𝑝𝑖 (𝑑𝑖)0 for 1 � 𝑖 � 𝑘 .

From the proof of semiorthogonality in [Păda, Proposition 4.3], it is enough to show that the r-invariant
of the weight

𝑘∑
𝑖=1

𝜓𝑖 +
𝑘∑
𝑖=1

𝑤𝑖𝜏𝑑𝑖 −
𝑘∑
𝑖=1

𝜌𝑝𝑖 + 𝜌𝑝 (3.21)

with respect to the polytope W𝑝 (𝑑) is bigger than 1/2. Here, the polytope W𝑝 (𝑑) is defined as follows:

W𝑝 (𝑑) :=
1
2

sum[0, 𝛽] + R𝜏𝑑 ,

where the sum is after all weights in Ext1𝑄 (𝑅, 𝑅).
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Suppose the contrary, that is, the weight (3.21) lies in W𝑝 (𝑑)𝑤 . Let 𝜆 be the cocharacter as in
Equation (3.14), and write it as 𝜆 = (𝜆 (1) , 𝜆 (2) ), where 𝜆 ( 𝑗) is the cocharacter of 𝐺𝐿(𝑉 ( 𝑗) ). We set
𝔤 = End(𝑉) and 𝔤 ( 𝑗) = End(𝑉 ( 𝑗) ). The weight (3.21) is written as

𝑘∑
𝑖=1

𝜓𝑖 +
𝑘∑
𝑖=1

𝑣𝑖𝜏𝑑𝑖 − 𝔤
𝜆>0 −

1
2
(𝔤 (1) )𝜆

(1)>0 −
1
2
(𝔤 (2) )𝜆

(2)>0.

By the assumption, the above weight is an element of W𝑝 (𝑑)𝑤 . Then using an argument as in the proof
of Lemma 3.5, we have that

𝑘∑
𝑖=1

𝜓𝑖 +
𝑘∑
𝑖=1

𝑣𝑖𝜏𝑑𝑖 −
3
2
𝔤𝜆>0 ∈W(𝑑)𝑤 . (3.22)

Note that we have〈
𝜆,

𝑘∑
𝑖=1

𝜓𝑖 +
𝑘∑
𝑖=1

𝑣𝑖𝜏𝑑𝑖 −
3
2
𝔤𝜆>0 − 𝑤𝜏𝑑

〉
=

𝑘∑
𝑖=1
(𝑘 + 1 − 𝑖)𝑑𝑖

(
𝑣𝑖
𝑑𝑖
−
𝑤

𝑑

)
−

〈
𝜆,

3
2
𝔤𝜆>0

〉
.

For 1 � 𝑖 � 𝑘 , define

𝑣̃𝑖 := 𝑑𝑖

(
𝑣𝑖
𝑑𝑖
−
𝑤

𝑑

)
.

Then 𝑣̃1 + · · · + 𝑣̃𝑘 = 0 and 𝑣̃1 + · · · + 𝑣̃𝑙 < 0 for 1 � 𝑙 < 𝑘 . Therefore,

𝑘∑
𝑖=1
(𝑘 + 1 − 𝑖)𝑑𝑖

(
𝑣𝑖
𝑑𝑖
−
𝑤

𝑑

)
=

𝑘∑
𝑙=1

(
𝑙∑
𝑖=1

𝑣̃𝑖

)
< 0.

It follows that 〈
𝜆,

𝑘∑
𝑖=1

𝜓𝑖 +
𝑘∑
𝑖=1

𝑣𝑖𝜏𝑑𝑖 −
3
2
𝔤𝜆>0 − 𝑤𝜏𝑑

〉
< −

〈
𝜆,

3
2
𝔤𝜆>0

〉
. (3.23)

On the other hand, we claim that for any weight 𝜒 ∈W(𝑑)0, we have that

〈𝜆, 𝜒〉 � −
〈
𝜆,

3
2
𝔤𝜆>0

〉
. (3.24)

We thus obtain a contradiction with Equations (3.23) and (3.22). To prove Equation (3.24), write
𝜒 =

∑
𝑖, 𝑗 𝑐𝑖 𝑗 (𝛽𝑖 − 𝛽 𝑗 ) with 0 � 𝑐𝑖 𝑗 � 3/2. Then

〈𝜆, 𝜒〉 �
∑

〈𝜆,𝛽𝑖−𝛽 𝑗 〉<0
𝑐𝑖 𝑗 〈𝜆, 𝛽𝑖 − 𝛽 𝑗〉 �

3
2

∑
〈𝜆,𝛽𝑖−𝛽 𝑗 〉<0

〈𝜆, 𝛽𝑖 − 𝛽 𝑗〉 = −

〈
𝜆,

3
2
𝔤𝜆>0

〉
. �

4. Integral generator of equivariant K-theory of quasi-BPS categories

Recall the graded quasi-BPS category Sgr (𝑑)𝑣 , which is equivalent via Koszul duality to

T(𝑑)𝑣 ⊂ 𝐷𝑏 (𝒞(𝑑)).
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In [PTa], we proved that the monomials [E𝑑1 ,𝑣1]∗· · ·∗[E𝑑𝑘 ,𝑣𝑘 ] for 𝑣𝑖/𝑑𝑖 = 𝑣/𝑑 give a basis of the F-vector
space 𝐾𝑇 (T(𝑑)𝑣 ) ⊗K F. In this section, we consider the torsion-free equivariant K-theory defined by

𝐾𝑇 (T(𝑑)𝑣 )
′ := 𝐾𝑇 (T(𝑑)𝑣 )/(K-torsion).

It is conjectured by Schiffmann–Vasserot [SV13, Conjecture 7.13] that 𝐾𝑇 (𝒞(𝑑)) is torsion free as a
K-module, so conjecturally 𝐾𝑇 (T(𝑑)𝑣 )

′ is isomorphic to 𝐾𝑇 (T(𝑑)𝑣 ). We compute 𝐾𝑇 (T(𝑑)𝑣 )′ when
gcd(𝑑, 𝑣) = 1, and when (𝑑, 𝑣) = (2, 0). Theorem 3.1 plays a key role in the case of gcd(𝑑, 𝑣) = 1.

4.1. Sheaves supported over the small diagonal

Let

Ω𝒞 (𝑑) [−1] := Spec Sym
(
T𝒞 (𝑑) [1]

)
be the (−1)-shifted cotangent of 𝒞(𝑑). An object E ∈ 𝐷𝑏 (𝒞(𝑑)) has singular support [AG15]:

Suppsg (E) ⊂ (Ω𝒞 (𝑑) [−1])cl.

We identify the right-hand side with Crit(Tr𝑊𝑑) ⊂ X (𝑑), which is isomorphic to the moduli stack of
zero-dimensional coherent sheaves on C3 of length d. Under the Koszul duality equivalence (2.22), we
have by [Toda, Proposition 2.3.9] that

Suppsg (E) = Supp(Φ(E)).

In the following lemma, we show that the K-theory class of an object in 𝐷𝑏
𝑇 (𝒞(𝑑)) with singular

support contained in 𝜋−1 (Δ) has a certain divisibility property. The proof is inspired by the proof of
wheel conditions in [Zha, Theorem 2.9, Corollary 2.10], [Neg23, Proposition 2.11]

Lemma 4.1. For any E ∈ 𝐷𝑏
𝑇 (𝒞(𝑑)) whose singular support is contained in 𝜋−1 (Δ), the element

𝑖∗ [E] ∈ 𝐾𝑇 (Y (𝑑)) = K[𝑧±1 , . . . , 𝑧±1
𝑑 ]

𝔖𝑑 is divisible by

(𝑞1 − 1)𝑑−1(𝑞2 − 1)𝑑−1 (𝑞1𝑞2 − 1)𝑑−1 ∈ K. (4.1)

Proof. By [PTa, Lemma 4.9], it is enough to show that, for F ∈ MF𝑇 (X (𝑑),Tr𝑊) supported on
𝜋−1 (Δ), its image under the forget-the-potential map (1.8):

Θ([F]) := [F0] − [F1] ∈ 𝐾𝑇 (MF(X (𝑑), 0)) = K[𝑧±1
1 , . . . , 𝑧±𝑑𝑑 ]

𝔖𝑑 (4.2)

is divisible by (𝑞1 − 1)𝑑−1 (𝑞2 − 1)𝑑−1(𝑞1𝑞2 − 1)𝑑−1. We consider the morphism

ℎ : C𝑑−1 \ {0} → Crit(Tr𝑊𝑑) ⊂ 𝔤⊕3

(𝑡1, . . . , 𝑡𝑑−1) ↦→ (0, 0, (𝑡1, . . . , 𝑡𝑑−1, 0)),

where (𝑡1, . . . , 𝑡𝑑−1, 0) is the diagonal matrix. Let𝑇 = (C∗)2 act onC𝑑−1 with weight 𝑞−1
1 𝑞−1

2 , and let the
maximal torus𝑇 (𝑑) ⊂ 𝐺𝐿(𝑑) act onC𝑑−1 trivially. Then the above morphism h is𝑇×𝑇 (𝑑)-equivariant,
so it induces a morphism

ℎ : (C𝑑−1 \ {0})/(𝑇 × 𝑇 (𝑑)) → 𝔤⊕3/(𝑇 × 𝑇 (𝑑)) → 𝔤⊕3/(𝑇 × 𝐺𝐿(𝑑)).

By the localization sequence

𝐾𝑇×𝑇 (𝑑) ({0}) → 𝐾𝑇 ×𝑇 (𝑑) (C
𝑑−1) → 𝐾𝑇 ×𝑇 (𝑑) (C

𝑑−1 \ {0}) → 0,
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we have an isomorphism

𝐾𝑇 ×𝑇 (𝑑) (C
𝑑−1 \ {0}) � K[𝑧±1

1 , . . . , 𝑧±1
𝑑 ]/(1 − 𝑞

−1
1 𝑞−1

2 )
𝑑−1.

Note that we have

𝜋 ◦ ℎ(𝑡1, . . . , 𝑡𝑑−1) = {(0, 0, 𝑡1), . . . , (0, 0, 𝑡𝑑−1), (0, 0, 0)} ∈ Sym𝑑 (C3),

in particular the image of h does not intersect 𝜋−1 (Δ) ⊂ Crit(Tr𝑊𝑑). We thus have that

ℎ∗(Θ([F])) = 0 in 𝐾𝑇 ×𝑇 (𝑑) (C
𝑑−1 \ {0}).

Therefore, the element (4.2) is divisible by (𝑞1𝑞2 − 1)𝑑−1. By replacing h with

(𝑡1, . . . , 𝑡𝑑−1) ↦→ (0, (𝑡1, . . . , 𝑡𝑑−1, 0), 0),
(𝑡1, . . . , 𝑡𝑑−1) ↦→ ((𝑡1, . . . , 𝑡𝑑−1, 0), 0, 0),

the element (4.2) is also divisible by (𝑞1 − 1)𝑑−1, (𝑞2 − 1)𝑑−1, respectively. �

By combining the above lemma with Theorem 3.1, we obtain the following:
Corollary 4.2. For any object E ∈ T𝑇 (𝑑)𝑣 with gcd(𝑑, 𝑣) = 1, the element

𝑖∗ [E] ∈ 𝐾𝑇 (Y (𝑑)) = K[𝑧±1
1 , . . . , 𝑧±1

𝑑 ]
𝔖𝑑

is divisible by Equation (4.1). In particular, the element 𝑖∗ [E𝑑,𝑣 ] in Equation (2.38) for gcd(𝑑, 𝑣) = 1 is
divisible by Equation (4.1).
Remark 4.3. It is not clear from the expression (2.38) that 𝑖∗ [E𝑑,𝑣 ] is divisible by Equation (4.1) when
gcd(𝑑, 𝑣) = 1. Further, the condition gcd(𝑑, 𝑣) = 1 is necessary for the above divisibility. Indeed, for
𝑑 = 2, a direct computation shows that

𝑖∗ [E2,0] = (1 − 𝑞−1
1 ) (1 − 𝑞

−1
2 ) (1 − 𝑞

−1
1 − 𝑞

−1
2 − 𝑞

−1
1 𝑞−1

2 + 𝑧
−1
1 𝑧2 + 𝑧1𝑧

−1
2 ),

𝑖∗ [E2,1] = (1 − 𝑞−1
1 ) (1 − 𝑞

−1
2 ) (1 − 𝑞

−1
1 𝑞−1

2 ) (𝑧1 + 𝑧2).

The element 𝑖∗ [E2,0] is not divisible by Equation (4.1). In particular, the singular support of E2,0 is not
included in 𝜋−1 (Δ).

4.2. Integral generator for the coprime case

Recall that 𝐾𝑇 (T(𝑑)𝑣 ) is expected to be torsion free as a K-module. We also expect that 𝐾𝑇 (T(𝑑)𝑣 )
is freely generated by [E𝑑,𝑣 ] if gcd(𝑑, 𝑣) = 1. The following theorem, which is an application of
Corollary 4.2, gives evidence towards this expectation.
Theorem 4.4. Consider a pair (𝑑, 𝑣) ∈ N×Zwith gcd(𝑑, 𝑣) = 1. There is an isomorphism ofK-modules:

𝐾𝑇 (T(𝑑)𝑣 )
′ � K[E𝑑,𝑣 ] .

Proof. By the isomorphism (2.30), the K-module 𝐾𝑇 (T(𝑑)𝑣 )′ is isomorphic to the image of

𝑖∗ : 𝐾𝑇 (T(𝑑)𝑣 ) → K[𝑧±1
1 , . . . , 𝑧±𝑑]

𝔖𝑑 .

