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Abstract

Quasi-BPS categories appear as summands in semiorthogonal decompositions of DT categories for Hilbert schemes
of points in the three-dimensional affine space and in the categorical Hall algebra of the two-dimensional affine
space. In this paper, we prove several properties of quasi-BPS categories analogous to BPS sheaves in cohomological
DT theory.

We first prove a categorical analogue of Davison’s support lemma, namely that complexes in the quasi-BPS
categories for coprime length and weight are supported over the small diagonal in the symmetric product of the
three-dimensional affine space. The categorical support lemma is used to determine the torsion-free generator of
the torus equivariant K-theory of the quasi-BPS category of coprime length and weight.

We next construct a bialgebra structure on the torsion free equivariant K-theory of quasi-BPS categories for a
fixed ratio of length and weight. We define the K-theoretic BPS space as the space of primitive elements with respect
to the coproduct. We show that all localized equivariant K-theoretic BPS spaces are one-dimensional, which is a
K-theoretic analogue of the computation of (numerical) BPS invariants of the three-dimensional affine space.

1. Introduction
1.1. Quasi-BPS categories

In [PTa, Pada, Pad23], we studied quasi-BPS (named after Bogomol’nyi—Prasad—Sommerfield states)
categories S(d),, for d € N (length) and w € Z (weight) in relation to categorical Donaldson—Thomas
(DT) theory and to categorical Hall algebras (of surfaces and of quivers with potentials). They are
defined to be full subcategories of the category of matrix factorizations

S(d),, := MF(M(d)yy, Tt Wy) € MF(X(d), Tr W,), (1.1)

where M(d),, is a twisted noncommutative resolution first considered by Spenko—Van den Bergh
[SdB17]; see Subsection 2.6 for more details. Here, the stack X'(d) and the regular function Tr W, are
given by

X(d) := Hom(V,V)®3/