It is enough to show that the image of the above morphism is generated by 𝑖∗ [E𝑑,𝑣 ] as a K-module. By
Corollary 4.2, we have

Im(𝑖∗) ⊂ (𝑞1 − 1)𝑑−1(𝑞2 − 1)𝑑−1 (𝑞1𝑞2 − 1)𝑑−1K[𝑧±1
1 , . . . , 𝑧±1

𝑑 ]
𝔖𝑑 .
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Moreover, Im(𝑖∗) ⊗K F is generated by 𝑖∗ [E𝑑,𝑣 ] over F by [PTa, Theorem 4.12]. It is thus enough to
show that 𝑖∗ [E𝑑,𝑣 ] is written as

𝑖∗ [E𝑑,𝑣 ] = (𝑞1 − 1)𝑑−1(𝑞2 − 1)𝑑−1(𝑞1𝑞2 − 1)𝑑−1 · 𝐸,

where E is not divisible by a nonunit element in K.
By Equation (2.38), we have that

Sym

(
𝑧𝑚1

1 . . . 𝑧𝑚𝑑

𝑑

(1 − 𝑞−1𝑧−1
1 𝑧2) · · · (1 − 𝑞−1𝑧−1

𝑑−1𝑧𝑑)
·
∏
𝑗>𝑖

𝜉 (𝑧𝑖𝑧
−1
𝑗 )

)
= (𝑞1𝑞2 − 1)𝑑−1 · 𝐸. (4.3)

By setting

𝑓𝑑 (𝑧1, . . . , 𝑧𝑑) :=
𝑑−1∏
𝑖=1
(𝑧𝑖+1 − 𝑞

−1
1 𝑧𝑖)(𝑧𝑖+1 − 𝑞

−1
2 𝑧𝑖)· (4.4)∏

𝑗>𝑖+1
(𝑧 𝑗 − 𝑞

−1
1 𝑧𝑖) (𝑧 𝑗 − 𝑞

−1
2 𝑧𝑖) (𝑧 𝑗 − 𝑞𝑧𝑖),

we can write Equation (4.3) as

(−𝑞)−
1
2 (𝑑−1) (𝑑−2) (𝑧1 · · · 𝑧𝑑)

2−𝑑 · Sym

(
𝑧𝑚1

1 · · · 𝑧
𝑚𝑑−1
𝑑−1 𝑧𝑚𝑑−1

𝑑 𝑓𝑑 (𝑧1, . . . , 𝑧𝑑)∏
𝑗>𝑖 (𝑧 𝑗 − 𝑧𝑖)

)
. (4.5)

Plug in 𝑧𝑖 = 𝑞𝑖1 for 1 � 𝑖 � 𝑑 in the formula (4.5). The only nonzero term in the sum above corresponds
to the identity permutation. The factors of this term not in K∗ divide

𝑞𝑎+11 − 1, 𝑞𝑎1 − 𝑞
−1
2 , or 𝑞𝑎1 − 𝑞2 for some 𝑎 � 1. (4.6)

Next, plug in 𝑧𝑖 = 𝑞𝑖2 for 1 � 𝑖 � 𝑑 in the formula (4.5). The only nonzero term in the sum of Equation
(4.5) corresponds to the identity permutation. The factors of this term not in K∗ divide

𝑞𝑎+12 − 1, 𝑞𝑎2 − 𝑞
−1
1 , or 𝑞𝑎2 − 𝑞1 for some 𝑎 � 1. (4.7)

The only factors which divide terms in both sets (4.6) and (4.7) are 𝑞1 − 𝑞2 and 𝑞1𝑞2 − 1. The factor
𝑞1𝑞2 − 1 appears with multiplicity 𝑑 − 1 as it corresponds to 𝑧𝑖+1 − 𝑞

−1
2 𝑧𝑖 for 1 � 𝑖 � 𝑑 − 1.

It suffices to show that 𝑞1 − 𝑞2 does not divide Equation (4.5). We will be using computations from
[Neg22, Section 2]. Note that 𝑞1, 𝑞2, 𝑞 from our paper correspond to 𝑞−1

1 , 𝑞−1
2 , 𝑞−1 in loc. cit. Further,

the weight 𝑣 ∈ Z corresponds to 𝑘 ∈ Z in loc. cit. By [Neg22, Equation (2.35)], the equality 𝑃𝑑,𝑘 = 𝐸𝑑,𝑘
for gcd(𝑑, 𝑘) = 1 in loc. cit. (see [Neg22, Equations (2.6) and (2.35)]) and the isomorphism between
shuffle algebras SF

∼
−→ S ′

F
, we can write

(𝑞1𝑞2 − 1)𝑑−1 · 𝐸 = 𝑦 + 𝑡 in S ⊗K K
[

1
1 − 𝑞−1

2
,

1
1 − 𝑞−1

]
for t a K-torsion element and

𝑦 :=
(1 − 𝑞−1

2 ) (1 − 𝑞)
𝑣

(1 − 𝑞−1
2 )

𝑣 (1 − 𝑞−1)
· Sym

(
𝑧𝑚1

1 . . . 𝑧𝑚𝑑

𝑑

(1 − 𝑞2𝑧
−1
1 𝑧2) · · · (1 − 𝑞2𝑧

−1
𝑑−1𝑧𝑑)

·
∏
𝑗>𝑖

𝜉 (𝑧𝑖𝑧
−1
𝑗 )

)
. (4.8)
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It suffices to show that 𝑞1 − 𝑞2 does not divide y. By setting

𝑔𝑑 (𝑧1, . . . , 𝑧𝑑) :=
𝑑−1∏
𝑖=1
(𝑧𝑖+1 − 𝑞

−1
1 𝑧𝑖)(𝑧𝑖+1 − 𝑞𝑧𝑖)· (4.9)∏

𝑗>𝑖+1
(𝑧 𝑗 − 𝑞

−1
1 𝑧𝑖) (𝑧 𝑗 − 𝑞

−1
2 𝑧𝑖) (𝑧 𝑗 − 𝑞𝑧𝑖),

we can write the Sym(−) term of y as

(−𝑞2)
− 1

2 (𝑑−1) (𝑑−2) (𝑧1 · · · 𝑧𝑑)
2−𝑑 · Sym

(
𝑧𝑚1

1 . . . 𝑧𝑚𝑑−1
𝑑−1 𝑧𝑚𝑑−1

𝑑 𝑔𝑑 (𝑧1, . . . , 𝑧𝑑)∏
𝑗>𝑖 (𝑧 𝑗 − 𝑧𝑖)

)
. (4.10)

It suffices to show that 𝑞1 − 𝑞2 does not divide Equation (4.10). Let 𝑧𝑖 = 𝑞−𝑖 for 1 � 𝑖 � 𝑑. The only
nonzero term in the sum of Equation (4.10) corresponds to the identity permutation. The factors of this
term not in K∗ divide

𝑞−𝑎−1 − 1, 𝑞−𝑎 − 𝑞−1
1 , 𝑞−𝑎 − 𝑞1 for some 𝑎 � 1.

None of these polynomials is divisible by 𝑞1 − 𝑞2, and the conclusion thus follows. �

4.3. Integral generator for 𝐾𝑇 (T(2)0)′

The computation of 𝐾𝑇 (T(𝑑)𝑣 )′ is more subtle when gcd(𝑑, 𝑣) > 1, since the monomials [E𝑑1 ,𝑣1] ∗

· · · ∗ [E𝑑𝑘 ,𝑣𝑘 ] for 𝑣𝑖/𝑑𝑖 = 𝑣/𝑑 do not generate it over K; see Remark 4.8. We need to find other objects
giving K-basis of 𝐾𝑇 (T(𝑑)𝑣 )′. Here, we give a computation for (𝑑, 𝑣) = (2, 0).

Let V be a two-dimensional vector space, and let 𝔰𝔩 ⊂ 𝔤 = End(𝑉) be its traceless part. Note that

[𝔰𝔩] = 1 + 𝑧−1
1 𝑧2 + 𝑧1𝑧

−1
2 ∈ 𝐾 (𝐵𝐺𝐿(2)) = Z[𝑧

±1
1 , 𝑧±1

2 ]
𝔖2 .

The structure sheaf of the classical truncation 𝒞(2)cl fits into the exact sequence

0→ OY (2) (𝑞
−1
1 𝑞−2

2 ) ⊕ OY (2) (𝑞
−2
1 𝑞−1

2 )
𝐴
→ 𝔰𝔩 ⊗ OY (2) (𝑞

−1
1 𝑞−1

2 )
𝐵
→ OY (2) → O𝒞 (2)cl → 0. (4.11)

Here, over (𝑋,𝑌 ) ∈ 𝔤⊕2, the maps A, B are given by

𝐴|(𝑋,𝑌 ) = (2𝑋 − Tr 𝑋 · 𝐼, 2𝑌 − Tr𝑌 · 𝐼), 𝐵 |(𝑋,𝑌 ) (𝑍) = Tr(𝑍 [𝑋,𝑌 ]).

We set 𝑀1 := O𝒞 (2)cl (𝑞1𝑞2). We also define a coherent sheaf 𝑀2 on 𝒞(2)cl by the exact sequence

0→ OY (2) (𝑞
−1
1 𝑞−1

2 )
𝐵∨

→ 𝔰𝔩 ⊗ OY (2)
𝐴∨

→ OY (2) (𝑞1) ⊕ OY (2) (𝑞2) → 𝑀2 → 0. (4.12)

The sequences (4.11), (4.12) are the Eagon–Northcott complex and the Buchsbaum–Rim complex
associated with 𝐴∨ : 𝔰𝔩 ⊗ OY (2) → OY (2) (𝑞1) ⊕ OY (2) (𝑞2), respectively. In particular they are exact;
see [Eis95, Theorem A2.10]. From the exact sequences (4.11), (4.12), we have 𝑀1, 𝑀2 ∈ T(2)0.

Proposition 4.5. As a K-module, we have

𝐾𝑇 (T(2)0)′ = K[𝑀1] ⊕ K[𝑀2] . (4.13)

Proof. It is enough to show that the image of

𝑖∗ : 𝐾𝑇 (T(2)0) → K[𝑧±1
1 , 𝑧±1

2 ]
𝔖2 (4.14)
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is generated by 𝑖∗𝑀1, 𝑖∗𝑀2 and that 𝑖∗𝑀1, 𝑖∗𝑀2 are linearly independent over F. Below, we omit 𝑖∗ from
the notation 𝑖∗𝑀 𝑗 . From the exact sequences (4.11), (4.12), we have

[𝑀1] = 𝑞1𝑞2 + 𝑞
−1
1 + 𝑞

−1
2 − 𝔰𝔩, [𝑀2] = 𝑞−1

1 𝑞−1
2 + 𝑞1 + 𝑞2 − 𝔰𝔩. (4.15)

A direct computation shows that

[E1,0 ∗ E1,0] = 1 + 𝑞−1
1 + 𝑞

−1
2 + 𝑞

−1
1 𝑞−2

2 + 𝑞
−2
1 𝑞−1

2 + 𝑞
−2
1 𝑞−2

2 − 2𝔰𝔩𝑞−1
1 𝑞−1

2 (4.16)
= 𝑞−1

1 𝑞−1
2 ([𝑀1] + [𝑀2]),

[E2,0] = (1 − 𝑞−1
1 ) (1 − 𝑞

−1
2 ) (𝔰𝔩 − 𝑞

−1
1 − 𝑞

−1
2 − 𝑞

−1
1 𝑞−1

2 )

= (𝑞−1
1 + 𝑞

−1
2 ) [𝑀1] − (𝑞

−1
1 𝑞−1

2 + 1) [𝑀2] .

Here, [E1,0 ∗ E1,0] is computed from Equation (2.29) and [E2,0] is computed from Equation (2.38).
Therefore, we have

K[E2,0] ⊕ K[E1,0 ∗ E1,0] ⊂ K[𝑀1] ⊕ K[𝑀2] . (4.17)

Since we have

det

(
𝑞−1

1 𝑞−1
2 𝑞−1

1 𝑞−1
2

𝑞−1
1 + 𝑞

−1
2 −(𝑞

−1
1 𝑞−1

2 + 1)

)
= −𝑞−1

1 𝑞−1
2 (1 + 𝑞

−1
1 ) (1 + 𝑞

−1
2 ) ∈ K \ {0}, (4.18)

the embedding (4.17) is an isomorphism after taking ⊗KF. In particular, [𝑀1], [𝑀2] are linearly
independent over F.

By the above argument, we have

𝐾𝑇 (T(2)0) ⊗K F = F[E2,0] ⊕ F[E1,0 ∗ E1,0] = F[𝑀1] ⊕ F[𝑀2],

where the first isomorphism is proved in [PTa, Theorem 4.12]. It follows that any element in the
image of Equation (4.14) is written as 𝑎1 [𝑀1] + 𝑎2 [𝑀2] for 𝑎1, 𝑎2 ∈ F. As it lies in K[𝑧±1

1 , 𝑧±1
2 ], from

Equation (4.15) we have

𝑎1 (𝑞1𝑞2 + 𝑞
−1
1 + 𝑞

−1
2 ) + 𝑎2 (𝑞

−1
1 𝑞−1

2 + 𝑞1 + 𝑞2) ∈ K, 𝑎1 + 𝑎2 ∈ K.

By solving the above equation, there exist 𝑏, 𝑐 ∈ K such that

𝑎1 =
𝑏

Δ
, 𝑎2 = −

𝑏

Δ
+ 𝑐, (4.19)

where Δ is given by

Δ := 𝑞−1
1 + 𝑞

−1
2 + 𝑞1𝑞2 − 𝑞1 − 𝑞2 − 𝑞

−1
1 𝑞−1

2

= 𝑞−1
1 𝑞−1

2 (𝑞1 − 1) (𝑞2 − 1) (𝑞1𝑞2 − 1).

It is enough to show that b is divisible byΔ . If 𝑎1, 𝑎2 are given by Equation (4.19), then 𝑎1 [𝑀1]+𝑎2 [𝑀2] =
𝑏 + 𝑐[𝑀2]. As we assumed that 𝑎1 [𝑀1] + 𝑎2 [𝑀2] lies in the image of Equation (4.14), by the wheel
condition [Neg23, Proposition 2.11] we have

(𝑏 + 𝑐[𝑀2])
��
𝑧𝑖=𝑞−1

1 𝑧 𝑗=𝑞−1
1 𝑞−1

2 𝑧𝑘
= (𝑏 + 𝑐[𝑀2])

��
𝑧𝑖=𝑞−1

2 𝑧 𝑗=𝑞−1
1 𝑞−1

2 𝑧𝑘
= 0 (4.20)

unless 𝑖 = 𝑗 = 𝑘; see Remark 4.6. By setting 𝑖 = 𝑘 = 1 and 𝑗 = 2, we obtain 𝑏 |𝑞1𝑞2=1 = 0. Similarly, we
also obtain 𝑏 |𝑞1=1 = 𝑏 |𝑞2=1 = 0, so b is divisible by Δ . �
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Remark 4.6. In [Neg23, Proposition 2.11], it is assumed that i, j and k are pairwise distinct for the
identity (4.20), but the proof in loc. cit. works unless 𝑖 = 𝑗 = 𝑘 . Indeed, using the notation in loc. cit.,
let 𝜙𝑒 = (𝑥𝑖 𝑗 ) for 𝑥𝑏𝑐 ≠ 0, 𝑥𝑖 𝑗 = 0 for (𝑖, 𝑗) ≠ (𝑏, 𝑐), 𝜙∗𝑒 = (𝑦𝑖 𝑗 ) for 𝑦𝑎𝑏 ≠ 0, 𝑦𝑖 𝑗 = 0 for (𝑖, 𝑗) ≠ (𝑎, 𝑏).
Then 𝜙∗𝑒𝜙𝑒 is concentrated on (𝑎, 𝑐) with value 𝑦𝑎𝑏𝑥𝑏𝑐 ≠ 0, 𝜙𝑒𝜙∗𝑒 is concentrated on (𝑏, 𝑏) (either zero
or nonzero). Therefore, if [𝜙𝑒, 𝜙∗𝑒] = 0 holds, then we must have 𝑎 = 𝑏 = 𝑐. Unless 𝑎 = 𝑏 = 𝑐, we have
𝜇−1
𝑛 (0) ∩ 𝑉𝑒 = ∅ in the notation of the proof of [Neg23, Proposition 2.11]. The rest of the argument is

verbatim.

Remark 4.7. Note that

𝒞(2)cl � [𝑅/𝐺𝐿(2)] × C2,

where R is the determinantal variety of (3×2)-matrices, and 𝑀1⊕𝑀2 gives a noncommutative resolution
of 𝑅 × C2 by [BLdB10, Theorem A].

Remark 4.8. Since Equation (4.18) is not invertible in K, the inclusion (4.17) is not an isomorphism if
we do not take ⊗KF.

Remark 4.9. For (𝑑, 𝑣) ∈ N × Z with gcd(𝑑, 𝑣) = 1 and 𝑛 � 1, let 𝑃𝑛𝑑,𝑛𝑣 be defined as in [Neg14,
Equation (1.2)]:

𝑃𝑛𝑑,𝑛𝑣 :=
(𝑞−1

1 − 1)𝑛𝑑 (𝑞−1
2 − 1)𝑛𝑑

(𝑞−𝑛1 − 1) (𝑞−𝑛2 − 1)
· (4.21)

Sym
����

∏𝑛𝑑
𝑖=1 𝑧

⌊
𝑖𝑣
𝑑

⌋
−
⌊
(𝑖−1)𝑣

𝑑

⌋
𝑖∏𝑛𝑑−1

𝑖=1
(
1 − 𝑞−1𝑧𝑖+1𝑧

−1
𝑖

) 𝑛−1∑
𝑠=0

𝑞−𝑠
𝑧𝑑 (𝑛−1)+1 . . . 𝑧𝑑 (𝑛−𝑠)+1

𝑧𝑑 (𝑛−1) . . . 𝑧𝑑 (𝑛−𝑠)

∏
𝑖< 𝑗

𝜉

(
𝑧𝑖
𝑧 𝑗

)����.
Then we have

𝑃2,0 = 𝑞−2
1 𝑞−2

2 (𝑞1 − 1) (𝑞2 − 1) (𝑞1𝑞2 − 1) = 𝑞−1
1 𝑞−1

2 (𝑀1 − 𝑀2). (4.22)

Together with (4.16), we have

K[𝑃1,0 ∗ 𝑃1,0] ⊕ K[𝑃2,0] � K[𝑀1] ⊕ K[𝑀2] (4.23)

with cokernel Z/2. The inclusion (4.23) is an isomorphism after ⊗ZQ.
More generally, we expect that

𝐾𝑇 (S(𝑛𝑑)𝑛𝑣 )
′
Q =

⊕
𝑛1+···+𝑛𝑘=𝑛

KQ [𝑃𝑛1𝑑,𝑛1𝑣 ∗ · · · ∗ 𝑃𝑛𝑘𝑑,𝑛𝑘 𝑣 ] .

More details will be discussed in [PTb].

5. The coproduct on quasi-BPS categories and K-theoretic BPS spaces

Recall that Q is the quiver with one vertex and three edges 𝑥, 𝑦, 𝑧. Recall the regular function (2.2)
induced from the superpotential 𝑊 := 𝑥 [𝑦, 𝑧]. We will denote by 𝑚 the Hall product (2.5) of (𝑄,𝑊)
and by m the Hall product (2.17).

In Subsection 5.1, we define the coproduct Δ̃ for the categories S•∗ (𝑑)𝑤 . In Subsection 5.2, we prove
the compatibility of the product and coproduct for the quasi-BPS categories S•𝑇 (𝑑)𝑤 ; see Theorem 5.2.
In Subsection 5.3, we use the Koszul equivalence to define the coproduct Δ for the categories T∗(𝑑)𝑣 and
to check the compatibility between the product and the coproduct for the quasi-BPS categories T𝑇 (𝑑)𝑣 .
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Recall the definition of D𝑑,𝑣 for (𝑑, 𝑣) ∈ N × Z for gcd(𝑑, 𝑣) = 1 from Equation (1.10). In
Subsection 5.4, we show that 𝐾 (D𝑑,𝑣 )F is isomorphic to the F-algebra of symmetric polynomials; see
Proposition 5.11. Further, we consider the space of primitive elements

P(𝑛𝑑, 𝑛𝑣) ⊂ 𝐾𝑇 (T(𝑛𝑑)𝑛𝑣 )

which we regard as an analogue of cohomological BPS spaces in K-theory; see Proposition 5.11 and
the equality (1.5).

Note that the definition of Hall multiplication involves attracting stacks of antidominant cocharacters.
The definition of the coproduct is through attracting stacks of dominant cocharacters. In this section,
we will use dominant cocharacters.

5.1. Preliminaries

Let 𝑑 ∈ N. Recall the stack of representation of Q of dimension d:

X (𝑑) := 𝑅(𝑑)/𝐺 (𝑑) := 𝔤⊕3/𝐺𝐿(𝑑).

In this section, we allow partitions which have terms equal to zero. For𝑤 ∈ Z, let 𝐻𝑑,𝑤 be the set of parti-
tions (𝑑𝑖 , 𝑤𝑖)

𝑘
𝑖=1 of (𝑑, 𝑤) with 𝑑𝑖 � 1 for 𝑖 ∈ {1, . . . , 𝑘} such that, for 𝑣𝑖 := 𝑤𝑖 − 𝑑𝑖

(∑
𝑖> 𝑗 𝑑 𝑗 −

∑
𝑗>𝑖 𝑑 𝑗

)
for 𝑖 ∈ {1, . . . , 𝑘}, we have

𝑣1
𝑑1

= . . . =
𝑣𝑘
𝑑𝑘

. (5.1)

For a partition 𝐴 = (𝑑𝑖 , 𝑤𝑖)
𝑘
𝑖=1 with terms possibly equal to zero, let 𝐼 ⊂ {1, . . . , 𝑘} be the subset of i

with 𝑑𝑖 � 1, and define the partition of (𝑑, 𝑤) with nonzero terms 𝐴 := (𝑑𝑖 , 𝑤𝑖)𝑖∈𝐼 .

5.1.1.
For 𝜆 and 𝜇 two cocharacters, let 𝐴𝜆 be the set of (𝑇 (𝑑) × 𝑇)-weights 𝛽 of 𝑅(𝑑) such that 〈𝜆, 𝛽〉 > 0,
let 𝐼𝜇𝜆 ⊂ 𝐴𝜆 be the set of weights such that 〈𝜇, 𝛽〉 < 0 and let 𝐴𝜇𝜆 ⊂ 𝐴𝜆 be the set of weights such that
〈𝜇, 𝛽〉 = 0. Let 𝐽𝜇𝜆 be the set of weights 𝛽 of 𝔤 such that 〈𝜆, 𝛽〉 > 0 and 〈𝜇, 𝛽〉 < 0. Define the weights

𝑁
𝜇
𝜆 :=

∑
𝐼
𝜇
𝜆

𝛽, 𝔤𝜇𝜆 :=
∑
𝐽
𝜇
𝜆

𝛽.

5.1.2.
Let 𝜆 and 𝜇 be dominant cocharacters of 𝑇 (𝑑) with associated partitions 𝐴 = (𝑑𝑖)𝑘𝑖=1 and 𝐵 = (𝑒𝑖)𝑠𝑖=1,
respectively. Let𝑊 � 𝔖𝑑 be the Weyl group of 𝐺𝐿(𝑑), let𝑊𝜆 � ×𝑘𝑖=1𝔖𝑑𝑖 be the Weyl group of 𝐺𝐿(𝑑)𝜆
and let 𝑊 𝜇 be the Weyl group of 𝐺𝐿(𝑑)𝜇. Define the set of cosets

𝑆
𝜇
𝜆 := 𝑊 𝜇\𝑊/𝑊𝜆.

A coset 𝐶 ∈ 𝑆𝜇𝜆 corresponds to partitions ( 𝑓𝑖 𝑗 ) for 1 � 𝑖 � 𝑘 and 1 � 𝑗 � 𝑠 such that

𝑠∑
𝑗=1

𝑓𝑖 𝑗 = 𝑑𝑖 for 1 � 𝑖 � 𝑘,
𝑘∑
𝑖=1

𝑓𝑖 𝑗 = 𝑒 𝑗 for 1 � 𝑗 � 𝑠.

Let 𝜈 be a dominant cocharacter corresponding to the partition

( 𝑓11, · · · , 𝑓1𝑠 , 𝑓21, · · · , 𝑓2𝑠 , · · · , 𝑓𝑘1, · · · , 𝑓𝑘𝑠), (5.2)
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and let 𝜅 be a dominant cocharacter corresponding to the partition

( 𝑓11, · · · , 𝑓𝑘1, 𝑓12, · · · , 𝑓𝑘2, · · · , 𝑓1𝑠 , · · · , 𝑓𝑘𝑠). (5.3)

Consider the permutation w of 𝔖𝑑 of minimal length which permutes blocks of consecutive integers

𝑤 = 𝑤𝐶 : ( 𝑓11, · · · , 𝑓1𝑠 , 𝑓21, · · · , 𝑓2𝑠 , · · · , 𝑓𝑘1, · · · , 𝑓𝑘𝑠) ↦→ (5.4)
( 𝑓11, · · · , 𝑓𝑘1, 𝑓12, · · · , 𝑓𝑘2, · · · , 𝑓1𝑠 , · · · , 𝑓𝑘𝑠).

Consider the partition

𝐷 = ( 𝑓𝑖 𝑗 , 𝑢𝑖 𝑗 ), (5.5)

where 𝑓𝑖 𝑗 are ordered as on Equation (5.2), and assume that 𝐷 is in 𝐻𝑑,𝑤 . Then there also exists a
partition E with terms ( 𝑓𝑖 𝑗 , 𝑢̃𝑖 𝑗 ) where 𝑓𝑖 𝑗 are ordered as on Equation (5.3) such that 𝐸 is in 𝐻𝑑,𝑤 .
Consider the order 1 � 𝑙 � 𝑘𝑠 of the pairs (𝑖, 𝑗) as on the first line on Equation (5.4). Define the functor

sw𝐶 : �𝑘𝑠𝑙=1M( 𝑓𝑙)𝑢𝑙 → �
𝑘𝑠
𝑙=1M( 𝑓𝑤 (𝑙) )𝑢𝑤 (𝑙) , (5.6)

�𝑘𝑠𝑙=1A𝑙 ↦→ �𝑘𝑠𝑙=1A𝑤 (𝑙)

which permutes the factors as in Equation (5.4). Define

s̃w𝐶 : �𝑘𝑖=1 �
𝑠
𝑗=1M( 𝑓𝑖 𝑗 )𝑢𝑖 𝑗 → �

𝑠
𝑗=1 �

𝑘
𝑖=1 M( 𝑓𝑖 𝑗 )𝑢𝑖 𝑗 ,

A ↦→ sw𝐶

(
A ⊗ O(−𝑁𝑤−1𝜇

𝜆 + 𝔤𝑤
−1𝜇

𝜆 ) [|𝐼
𝑤−1𝜇
𝜆 | − |𝐽

𝑤−1𝜇
𝜆 |]

)
,

where O(−𝑁𝑤−1𝜇
𝜆 + 𝔤𝑤

−1𝜇
𝜆 ) is a one-dimensional representation of 𝐺𝜈 � 𝐺𝜅 . Consider the maps

X (𝑑)𝜅
𝑞𝜅−1𝜇
←−−−− (X (𝑑)𝜇)𝜅−1�0

𝑝𝜅−1𝜇
−−−−→ X (𝑑)𝜇 .

Finally, define

𝑚𝐷𝐸 = 𝑝𝜅−1𝜇∗𝑞
∗
𝜅−1𝜇

s̃w𝐶 : M𝐶 → M𝐵 .

There are analogous such functors for categories of (equivariant and/ or graded) matrix factorizations

𝑚𝐶𝐵 : S•∗,𝐶 → S
•
∗,𝐵 .

5.1.3.
We introduce some more maps and functors needed in the rest of this section. Let 𝜆 and 𝜇 be dominant
cocharacters, and let 𝜈 be a dominant cocharacter corresponding to a partition in 𝑆

𝜇
𝜆 . The map 𝑝𝜆−1

factors as 𝑝𝜆−1 = 𝜋𝜆−1 𝜄𝜆−1 , where

𝜋𝜆−1 : 𝑅(𝑑)/𝐺 (𝑑)𝜆
−1�0 → 𝑅(𝑑)/𝐺 (𝑑),

𝜄𝜆−1 : 𝑅(𝑑)𝜆
−1�0/𝐺 (𝑑)𝜆

−1�0 → 𝑅(𝑑)/𝐺 (𝑑)𝜆
−1�0.

There are similarly defined maps

𝜋𝜅−1𝜇 : 𝑅(𝑑)𝜇/(𝐺 (𝑑)𝜇)𝜅
−1�0 → 𝑅(𝑑)𝜇/𝐺 (𝑑)𝜇,

𝜄𝜅−1𝜇 : (𝑅(𝑑)𝜇)𝜅
−1�0/(𝐺 (𝑑)𝜇)𝜅

−1�0 → 𝑅(𝑑)𝜇/(𝐺 (𝑑)𝜇)𝜅
−1�0.
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5.1.4.
Let 𝜇 be a dominant cocharacter of 𝑇 (𝑑), let 𝑏 ∈ Z and let 𝐷𝑏

(
X (𝑑)𝜇�0)

�𝑏 be the subcategory of
𝐷𝑏

(
X (𝑑)𝜇�0) generated by complexes 𝑞∗𝜇A for A ∈ 𝐷𝑏 (X (𝑑)𝜇)𝑖 and 𝑖 � 𝑏. There is a semiorthogonal

decomposition

𝐷𝑏
(
X (𝑑)𝜇�0

)
�𝑏

=
〈
𝐷𝑏

(
X (𝑑)𝜇�0

)
�𝑏−1

, 𝐷𝑏
(
X (𝑑)𝜇�0

)
𝑏

〉
,

and there are equivalences 𝑞∗𝜇 : 𝐷𝑏 (X (𝑑)𝜇)𝑏
∼
−→ 𝐷𝑏

(
X (𝑑)𝜇�0)

𝑏 . We define the functor

𝛽𝑏 : 𝐷𝑏
(
X (𝑑)𝜇�0

)
�𝑏
→ 𝐷𝑏

(
X (𝑑)𝜇�0

)
𝑏

to be the projection with respect to the above semiorthogonal decomposition.

5.1.5.
Let 𝐵 = (𝑑𝑖 , 𝑤𝑖)

𝑘
𝑖=1 be a partition of (𝑑, 𝑤) in 𝐻𝑑,𝑤 . Let 𝜇 be a dominant cocharacter for the partition

(𝑑𝑖)
𝑘
𝑖=1, and let 𝑏 := 𝑛𝜇

2 = 〈𝜇, 𝔤𝜇>0〉; see Equation (2.3) for the definition of 𝑛𝜆.

Lemma 5.1. There is a functor

Δ̃𝐵 :=
(
𝑞∗𝜇

)−1
𝛽𝑏 𝑝

∗
𝜇 : M(𝑑)𝑤 → M𝐵 := �𝑘𝑖=1M(𝑑𝑖)𝑤𝑖 . (5.7)

Proof. First, note that the image of 𝑝∗𝜇 (M(𝑑)𝑤 ) is in 𝐷𝑏 (X (𝑑)𝜇�0)�𝑏 from the description of the
categoryM(𝑑)𝑤 in Lemma 2.2. Thus, the image of Δ̃𝐵 is in 𝐷𝑏 (X (𝑑)𝜇)𝑏 . Also, note that the category
M𝐵 is a subcategory of 𝐷𝑏 (X (𝑑)𝜇)𝑏 because 𝐵 = (𝑑𝑖 , 𝑤𝑖)

𝑘
𝑖=1 is in 𝐻𝑑,𝑤 .

Let 𝜒 be a dominant weight of 𝑇 (𝑑) such that 𝜒 + 𝜌 ∈ W(𝑑)𝑤 . If 𝜒 + 𝜌 is not on the face 𝐹 (𝜇) of
the polytope W(𝑑), then

𝛽𝑏𝑝
∗
𝜇

(
OX (𝑑) ⊗ Γ𝐺𝐿 (𝑑) (𝜒)

)
= 0.

If 𝜒 + 𝜌 is on the face 𝐹 (𝜇), then by [Păda, Corollary 3.4] we can write

𝜒 + 𝜌 − 𝑤𝜏𝑑 =
1
2
𝑁𝜇>0 +

𝑘∑
𝑖=1
(𝜓𝑖 + 𝜌𝑖), (5.8)

where 𝜓𝑖 ∈ 𝑀 (𝑑𝑖) and 𝜓𝑖 + 𝜌𝑖 ∈W(𝑑𝑖)0. In particular, we have that

𝜒 =
𝑘∑
𝑖=1

𝜓𝑖 + 𝔤
𝜇>0 + 𝑤𝜏𝑑 .

Write 𝜒 =
∑𝑘
𝑖=1 𝜒𝑖 . We have

〈1𝑑𝑖 , 𝜒𝑖〉 =
𝑑𝑖𝑤

𝑑
+ 〈1𝑑𝑖 , 𝔤

𝜇>0〉 = 𝑣𝑖 + 〈1𝑑𝑖 , 𝔤
𝜇>0〉 = 𝑤𝑖 .

Further, we have that 𝜒𝑖 = 𝜓𝑖 + 𝑤𝑖𝜏𝑑𝑖 , so 𝜒𝑖 + 𝜌𝑖 ∈W(𝑑𝑖)𝑤𝑖 . Therefore, we have(
𝑞∗𝜇

)−1
𝛽𝑏 𝑝

∗
𝜇

(
OX (𝑑) ⊗ Γ𝐺𝐿 (𝑑) (𝜒)

)
= �𝑘𝑖=1

(
OX (𝑑𝑖 ) ⊗ Γ𝐺𝐿 (𝑑𝑖) (𝜒𝑖)

)
∈ M𝐵 . �
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Let 𝜒 be a dominant weight with 𝜒 + 𝜌 ∈W(𝑑). Note that

Δ̃𝐵
(
OX (𝑑) ⊗ Γ𝐺𝐿 (𝑑) (𝜒)

)
=

{
OX (𝑑)𝜇 ⊗ Γ𝐺𝐿 (𝑑)𝜇 (𝜒), if 𝜒 ∈ 𝐹 (𝜇),
0, otherwise.

(5.9)

The functor (5.7) induces a functor

Δ̃𝐵 :=
(
𝑞∗𝜇

)−1
𝛽𝑏 𝑝

∗
𝜇 : S•∗ (𝑑)𝑤 → S•∗,𝐵 . (5.10)

Let 𝐴 = (𝑑𝑖 , 𝑤𝑖)
𝑘
𝑖=1 and 𝐶 = ( 𝑓𝑖 , 𝑢𝑖)𝑙𝑖=1 be partitions in 𝐻𝑑,𝑤 such that C is a refinement of A; see

Subsection 2.2.6. One can analogously define functors

Δ̃𝐴𝐶 : M𝐴→ M𝐶 , Δ̃𝐴𝐶 : S•∗,𝐴→ S
•
∗,𝐶

for categories S•∗ as in Subsection 2.6.2.

5.2. Compatibility between the product and the coproduct

In this section, we show that 𝑚 and Δ̃ are compatible. Recall the forget-the-potential map (1.8):

Θ : 𝐾𝑇 (MF(X (𝑑),Tr𝑊)) → 𝐾𝑇 (MF(X (𝑑), 0)).

Recall that 𝐾𝑇 (S𝐴)F ↩→ 𝐾𝑇 (M𝐴)F; see [PTa, Theorem 4.12 and Equation (4.36)]. Let

𝐾𝑇 (S𝐴)
′ := 𝐾𝑇 (S𝐴)/(K-torsion) �→ image(Θ : 𝐾𝑇 (S𝐴) → 𝐾𝑇 (M𝐴)).

Theorem 5.2. Consider a pair (𝑑, 𝑤) ∈ N × Z. Let 𝜆 and 𝜇 be dominant cocharacters with associated
partitions 𝐴 = (𝑑𝑖 , 𝑤𝑖)

𝑘
𝑖=1 and 𝐵 = (𝑒𝑖 , 𝑣𝑖)𝑠𝑖=1 in𝐻𝑑,𝑤 . Let 𝑆𝐵𝐴 ⊂ 𝑆

𝜇
𝜆 be the set of partitions𝐶 = ( 𝑓𝑖 , 𝑢𝑖)𝑙𝑖=1

with 𝑙 = 𝑘𝑠 with 𝐶 in 𝐻𝑑,𝑤 and such that

𝑓(𝑖−1)𝑠+1 + 𝑓(𝑖−1)𝑠+2 + . . . + 𝑓𝑖𝑠 = 𝑑𝑖 for 1 � 𝑖 � 𝑘,

𝑓 𝑗 + 𝑓𝑠+ 𝑗 + . . . + 𝑓(𝑘−1)𝑠+ 𝑗 = 𝑒 𝑗 for 1 � 𝑗 � 𝑠.

Then the following diagram commutes:

𝐾𝑇 (S𝐴)
′ 𝐾𝑇 (S(𝑑)𝑤 )

′

⊕
𝐶∈𝑆𝐵

𝐴
𝐾𝑇 (S𝐶 )

′ 𝐾𝑇 (S𝐵)
′.

𝑚̃𝐴

⊕
Δ̃𝐴𝐶 Δ̃𝐵⊕

𝑚̂𝐶𝐵

Theorem 5.2 is a T-equivariant version of [Păda, Theorem 5.2], and the same proof works to show
this statement. However, we present an alternative proof which first proves a categorical statement about
complexes in 𝐷𝑏 (X (𝑑)𝜇) which is stronger than the results in loc. cit. and is of independent interest for
computations in categorical Hall algebras.

Note that the compatibility of the product and coproduct for localized K-theory, either in the above
setting or in the setting of Corollary 5.6, follows by a direct computation and Propositions 5.7 and 5.8.

Proposition 5.3. Let 𝐴, 𝐵 be as in Theorem 5.2. For 1 � 𝑖 � 𝑘 , let 𝜒𝑖 be a dominant weight of 𝑇 (𝑑𝑖)
for 1 � 𝑖 � 𝑘 such that 𝜒𝑖 + 𝜌𝑖 ∈W(𝑑𝑖). Let 𝜒 :=

∑𝑘
𝑖=1 𝜒𝑖 . For any 𝐶 ∈ 𝑆𝐵𝐴, there are natural maps,

𝑚𝐶𝐵Δ̃𝐴𝐶
(
OX (𝑑)𝜆 ⊗ Γ𝐺𝐿 (𝑑)𝜆 (𝜒)

)
→ Δ̃𝐵𝑚𝐴

(
OX (𝑑)𝜆 ⊗ Γ𝐺𝐿 (𝑑)𝜆 (𝜒)

)
(5.11)
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such that there is an isomorphism⊕
𝐶∈𝑆𝐵

𝐴

𝑚𝐶𝐵Δ̃𝐴𝐶
(
OX (𝑑)𝜆 ⊗ Γ𝐺𝐿 (𝑑)𝜆 (𝜒)

) ∼
−→ Δ̃𝐵𝑚𝐴

(
OX (𝑑)𝜆 ⊗ Γ𝐺𝐿 (𝑑)𝜆 (𝜒)

)
. (5.12)

Proof of Theorem 5.2. By Proposition 5.3, the following diagram commutes:

𝐾𝑇 (M𝐴) 𝐾𝑇 (M(𝑑)𝑤 )

⊕
𝐶∈𝑆𝐵

𝐴
𝐾𝑇 (M𝐶 ) 𝐾𝑇 (M𝐵).

𝑚̃𝐴

⊕
Δ̃𝐴𝐶 Δ̃𝐵⊕

𝑚̂𝐶𝐵

The maps 𝑚 and Δ̃ are compatible with the forget-the-potential map (1.8) by [Păd22, Proposition 3.6]
and [Păda, Proposition 5.1], respectively. The conclusion thus follows. �

Proof of Proposition 5.3. The argument follows closely the proof of [Pădb, Theorem 5.2]. We give an
overview of the proof. We use a Koszul resolution to compute 𝑚𝐴

(
OX (𝑑)𝜆 ⊗ Γ𝐺𝐿 (𝑑)𝜆 (𝜒)

)
in terms of

O ⊗ Γ𝐺𝐿 (𝑑) (𝜃), where 𝜃 = (𝜒 − 𝜎𝐼 )+ for 𝜎𝐼 a partial sum of weights pairing positively with 𝜆. Let
O⊗Γ𝐺𝐿 (𝑑) (𝜃) be a vector bundle appearing in the Koszul resolution with nonzero Δ̃𝐵. Then the weight
𝜃 is on a face of W(𝑑); see Equation (5.9). We use Proposition 5.4 to characterize the highest weights
𝜃 on a face of W(𝑑) in terms of partitions 𝐶 ∈ 𝑆𝐵𝐴. The proof then follows from a direct comparison
with the right-hand side of Equation (5.12). Let 𝜎𝐼 be a sum such that 𝜒 − 𝜎𝐼 is on a face of W(𝑑)
corresponding to 𝐶 ∈ 𝑆𝐵𝐴 with associated permutation w; see Equation (5.4). The swap morphism
appears because conjugating 𝜒 − 𝜎𝐼 to 𝜃 = (𝜒 − 𝜎𝐼 )+ first requires to act by w.

The multiplication𝑚𝐴 is defined as𝑚𝐴 = 𝑝𝜆−1∗𝑞
∗
𝜆−1 . Let 𝜒 :=

∑𝑘
𝑖=1 𝜒𝑖 . Consider the Koszul resolution

𝑚𝐴
(
OX (𝑑)𝜆 ⊗ Γ𝐺𝐿 (𝑑)𝜆 (𝜒)

)
= 𝜋𝜆−1∗𝜄𝜆−1∗𝑞

∗
𝜆−1

(
OX (𝑑)𝜆 ⊗ Γ𝐺𝐿 (𝑑)𝜆 (𝜒)

)
� 𝜋𝜆−1∗

(⊕
𝐼 ⊂𝐴𝜆

O𝑅 (𝑑) ⊗ Γ𝐺𝐿 (𝑑)𝜆�0 (𝜒 − 𝜎𝐼 ) [|𝐼 |], 𝑑

)
;

see Proposition 2.1 for the notation. The differential d is induced by multiplication with generators (𝑒𝑖)𝑡𝑖=1
of the polynomial ring C

[
𝑅(𝑑)𝜆<0] � C[𝑒1, . . . , 𝑒𝑡 ]. Fix 𝐶 ∈ 𝑆𝐵𝐴, consider the associated dominant

cocharacters 𝜈 and 𝜅 and let 𝑤 = 𝑤𝐶 ∈ 𝔖𝑑 as in Equation (5.4). Let 𝜑 := 𝑤−1𝜇. There are natural maps
of complexes

𝜋𝜆−1∗
���
⊕
𝐽 ⊂𝐴

𝜑
𝜆

O𝑅 (𝑑) ⊗ Γ𝐺𝐿 (𝑑)𝜆�0 (𝜒) ⊗ O
(
−𝑁

𝜑
𝜆 − 𝜎𝐽

)
[|𝐼

𝜑
𝜆 | + |𝐽 |], 𝑑

���→ (5.13)

𝜋𝜆−1∗

(⊕
𝐼 ⊂𝐴𝜆

O𝑅 (𝑑) ⊗ Γ𝐺𝐿 (𝑑)𝜆�0 (𝜒) ⊗ O(−𝜎𝐼 ) [|𝐼 |], 𝑑
)

induced by the inclusion of sets

𝐼𝐶 := {𝑁 𝜑
𝜆 + 𝜎𝐽 | 𝐽 ⊂ 𝐴

𝜑
𝜆 } ⊂ {𝜎𝐼 | 𝐼 ⊂ 𝐴𝜆}.

The differential d of the complex on the first line is induced by multiplication with generators of the
polynomial ring C

[
(𝑅(𝑑)𝜑)𝜆<0] . For 𝐶,𝐶 ′ different elements in 𝑆𝐵𝐴, we have that 𝐼𝐶 ∩ 𝐼𝐶′ = ∅. If

𝜎 ∈ {𝜎𝐼 | 𝐼 ⊂ 𝐴𝜆} \
(⋃

𝐶∈𝑆𝐵
𝐴
𝐼𝐶

)
, then O𝑅 (𝑑) ⊗ Γ𝐺𝐿 (𝑑)𝜆�0 (𝜒) ⊗ O(−𝜎𝐼 ) has 𝑢𝜇-weights strictly less
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than 𝑛𝜇
2 = 〈𝜇, 𝔤𝜇>0〉 for all 𝑢 ∈ 𝔖𝑑; see Proposition 5.4. It follows that

Δ̃𝐵𝜋𝜆−1∗

(
O𝑅 (𝑑) ⊗ Γ𝐺𝐿 (𝑑)𝜆�0 (𝜒) ⊗ O(−𝜎𝐼 )

)
= 0 (5.14)

for such sums 𝜎; see Equation (5.9). It suffices to show that, for 𝐶 ∈ 𝑆𝐵𝐴, we have natural isomorphisms
of complexes

Δ̃𝐵𝜋𝜆−1∗
���
⊕
𝐽 ⊂𝐴

𝜑
𝜆

O𝑅 (𝑑) ⊗ Γ𝐺𝐿 (𝑑)𝜆�0 (𝜒) ⊗ O
(
−𝑁

𝜑
𝜆 − 𝜎𝐽

)
[|𝐼

𝜑
𝜆 | + |𝐽 |], 𝑑

��� (5.15)

� 𝑚𝐶𝐵Δ̃𝐴𝐶
(
OX (𝑑)𝜆 ⊗ Γ𝐺𝐿 (𝑑)𝜆 (𝜒)

)
.

Using Equation (5.13), we obtain the natural maps (5.11), and further we obtain the isomorphism (5.12)
using the vanishing (5.14).

For 𝐽 ⊂ 𝐴
𝜑
𝜆 , we have that

𝑤 ∗
(
𝜒 − 𝑁

𝜑
𝜆 − 𝜎𝐽

)
+ 𝜌 ∈ 𝐹 (𝜇) ⊂ W(𝑑);

see Proposition 5.4. Let 𝑤𝐽 ∈ 𝔖𝑑 be the element of minimal length such that 𝑤𝐽 ∗
(
𝜒 − 𝑁

𝜑
𝜆 − 𝜎𝐽

)
is dominant or zero. Observe that 𝑤∅ = 𝑤. However, for general J, we have that 𝑤𝐽 = 𝑢𝐽 ◦ 𝑤 for a
permutation 𝑢𝐽 in ×𝑠𝑖=1𝔖𝑒𝑖 � 𝑊

𝜇 and ℓ(𝑤𝐽 ) = ℓ(𝑤) + ℓ(𝑢𝐽 ). By the Borel–Bott–Weyl theorem, there
is a natural isomorphism

𝜋𝜆−1∗

(
O𝑅 (𝑑) ⊗ Γ𝐺𝐿 (𝑑)𝜆�0

(
𝜒 − 𝑁

𝜑
𝜆 − 𝜎𝐽

) )
�

𝜋𝜆−1∗

(
O𝑅 (𝑑) ⊗ Γ𝐺𝐿 (𝑑)𝜆�0

(
𝑤 ∗ (𝜒 − 𝑁

𝜑
𝜆 − 𝜎𝐽 )

)
[−|𝐽

𝜑
𝜆 |]

)
and further there are natural isomorphisms

Δ̃𝐵𝜋𝜆−1∗
���
⊕
𝐽 ⊂𝐴

𝜑
𝜆

O𝑅 (𝑑) ⊗ Γ𝐺𝐿 (𝑑)𝜆�0
(
𝜒 − 𝑁

𝜑
𝜆 − 𝜎𝐽

)
[|𝐼

𝜑
𝜆 | + |𝐽 |], 𝑑

��� (5.16)

� Δ̃𝐵𝜋𝜆−1∗
���
⊕
𝐽 ⊂𝐴

𝜑
𝜆

O𝑅 (𝑑) ⊗ Γ𝐺𝐿 (𝑑)𝜆�0
(
𝑤 ∗ (𝜒 − 𝑁

𝜑
𝜆 − 𝜎𝐽 )

)
[|𝐼

𝜑
𝜆 | − |𝐽

𝜑
𝜆 | + |𝐽 |], 𝑑

���
� 𝜋𝜅−1𝜇∗

���
⊕
𝐽 ⊂𝐴

𝜑
𝜆

O𝑅 (𝑑)𝜇 ⊗ Γ(𝐺𝐿 (𝑑)𝜇) 𝜅�0
(
𝑤 ∗ (𝜒 − 𝑁

𝜑
𝜆 − 𝜎𝐽 )

)
[|𝐼

𝜑
𝜆 | − |𝐽

𝜑
𝜆 | + |𝐽 |], 𝑑

���.
We have that

X (𝑑)𝜈 = X (𝑑)𝜅 and 𝐺 (𝑑)𝜈 = 𝐺 (𝑑)𝜅 . (5.17)

For a weight 𝜃 of 𝑇 (𝑑), denote by

Ψ
(
OX (𝑑) 𝜅 ⊗ Γ𝐺 (𝑑) 𝜅 (𝜃)

)
:= OX (𝑑) 𝜅 ⊗ Γ𝐺 (𝑑) 𝜅 (𝑤 ∗ 𝜃). (5.18)

For a subset 𝐽 ⊂ 𝐴
𝜑
𝜆 , let 𝐽 ′ = {𝑤𝛽 | 𝛽 ∈ 𝐽} be the corresponding subset of 𝐼𝜅𝜇 := {𝛽 weight of 𝑅(𝑑)𝜇 |

〈𝜅, 𝛽〉 > 0}; see Proposition 5.5. There is an isomorphism
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O(X (𝑑)𝜇) 𝜅�0 ⊗ Γ(𝐺𝐿 (𝑑)𝜇) 𝜅�0
(
𝑤 ∗ (𝜒 − 𝑁

𝜑
𝜆 − 𝜎𝐽 )

)
[−|𝐽

𝜑
𝜆 |] � (5.19)

𝑞∗
𝜅−1𝜇

(
Ψ

(
OX (𝑑)𝜈 ⊗ Γ𝐺𝐿 (𝑑)𝜈

(
𝜒 − 𝑁

𝜑
𝜆

)
[−|𝐽

𝜑
𝜆 |]

)
⊗ O(−𝜎𝐽 ′ )

)
.

For B a complex in 𝐷𝑏 (X (𝑑)𝜈), by the definition of s̃w𝐶 we have that

s̃w𝐶 (B) := Ψ
(
B ⊗ O

(
−𝑁

𝜑
𝜆

) )
[|𝐼

𝜑
𝜆 | − |𝐽

𝜑
𝜆 |] . (5.20)

We next want to use Proposition 2.1 for the map 𝜄𝜅−1𝜇. For this, it is convenient to use the following
notation

F
(
O(𝑅 (𝑑)𝜇) 𝜅�0 ⊗ Γ(𝐺 (𝑑)𝜇) 𝜅�0 (𝜃)

)
:= O𝑅 (𝑑)𝜇 ⊗ Γ(𝐺 (𝑑)𝜇) 𝜅�0 (𝜃)

for 𝜃 a dominant weight of 𝑇 (𝑑). We consider the Koszul resolution

𝜄𝜅−1𝜇∗𝑞
∗
𝜅−1𝜇

(
s̃w𝐶

(
OX (𝑑) 𝜅 ⊗ Γ𝐺𝐿 (𝑑) 𝜅 (𝜒)

) )
� (5.21)

���
⊕
𝐽 ′ ⊂𝐼𝜅𝜇

F𝑞∗
𝜅−1𝜇

(
s̃w𝐶

(
OX (𝑑) 𝜅 ⊗ Γ𝐺𝐿 (𝑑) 𝜅 (𝜒)

) )
⊗ O(−𝜎𝐽 ′ ) [|𝐽 ′ |], 𝑑���,

where the differential d is induced by multiplication with generators of the polynomial ring
C

[
(𝑅(𝑑)𝜇)𝜅<0] . Rewrite Equation (5.16) using Equations (5.18), (5.19), (5.20):

Δ̃𝐵𝜋𝜆−1∗
���
⊕
𝐽 ⊂𝐴

𝜑
𝜆

O𝑅 (𝑑) ⊗ Γ𝐺𝐿 (𝑑)𝜆�0
(
𝜒 − 𝑁

𝜑
𝜆 − 𝜎𝐽

)
[|𝐼

𝜑
𝜆 | + |𝐽 |], 𝑑

��� (5.22)

� 𝜋𝜅−1𝜇∗
���

⊕
𝐽 ′ ⊂𝐼𝜅𝜇

F𝑞∗
𝜅−1𝜇

(
s̃w𝐶

(
OX (𝑑) 𝜅 ⊗ Γ𝐺𝐿 (𝑑) 𝜅 (𝜒))

)
⊗ O(−𝜎𝐽 ′ ) [|𝐽 ′ |], 𝑑

)���.
There are isomorphisms

Δ̃𝐵𝜋𝜆−1∗
���
⊕
𝐽 ⊂𝐴

𝜑
𝜆

O𝑅 (𝑑) ⊗ Γ𝐺𝐿 (𝑑)𝜆�0 (𝜒) ⊗ O
(
−𝑁

𝜑
𝜆 − 𝜎𝐽

)
[|𝐼

𝜑
𝜆 | + |𝐽 |], 𝑑

���
(1)
� 𝜋𝜅−1𝜇∗

���
⊕
𝐽 ′ ⊂𝐼𝜅𝜇

F𝑞∗
𝜅−1𝜇

(
s̃w𝐶

(
OX (𝑑) 𝜅 ⊗ Γ𝐺𝐿 (𝑑) 𝜅 (𝜒)

) )
⊗ O(−𝜎𝐽 ′ ) [|𝐽 ′ |], 𝑑���

(2)
� 𝜋𝜅−1𝜇∗𝜄𝜅−1𝜇∗𝑞

∗
𝜅−1𝜇

(
s̃w𝐶

(
OX (𝑑) 𝜅 ⊗ Γ𝐺𝐿 (𝑑) 𝜅 (𝜒)

) )
(3)
� 𝑚𝐶𝐵

(
s̃w𝐶

(
OX (𝑑) 𝜅 ⊗ Γ𝐺𝐿 (𝑑) 𝜅 (𝜒)

) )
(4)
� 𝑚𝐶𝐵

(
s̃w𝐶

(
Δ̃𝐴𝐶 (OX (𝑑)𝜆 ⊗ Γ𝐺𝐿 (𝑑)𝜆 (𝜒))

))
.

Recall that𝑚𝜅𝜇 = 𝑚𝐶𝐵 and Δ̃𝜈𝜆 = Δ̃𝐴𝐶 . The isomorphism (1) is the isomorphism (5.22), and it respects
the differentials. The isomorphism (2) follows from Equation (5.21). The isomorphism (3) follows from
the definition of 𝑚𝐶𝐵. The isomorphism (4) follows from Equation (5.17) and the equality

Δ̃𝐴𝐶
(
OX (𝑑)𝜆 ⊗ Γ𝐺𝐿 (𝑑)𝜆 (𝜒)

)
= OX (𝑑)𝜈 ⊗ Γ𝐺𝐿 (𝑑)𝜈 (𝜒) = OX (𝑑) 𝜅 ⊗ Γ𝐺𝐿 (𝑑) 𝜅 (𝜒). �

Proposition 5.4. Let 𝜆 and 𝜇 be dominant cocharacters of 𝐺𝐿(𝑑), and let 𝑤 ∈ 𝑊 . Assume that 𝜒 is a
dominant weight with 𝜒 + 𝜌 ∈ 𝐹 (𝜆) and that 𝐼 ⊂ 𝐴𝜆 such that 𝑤 ∗ (𝜒 −𝜎𝐼 ) + 𝜌 ∈ 𝐹 (𝜇). Let 𝜑 := 𝑤−1𝜇.
Then
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𝐼 = {𝛽 ∈ 𝐴𝜆 | 〈𝜑, 𝛽〉 < 0} � 𝐽 (5.23)

for a subset 𝐽 ⊂ 𝐴
𝜑
𝜆 .

Conversely, for all 𝐼 ⊂ 𝐴𝜆 as in Equation (5.23), we have 𝑤 ∗ (𝜒 − 𝜎𝐼 ) + 𝜌 ∈ 𝐹 (𝜇).

Proof. For two cocharacters 𝜏 and 𝜏′, we use the notations

𝑁 𝜏>0 :=
∑
𝐴𝜏

𝛽, 𝑁 𝜏′=0,𝜏>0 =
∑
𝐴𝜏′
𝜏

𝛽.

Let 𝑣 = 〈1𝑑 , 𝜒〉. Write

𝜒 − 𝑣𝜏𝑑 + 𝜌 =
1
2
𝑁𝜆>0 + 𝜓,

𝑤 ∗ (𝜒 − 𝑣𝜏𝑑 − 𝜎𝐼 ) + 𝜌 =
1
2
𝑁𝜇>0 + 𝜙′,

𝜒 − 𝑣𝜏𝑑 − 𝜎𝐼 + 𝜌 =
1
2
𝑁 𝜑>0 + 𝜙,

where 𝜓 ∈W(𝜆)0 and 𝜙 ∈W(𝜑)0; see [Păd23, Proposition 3.4]. Then

𝜎𝐼 = 𝑁
𝜑
𝜆 +

(
1
2
𝑁 𝜑=0,𝜆>0 − 𝜙

)
+

(
𝜓 −

1
2
𝑁𝜆=0,𝜑>0

)
. (5.24)

The weight 𝜙 := 1
2𝑁

𝜑=0,𝜆>0 − 𝜙 is a sum with nonnegative coefficients of weights 𝛽 such that 〈𝜑, 𝛽〉 = 0
and 〈𝜆, 𝛽〉 > 0 and weights 𝛽′ such that 〈𝜑, 𝛽′〉 = 〈𝜆, 𝛽′〉 = 0. The weight 𝜓 := 𝜓 − 1

2𝑁
𝜆=0,𝜑>0 is a sum

with nonnegative coefficients of weights 𝛽 such that 〈𝜆, 𝛽〉 = 0 and 〈𝜑, 𝛽〉 < 0 and weights 𝛽′ such that
〈𝜑, 𝛽′〉 = 〈𝜆, 𝛽′〉 = 0. We denote by 𝜎𝜆+

𝜑0 a sum with nonnegative coefficients of weights 𝛽 such that
〈𝜆, 𝛽〉 > 0 and 〈𝜑, 𝛽〉 = 0 etc. Then we can write

𝜎𝐼 − 𝑁
𝜑
𝜆 = 𝜎𝜆+

𝜑0 + 𝜎
𝜆+
𝜑+ − 𝑛

𝜆+
𝜑−, (5.25)

where all the sums on the right-hand side are further partial sums of weights in 𝐴𝜆. We can rewrite
Equation (5.24) as

𝜎𝜆+
𝜑0 + 𝜎

𝜆+
𝜑+ = 𝑛𝜆+𝜑− + 𝜙

𝜆+
𝜑0 + 𝜙

𝜆0
𝜑0 + 𝜓

𝜆0
𝜑− + 𝜓

𝜆0
𝜑0. (5.26)

The 𝜑-weight of the left-hand side is nonnegative, while the 𝜑-weight of the right-hand side is nonpos-
itive. Thus, 𝜎𝜆+

𝜑+ = 𝑛𝜆+𝜑− = 𝜓𝜆0
𝜑− = 0. In particular, Equation (5.25) becomes

𝜎𝐼 = 𝑁
𝜑
𝜆 + 𝜎

𝜆+
𝜑0,

which implies the first direction. The converse follows in a similar way. �

Proposition 5.5. For a subset 𝐽 ⊂ 𝐴
𝜑
𝜆 , the set 𝐽 ′ = {𝑤𝛽 | 𝛽 ∈ 𝐽} is a subset of 𝐼𝜅𝜇 :=

{𝛽 weight of 𝑅(𝑑)𝜇 | 〈𝜅, 𝛽〉 > 0}. This transformation induces a bijection of sets 𝐴𝜑𝜆
∼
−→ 𝐼𝜅𝜇.

Proof. It suffices to check the first claim. To construct an inverse of this transformation, send 𝐿 ⊂ 𝐼𝜅𝜇
to 𝐿◦ = {𝑤−1𝛽 | 𝛽 ∈ 𝐿}.

Let 𝛽 ∈ 𝐴𝜑𝜆 . Recall that 𝜑 = 𝑤−1𝜇, so we have that 〈𝑤−1𝜇, 𝛽〉 = 0, and thus 〈𝜇, 𝑤𝛽〉 = 0.
It suffices to show that if a weight 𝛽𝑖 − 𝛽 𝑗 is in 𝐴

𝜑
𝜆 , then 〈𝜅, 𝛽𝑤 (𝑖) − 𝛽𝑤 ( 𝑗) 〉 > 0. For simplicity, we

discuss the case when 𝑘 = 𝑠 = 2. Rename 𝑓11 = 𝑓1, 𝑓12 = 𝑓2, 𝑓21 = 𝑓3, 𝑓22 = 𝑓4. The permutation w is
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𝑤(𝑖) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑖 + 𝑓3, if 𝑓1 + 1 � 𝑖 � 𝑓1 + 𝑓2,

𝑖 − 𝑓2, if 𝑓1 + 𝑓2 + 1 � 𝑖 � 𝑓1 + 𝑓2 + 𝑓3,

𝑖, otherwise.

We have that

〈𝜆, 𝛽𝑖 − 𝛽 𝑗〉 > 0 and 〈𝜇, 𝛽𝑤 (𝑖) − 𝛽𝑤 ( 𝑗) 〉 = 0,

so one of two possibilities happens:

(1) 𝑓1 + 𝑓2 + 𝑓3 + 1 � 𝑖 � 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 and 𝑓1 + 1 � 𝑗 � 𝑓1 + 𝑓2,

(2) 𝑓1 + 𝑓2 + 1 � 𝑖 � 𝑓1 + 𝑓2 + 𝑓3 and 1 � 𝑗 � 𝑓1.

In case (1), we have that 𝑖 = 𝑤(𝑖) and 𝑓1 + 𝑓3 +1 � 𝑤( 𝑗) � 𝑓1 + 𝑓3 + 𝑓2, and then 〈𝜅, 𝛽𝑤 (𝑖) − 𝛽𝑤 ( 𝑗) 〉 > 0.
In case (2), we have that 𝑓1 + 1 � 𝑤(𝑖) � 𝑓1 + 𝑓3 and 𝑗 = 𝑤( 𝑗), and then 〈𝜅, 𝛽𝑤 (𝑖) − 𝛽𝑤 ( 𝑗) 〉 > 0. �

5.3. The bialgebra structure under the Koszul equivalence

Let (𝑑, 𝑣) ∈ N×Z be coprime integers. For 𝑛 ∈ N, denote by 𝑅𝑛 the set of ordered partitions 𝐴 = (𝑛𝑖)𝑘𝑖=1
of n with 𝑛𝑖 � 1. For each such partition A of n, denote also by A the partition (𝑛𝑖𝑑, 𝑛𝑖𝑣)𝑘𝑖=1 of (𝑛𝑑, 𝑛𝑣).
Let 𝛾𝑖 be the weights of T for 𝑖 ∈ {1, 2} with 𝑞𝛾𝑖 = 𝑞𝑖 ∈ K. Let 𝛾 = 𝛾1 + 𝛾2, and let 𝑞𝛾 = 𝑞1𝑞2. For
simplicity, we will denote 𝑞𝛾 just by q.

5.3.1.
The coproduct (5.10) induces coproduct maps

Δ𝐴𝐶 : T𝐴→ T𝐶

for C a refinement of A as follows. Recall the Koszul equivalence

Φ : T(𝑒)𝑣 � Sgr (𝑒)𝑣 (5.27)

for all pairs (𝑒, 𝑣) ∈ N×Z. Let 𝐴 = (𝑛𝑖𝑑, 𝑤𝑖)
𝑘
𝑖=1 be a partition of (𝑛𝑑, 𝑛𝑣) with associated prime partition

𝐴′ = (𝑛𝑖𝑑, 𝑛𝑖𝑣)𝑘𝑖=1; see Subsection 2.2.7. Let T𝐴 := ⊗𝑘𝑖=1T(𝑛𝑖𝑑)𝑛𝑖𝑣 . There is a Koszul equivalence

Φ𝐴 : T𝐴→∼ Sgr
𝐴 .

Let Φ−1
𝐴 be its inverse. For V a vector space of dimension 𝑛𝑑, let 𝔩 := End(𝑉)𝜆𝐴 . Let 𝜆𝐶 be the antidom-

inant cocharacter of 𝑇 (𝑛𝑑) ⊂ 𝐺𝐿(𝑛𝑑)𝜆𝐴 corresponding to C; let 𝜔𝐴𝐶 := det
(
(𝔩𝜆𝐶>0)∨

)
[− dim 𝔩𝜆𝐶>0],

where T acts on 𝔩 with weight 𝛾 := 𝛾1 + 𝛾2. Note that det
(
(𝔩𝜆𝐶>0)∨

)
is a character of 𝐺𝐿(𝑑)𝜆𝐶 ; hence,

it determines a line bundle on X (𝑛𝑑)𝜆𝐶 . We define the functor

Δ𝐴𝐶 : T𝐴→ T𝐶

by the commutative diagram

T𝐴
Δ𝐴𝐶 ��

∼Φ𝐴

��

T𝐶

∼ Φ𝐶

��

S
gr
𝐴 Δ̃𝐴𝐶 (−) ⊗𝜔

−1
𝐴𝐶

�� S
gr
𝐶 .
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When 𝐴 = (𝑛𝑑, 𝑛𝑣) and C is a two term partition (𝑛𝑖𝑑, 𝑛𝑖𝑣)2𝑖=1, the term 𝜔𝑛1 ,𝑛2 := 𝜔𝐴𝐶 is Equation
(2.40) for dim𝑉𝑖 = 𝑛𝑖𝑑 for 𝑖 ∈ {1, 2}. For these partitions, we let Δ𝑛1𝑛2 := Δ𝐴𝐶 . For such partitions A
and C, consider the (𝑇 × 𝑇 (𝑑))-weight

𝜈𝑛1 ,𝑛2 :=
∑

𝑖>𝑛1𝑑� 𝑗

(𝛽𝑖 − 𝛽 𝑗 − 𝛾).

Then 𝜔𝑛1 ,𝑛2 = (−1) (𝑛1𝑑) ·(𝑛2𝑑)𝑞𝜈𝑛1 ,𝑛2 . Alternatively, 𝜔𝑛1 ,𝑛2 measures a ratio (called renormalized twist
in [VV22, Proof of Lemma 2.3.7]) constructed from the shuffle product for 𝑚 with kernel

𝜉 ′(𝑥) :=
(1 − 𝑞−1

1 𝑥) (1 − 𝑞−1
2 𝑥) (1 − 𝑞𝑥)

1 − 𝑥
,

and the shuffle product for m with kernel 𝜉 (𝑥); see the computation in [PTa, Proof of Lemma 4.9].

5.3.2.
Let (𝑑, 𝑣) ∈ N × Z be coprime integers, and let 𝑛 ∈ N. Consider partitions 𝐴 = (𝑑𝑖)𝑘𝑖=1 and 𝐵 = (𝑒𝑖)𝑠𝑖=1
of n. Let 𝑆𝐵𝐴 be the set of partitions 𝐶 = ( 𝑓𝑖)𝑙𝑖=1 of n with 𝑙 = 𝑘𝑠 such that

𝑓(𝑖−1)𝑠+1 + 𝑓(𝑖−1)𝑠+2 + . . . + 𝑓𝑖𝑠 = 𝑑𝑖 for 1 � 𝑖 � 𝑘,

𝑓 𝑗 + 𝑓𝑠+ 𝑗 + . . . + 𝑓(𝑘−1)𝑠+ 𝑗 = 𝑒 𝑗 for 1 � 𝑗 � 𝑠.

Let D be the partition on n constructed as in Equation (5.5). Define 𝑚′𝐵𝐶 := 𝑚𝐵𝐶 ◦ sw𝐶 , for sw𝐶 as in
Equation (5.6). Theorem 5.2 implies the following:

Corollary 5.6. In the above setting, the following diagram commutes:

𝐾𝑇 (T𝐴)
′ 𝐾𝑇 (T(𝑑)𝑤 )

′

⊕
𝐶∈𝑆𝐵

𝐴
𝐾𝑇 (T𝐶 )

′ 𝐾𝑇 (T𝐵)
′.

𝑚̃𝐴

⊕
Δ̃𝐴𝐶 Δ̃𝐵⊕

𝑚̂𝐶𝐵

Proof. For simplicity of notation, we assume that 𝑘 = 𝑙 = 2, that A is the partition 𝑎 + 𝑏 = 𝑛, and that B
is the partition 𝑐 + 𝑒 = 𝑛. Then 𝑆 := 𝑆𝐵𝐴 is the set of partitions 𝐶 = ( 𝑓𝑖)4𝑖=1 ∈ N

4 such that

𝑓1 + 𝑓2 = 𝑎, 𝑓3 + 𝑓4 = 𝑏, 𝑓1 + 𝑓3 = 𝑐, 𝑓2 + 𝑓4 = 𝑒.

Note that, for such a partition C, the partition D is ( 𝑓1, 𝑓3, 𝑓2, 𝑓4). The swap morphism is

sw𝑎𝑏 : 𝐾𝑇 (T(𝑎𝑑)𝑎𝑣 )′ ⊗ 𝐾𝑇 (T(𝑏𝑑)𝑏𝑣 )′ → 𝐾𝑇 (T(𝑏𝑑)𝑏𝑣 )
′ ⊗ 𝐾𝑇 (T(𝑎𝑑)𝑎𝑣 )

′,

𝑥 ⊗ 𝑦 ↦→ 𝑦 ⊗ 𝑥.

We abuse notation and write 𝑚𝑎𝑏 instead of 𝑚𝑎𝑑,𝑏𝑑 and so on. We then need to show that the following
diagram commutes:

𝐾𝑇 (T(𝑎𝑑)𝑎𝑣 )
′ ⊗ 𝐾𝑇 (T(𝑏𝑑)𝑏𝑣 )

′ 𝐾𝑇 (T(𝑛𝑑)𝑛𝑣 )
′

⊕
𝑆

⊗4
𝑖=1 𝐾𝑇

(
T( 𝑓𝑖𝑑) 𝑓𝑖𝑣

) ′
𝐾𝑇 (T(𝑐𝑑)𝑐𝑣 )

′ ⊗ 𝐾𝑇 (T(𝑒𝑑)𝑒𝑣 )
′,

𝑚𝑎𝑏

Δ Δ𝑐𝑒

𝑚′

where 𝑚′ :=
⊕

𝑆

(
𝑚 𝑓1 𝑓3 ⊗ 𝑚 𝑓2 𝑓4

) (
1 ⊗ sw 𝑓2 𝑓3 ⊗ 1

)
and Δ :=

⊕
𝑆 Δ 𝑓1 𝑓2 ⊗ Δ 𝑓3 𝑓4 .
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For 𝑚 ∈ N, recall that 𝜎𝑚 := 𝑚𝜏𝑚 =
∑𝑚
𝑖=1 𝛽𝑖 . Then 𝜎𝑎𝑑 = 𝜎 𝑓1𝑑 + 𝜎 𝑓2𝑑 and so on. In this proof, we

will use the notation 𝑧 := 𝑞−𝛾 instead of 𝑞−1 to reduce the use of the letter q. We use the notation Φ𝑛

for the Koszul equivalence (5.27) for (𝑛𝑑, 𝑛𝑣). Then

𝑞𝜈𝑎,𝑏 = 𝑞−𝑏𝑑𝜎𝑎𝑑𝑞𝑎𝑑𝜎𝑏𝑑 𝑧𝑎𝑏𝑑
2
, 𝜔𝑎,𝑏 = 𝑞−𝑏𝑑𝜎𝑎𝑑𝑞𝑎𝑑𝜎𝑏𝑑 (−𝑧)𝑎𝑏𝑑

2
.

Fix a tuplet 𝐶 = ( 𝑓𝑖)4𝑖=1 as above, and let 𝑤 = 𝑤𝐶 ∈ 𝔖𝑛𝑑 be its corresponding Weyl element as in
Subsection 5.1.2. Let 𝑥𝑚 ∈ 𝐾𝑇 (T(𝑚𝑑)𝑚𝑣 ) for 𝑚 ∈ { 𝑓𝑖 , 𝑎, 𝑏, 𝑛 | 1 � 𝑖 � 4}. By the discussions in
Subsections 2.11 and 5.3.1, we have that

𝑚𝑎𝑏 (𝑥𝑎 � 𝑥𝑏) = Φ−1
𝑛 𝑚𝑎𝑏

(
Φ𝑎 (𝑥𝑎)𝑞

−𝑏𝑑𝜎𝑎𝑑 �Φ𝑏 (𝑥𝑏)𝑞
𝑎𝑑𝜎𝑏𝑑 (−𝑧)𝑑

2𝑎𝑏
)
,

Δ𝑎𝑏 (𝑥𝑛) = Φ−1
𝑎 �Φ

−1
𝑏

((
Δ̃𝑎𝑏Φ𝑛 (𝑥𝑛)

)
𝑞𝑏𝑑𝜎𝑎𝑑𝑞−𝑎𝑑𝜎𝑏𝑑 (−𝑧)−𝑑

2𝑎𝑏
)
,

s̃w𝐶
(
𝑥 𝑓1 � 𝑥 𝑓2 � 𝑥 𝑓3 � 𝑥 𝑓4

)
= 𝑥 𝑓1 �

(
𝑥 𝑓3𝑞

2 𝑓3𝜎 𝑓2

)
�

(
𝑥 𝑓2𝑞

−2 𝑓2𝜎 𝑓3

)
� 𝑥 𝑓4 .

We use the shorthand notations sw23 = 1� sw 𝑓2 𝑓3 � 1, 𝑚13 = 𝑚 𝑓1 𝑓3 , 𝑚𝐶 := 𝑚13 �𝑚24 and so on in what
follows. We compute, by ignoring the z factor for simplicity of notation,

Δ𝑐𝑒𝑚𝑎𝑏 (𝑥𝑎 � 𝑥𝑏) (5.28)

= Φ−1
𝑐 �Φ

−1
𝑒

(
Δ̃𝑐 𝑓

(
𝑚𝑎𝑏 (Φ𝑎 (𝑥𝑎)𝑞

−𝑏𝑑𝜎𝑎𝑑 �Φ𝑏 (𝑥𝑏)𝑞
𝑎𝑑𝜎𝑏𝑑 )

)
𝑞𝑒𝑑𝜎𝑐𝑑𝑞−𝑐𝑑𝜎𝑒𝑑

)
= Φ−1

𝑐 �Φ
−1
𝑒

∑
𝑆

𝑚𝐶

(
s̃w𝐶

(
Δ̃12 (Φ𝑎 (𝑥𝑎)𝑞

−𝑏𝑑𝜎𝑎𝑑 ) � Δ̃34 (Φ𝑏 (𝑥𝑏)𝑞
𝑎𝑑𝜎𝑏𝑑 )

))
𝑞𝑒𝑑𝜎𝑐𝑑𝑞−𝑐𝑑𝜎𝑒𝑑 .

We next compute∑
𝑆

𝑚′Δ (𝑥𝑎 � 𝑥𝑏) (5.29)

= Φ−1
𝑐 �Φ

−1
𝑒

∑
𝑆

(𝑚13 � 𝑚24)
(
𝑞− 𝑓3𝑑𝜎 𝑓1𝑑 � 𝑞 𝑓1𝑑𝜎 𝑓3𝑑 � 𝑞− 𝑓4𝑑𝜎 𝑓2𝑑 � 𝑞 𝑓2𝑑𝜎 𝑓4𝑑

)
× sw23

((
Δ̃12(Φ𝑎 (𝑥𝑎))𝑞

𝑓2𝑑𝜎 𝑓1𝑑𝑞− 𝑓1𝑑𝜎 𝑓2𝑑
)
�

(
Δ̃34 (Φ𝑏 (𝑥𝑏))𝑞

𝑓4𝑑𝜎 𝑓3𝑑𝑞− 𝑓3𝑑𝜎 𝑓4𝑑
))
.

We claim that the expressions (5.28) and (5.29) are equal. We only match the coefficients in K corre-
sponding to 𝑓1 and 𝑓2 as the computations for 𝑓3 and 𝑓4 are similar:

𝑞 ( 𝑓2+ 𝑓4)𝑑𝜎 𝑓1𝑑𝑞−( 𝑓3+ 𝑓4)𝑑𝜎 𝑓1𝑑 = 𝑞 𝑓2𝑑𝜎 𝑓1𝑑𝑞− 𝑓3𝑑𝜎 𝑓1𝑑 ,

𝑞−( 𝑓1+ 𝑓3)𝑑𝜎 𝑓2𝑑𝑞−( 𝑓3+ 𝑓4)𝑑𝜎 𝑓2𝑑 · 𝑞2 𝑓3𝑑𝜎 𝑓2𝑑 = 𝑞− 𝑓1𝑑𝜎 𝑓2𝑑𝑞− 𝑓4𝑑𝜎 𝑓2𝑑 .

Finally, the z factors in Δ𝑐𝑒𝑚𝑎𝑏 and 𝑚′Δ are equal because

(−𝑧)𝑑
2𝑎𝑏−𝑑2𝑐𝑒 = (−𝑧)−𝑑

2 𝑓1 𝑓2−𝑑
2 𝑓3 𝑓4+𝑑

2 𝑓1 𝑓3+𝑑
2 𝑓2 𝑓4 . �

5.4. The localized bialgebra

Recall that for V a K-module, we let 𝑉F := 𝑉 ⊗K F. Recall that (𝑑, 𝑣) ∈ N×Z are coprime. Consider the
N-graded F-vector space

𝑉 := 𝐾 (D𝑑,𝑣 )F =
⊕
𝑛�0

𝐾𝑇 (T(𝑛𝑑)𝑛𝑣 )F. (5.30)
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We next explain that the operations m and Δ endow V with the structure of a commutative and
cocommutative F-bialgebra. We show this by an explicit computation using the generators of these
vector spaces; see Equations (2.34) and (2.33). Recall the complex E𝑒,𝑣 from Definition 2.3 and the
shuffle elements 𝐴′𝑒,𝑣 and 𝐴𝑒,𝑣 from Equations (2.31) and (2.35) for a pair (𝑒, 𝑣) ∈ N × Z.

Proposition 5.7. Let 𝑎, 𝑏 ∈ N with 𝑎 + 𝑏 = 𝑛. Then [E𝑎𝑑,𝑎𝑣 ] · [E𝑏𝑑,𝑏𝑣 ] = [E𝑏𝑑,𝑏𝑣 ] · [E𝑎𝑑,𝑎𝑣 ] in
𝐾𝑇 (T(𝑛𝑑)𝑛𝑣 ).

Proof. By Equations (2.34) and (2.33), it suffices to check the statement for 𝐴𝑎𝑑,𝑎𝑤 and 𝐴𝑏𝑑,𝑏𝑤 or,
alternatively, for 𝐴′𝑎𝑑,𝑎𝑤 and 𝐴′𝑏𝑑,𝑏𝑤 for 𝑎, 𝑏 ∈ N. Any two such elements commute because they
are in the subalgebra of S ′

F
� SF generated by elements 𝐴′𝑒,𝑣 of fixed slope 𝑣

𝑒 , and such algebra are
commutative; see, for example, [Neg19, Subsection 3.2]. �

For the following proposition, it is convenient to introduce the element

𝐴̂𝑛𝑑,𝑛𝑣 :=
(
−𝑞−1

)𝑛−1
𝐴𝑛𝑑,𝑛𝑣 =

(
−𝑞−1)𝑛−1

(1 − 𝑞−1
1 )

𝑛𝑑−1(1 − 𝑞−1
2 )

𝑛𝑑−1
[E𝑛𝑑,𝑛𝑣 ] ∈ 𝐾𝑇 (T(𝑛𝑑)𝑛𝑣 )F.

Proposition 5.8. Let 𝑎, 𝑏, 𝑛 ∈ N be such that 𝑎 + 𝑏 = 𝑛. Then

Δ𝑎𝑏

(
𝐴̂𝑛𝑑,𝑛𝑣

)
= 𝐴̂𝑎𝑑,𝑎𝑣 � 𝐴̂𝑏𝑑,𝑏𝑣 .

For 𝑑, 𝑣, 𝑛 as above, let 𝑂𝑛 and 𝐿𝑛 be the following sets of (𝑇 × 𝑇 (𝑑))-weights:

𝑂𝑛 := {𝛽 𝑗 − 𝛽𝑖 + 𝛾 | 𝑖 > 𝑗 + 1},
𝐿𝑛 := {𝛽𝑖 − 𝛽 𝑗 + 𝛾𝑙 | 𝑖 > 𝑗 , 1 � 𝑙 � 2} �𝑂𝑛.

For a subset 𝐼 ⊂ 𝐿𝑛, let 𝜎𝐼 be the sum of the corresponding 𝑇 (𝑑)-weights in I, let 𝛾𝐼 be the sum of the
weights of the corresponding T-weights in I and let 𝑞𝐼 := 𝑞𝛾𝐼 . Let ℓ(𝐼) be the length of the minimal
Weyl element such that 𝑤 ∗ (𝜒 − 𝜎𝐼 ) is dominant or zero. Let

𝜒𝑛 :=
𝑛𝑑−1∑
𝑖=1

(
𝑣𝑖

𝑑
+ 1 −

⌈𝑣𝑖
𝑑

⌉)
(𝛽𝑖+1 − 𝛽𝑖) +

𝑣

𝑑

𝑛𝑑∑
𝑖=1

𝛽𝑖 ∈ 𝑀 (𝑛𝑑).

The element 𝐴𝑛𝑑,𝑛𝑣 ∈ 𝐾𝑇 (X (𝑛𝑑)) from Equation (2.35) can be written as

𝐴𝑛𝑑,𝑛𝑣 :=
∑
𝐼 ⊂𝐿𝑛

(−1) |𝐼 |−ℓ (𝐼 )𝑞−1
𝐼

[
Γ𝐺𝐿 (𝑛𝑑)

(
(𝜒𝑛 − 𝜎𝐼 )

+
)
⊗ OX (𝑛𝑑)

]
.

Recall the framework on Subsection 5.3.1. Consider the composition of the Koszul equivalence (2.22)
and the forget-the-potential map (1.8):

Ψ : 𝐾𝑇 (T(𝑛𝑑)𝑛𝑣 )F
∼
−→ 𝐾𝑇 (S(𝑛𝑑)𝑛𝑣 )F

Θ
−→ 𝐾𝑇 (MF(X (𝑑), 0))F

∼
−→ 𝐾𝑇 (X (𝑛𝑑))F.

Using Equation (2.38) and the computation in [PTa, Lemma 4.3], we have that

Ψ
(
(−𝑞)𝑛−1 𝐴̂𝑛𝑑,𝑛𝑣

)
= 𝐴𝑛𝑑,𝑛𝑣 .

Remark 5.9. Note that Ψ
(
𝐴̂𝑛𝑑,𝑛𝑣

)
equals the shuffle element 𝐸𝑘,𝑑 considered by Neguţ in [Neg18,

Equation 2.10], where q, k, d in loc. cit. correspond to 𝑞−1, 𝑛𝑑 and 𝑛𝑣, respectively, in our paper.
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Proof of Proposition 5.8. By the definition of Δ from Subsection 5.3.1, it suffices to show that

Δ̃𝑎𝑏
(
𝐴𝑛𝑑,𝑛𝑣

)
=

(
𝐴𝑎𝑑,𝑎𝑣 � 𝐴𝑏𝑑,𝑏𝑣

)
⊗ (−𝑞) (−1)𝑎𝑏𝑑

2
𝑞𝜈𝑎,𝑏 , (5.31)

where we are using Δ̃𝑎𝑏 instead of Δ̃𝑎𝑑,𝑏𝑑 . Let 𝐼 ⊂ 𝐿𝑛. Then

𝜒𝑛 − 𝜎𝐼 + 𝜌 =
∑
𝑖> 𝑗

𝑑𝑖 𝑗 (𝛽𝑖 − 𝛽 𝑗 ) +
𝑣

𝑑

𝑛𝑑∑
𝑖=1

𝛽𝑖 ,

where

−
3
2
� 𝑑𝑖 𝑗 �

3
2
, −

3
2
< 𝑑 𝑗+1, 𝑗 �

3
2
.

Let 𝜆 be the antidominant cocharacter associated to the partition (𝑎𝑑, 𝑏𝑑) of 𝑛𝑑. Assume such a weight
is on a wall 𝐹 (𝑤𝜆) for some 𝑤 ∈ 𝔖𝑛𝑑 . Then there exists a partition 𝐸 �𝐶 = {1, · · · , 𝑛𝑑} with |𝐶 | = 𝑎𝑑
and

𝑑𝑖 𝑗 =

{
3
2 for 𝑖 ∈ 𝐸, 𝑗 ∈ 𝐶 and 𝑖 > 𝑗 ,

− 3
2 for 𝑖 ∈ 𝐸, 𝑗 ∈ 𝐶 and 𝑖 < 𝑗 ;

(5.32)

see [HLS20, Lemma 3.12], [Păda, Proposition 3.2]. We claim that 𝐶 = {1, . . . , 𝑎𝑑}. Otherwise, there
exists 1 � 𝑗 � 𝑎𝑑 with 𝑗 ∈ 𝐸 and 𝑗 + 1 ∈ 𝐶. Then 𝑑 𝑗+1, 𝑗 > −

3
2 , and this contradicts Equation (5.32).

Then 𝑑𝑖 𝑗 = − 3
2 for 𝑖 > 𝑎𝑑 � 𝑗 . Further, we have

𝐼 ⊂ 𝑄 := {𝛽 𝑗 − 𝛽𝑖 + 𝛾 | 𝑖 > 𝑎𝑑 � 𝑗 , 𝑖 − 1 > 𝑗}

and I does not contain any weights 𝛽𝑖 − 𝛽 𝑗 − 𝛾𝑙 for 𝑖 > 𝑎𝑑 � 𝑗 and 𝑙 ∈ {1, 2}. Define 𝐿𝑎 and 𝐿𝑏
similarly to 𝐿𝑛, using the weights 𝛽𝑖 with 1 � 𝑖 � 𝑎𝑑 for 𝐿𝑎 and 𝛽𝑖 with 𝑎𝑑 < 𝑖 � 𝑛𝑑 for 𝐿𝑏 . We can
thus write 𝐼 = 𝑄 � 𝐼𝑎 � 𝐼𝑏 , where 𝐼𝑎 ⊂ 𝐿𝑎 and 𝐼𝑏 ⊂ 𝐿𝑏 . Let I be the set of such sets 𝐼 ⊂ 𝐿𝑛. We have
that (see Equation (5.9))

Δ̃𝑎𝑏
(
𝐴𝑛𝑑,𝑛𝑣

)
= Δ̃𝑎𝑏

(∑
𝐼 ∈I
(−1) |𝐼 |−ℓ (𝐼 )𝑞−1

𝐼

[
Γ𝐺𝐿 (𝑛𝑑)

(
(𝜒𝑛 − 𝜎𝐼 )

+
)
⊗ OX (𝑛𝑑)

] )
. (5.33)

Write 𝐼 = 𝑄 � 𝐼𝑎 � 𝐼𝑏 with 𝐼𝑎 ⊂ 𝐿𝑎 and 𝐼𝑏 ⊂ 𝐿𝑏 . A direct computation shows that

𝜒𝑛 − 𝜎𝐼 + 𝜌 =
∑

𝑖>𝑎𝑑� 𝑗

3
2
(𝛽𝑖 − 𝛽 𝑗 ) − (𝑑

2𝑎𝑏 − 1)𝛾 + (𝜒𝑎 − 𝜎𝐼𝑎 + 𝜌𝑎) + (𝜒𝑏 − 𝜎𝐼𝑏 + 𝜌𝑏).

Let 𝑤 ∈ 𝔖𝑛𝑑 be the Weyl element of minimal length such that 𝑤 ∗ (𝜒𝑛 − 𝜎𝐼 ) is dominant, and let
𝑤𝑎 ∈ 𝔖𝑛𝑎 and 𝑤𝑏 ∈ 𝔖𝑛𝑏 be the Weyl elements of minimal length such that 𝑤𝑎 ∗ (𝜒𝑎 − 𝜎𝐼𝑎 ) and
𝑤𝑏 ∗ (𝜒𝑏 − 𝜎𝐼𝑏 ) are dominant. Then 𝑤 = 𝑤𝑎𝑤𝑏 , therefore

(𝜒𝑛 − 𝜎𝐼 )
+ = 𝜈𝑎,𝑏 + 𝛾 + (𝜒𝑎 − 𝜎𝐼𝑎 )

+ + (𝜒𝑏 − 𝜎𝐼𝑏 )
+.

We have that |𝑄 | = 𝑑2𝑎𝑏 − 1, and

|𝐼 | = 𝑑2𝑎𝑏 − 1 + |𝐼𝑎 | + |𝐼𝑏 |, ℓ(𝐼) = ℓ(𝐼𝑎) + ℓ(𝐼𝑏).

For 𝑚 ∈ {𝑎, 𝑏, 𝑛}, let

𝐸𝑚 := (−1) |𝐼𝑚 |−ℓ (𝐼𝑚)
[
Γ𝐺𝐿 (𝑚𝑑)

(
(𝜒𝑚 − 𝜎𝐼𝑚 )

+
)
⊗ OX (𝑚𝑑)

]
.
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The coproduct (5.33) thus simplifies to

Δ̃𝑎𝑏 (𝐸𝑛) = (−𝑞) (−1)𝑑
2𝑎𝑏𝑞𝜈𝑎,𝑏 (𝐸𝑎 � 𝐸𝑏).

The conclusion thus follows. �

Corollary 5.10. The operations m and Δ endow V with the structure of an N-graded commutative and
cocommutative F-bialgebra.

5.5. Primitive elements

Let 𝑅′𝑛 ⊂ 𝑅𝑛 be the complement of the trivial partition n. For 𝐴 = (𝑛𝑖)𝑘𝑖=1, let T𝐴 := ⊗𝑘𝑖=1T(𝑛𝑖𝑑)𝑛𝑖𝑣 .
Define

P(𝑛𝑑)𝑛𝑣 := ker���
⊕
𝐴∈𝑅′𝑛

Δ𝐴 : 𝐾𝑇 (T(𝑛𝑑)𝑛𝑣 ) →
⊕
𝐴∈𝑅′𝑛

𝐾𝑇 (T𝐴)
���.

Let P(𝑛𝑑)𝑛𝑣,F := P(𝑛𝑑)𝑛𝑣 ⊗KF. Corollary 5.10 can be rephrased as follows; see the isomorphism (2.43):

Corollary 5.11. Recall the bialgebra ΛF := 𝜆⊗Z F from Subsection (2.12). There exists an isomorphism
of bialgebras

Φ : ΛF � 𝑉,

𝑒𝑛 ↦→ 𝐴𝑛𝑑,𝑛𝑣 .

In particular, the F-vector space P(𝑛𝑑)𝑛𝑣,F is one-dimensional.

Proof. Both ΛF and V are commutative and cocommutative, and Φ is a morphism of algebras by
construction. The coproduct is respected by Proposition 5.8. Finally, Φ is an isomorphism of N-graded
vector spaces by [PTa, Theorem 4.12], so the conclusion follows. �

Remark 5.12. The isomorphism Φ sends 𝑒𝑛 to 𝐴𝑛𝑑,𝑛𝑣 . Since 𝐴𝑛𝑑,𝑛𝑣 is not contained in the integral part
𝐾𝑇 (T(𝑛𝑑)𝑛𝑣 ), it does not restrict to a morphism ΛK → 𝐾𝑇 (D𝑑,𝑣 ). On the other hand, we expect the
existence of a McKay-type functor MFgr ([C3𝑑/𝔖𝑑], 0) → T(𝑛𝑑)𝑛𝑣 which may induce an isomorphism

ΛK
�
→ 𝐾𝑇 (D𝑑,𝑣 ).

For a full understanding of 𝐾𝑇 (T(𝑛𝑑)𝑛𝑣 ), we thus need to construct an isomorphism different from the
one in Corollary 5.11. Such an isomorphism will be discussed in [PTb].

Finally, we prove Corollary 1.5:

Corollary 5.13. There is an isomorphism of N-graded F-vector spaces⊕
𝑑�0

𝐾𝑇 (DT (𝑑))F �
⊗

0�𝑣<𝑑
gcd(𝑑,𝑣)=1

(⊗
𝑛�1

Sym
(
P(𝑛𝑑)𝑛𝑣,F

))
.

Proof. For • ∈ {∅, gr}, there are equivalences S•𝑇 (𝑑)𝑤
∼
−→ S•𝑇 (𝑑)𝑑+𝑤 . By [PTa, Theorem 1.1], there is

an isomorphism

𝐾𝑇 (DT (𝑑))F �
⊕

0�𝑣1/𝑑1<...<𝑣𝑘/𝑑𝑘<1
𝑑1+...+𝑑𝑘=𝑑

𝑘⊗
𝑖=1

𝐾𝑇
(
S(𝑑𝑖)𝑣𝑖

)
F
. (5.34)
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Further, there are isomorphisms of N-graded F-vector spaces⊕
0�𝑣1/𝑑1<...<𝑣𝑘/𝑑𝑘<1

𝑘⊗
𝑖=1

𝐾𝑇
(
S(𝑑𝑖)𝑣𝑖

)
F
�

⊗
0�𝜇<1

𝜇=𝑎/𝑏, gcd(𝑎,𝑏)=1

(⊕
𝑛≥1

𝐾𝑇 (S(𝑛𝑏)𝑛𝑎)F

)
. (5.35)

For each coprime (𝑎, 𝑏) ∈ Z × N, by Corollary 5.11 and the isomorphism (2.43), we obtain the
isomorphism ⊕

𝑛≥1
𝐾𝑇 (S(𝑛𝑏)𝑛𝑎)F �

⊗
𝑛�1

Sym
(
P(𝑛𝑏)𝑛𝑎,F

)
. (5.36)

We obtain the conclusion by combining the isomorphisms (5.34), (5.35), (5.36). �

We explain how the above isomorphism categorifies Equation (1.6) up to a sign. We use the same
computation as in [PTa, Subsection 4.7]. Let 𝑎𝑑 := dimF 𝐾𝑇 (DT (𝑑))F. We have that dimF P(𝑛𝑏)𝑛𝑎,F = 1
for any (𝑎, 𝑏) with gcd(𝑎, 𝑏) = 1 and 𝑛 ∈ Z�1. For each 𝑑 ∈ Z�1, there is a bijection

{(𝑛, 𝑎, 𝑏) ∈ Z3
�0 : 𝑑 = 𝑏𝑛, gcd(𝑎, 𝑏) = 1, 0 � 𝑎 < 𝑏}

�
→ {0, 1, . . . , 𝑑 − 1}

given by (𝑛, 𝑎, 𝑏) ↦→ 𝑛𝑎. In particular, the number of the elements of the left-hand side equals to d. We
compute ∑

𝑑�0
𝑎𝑑𝑞

𝑑 =
∏

0�𝜇<1
𝜇=𝑎/𝑏, gcd(𝑎,𝑏)=1

∏
𝑛�1

1
1 − 𝑞𝑏𝑛

=
∏
𝑑�1

1(
1 − 𝑞𝑑

)𝑑 .
Compare with the wall-crossing formula for DT invariants (1.6).
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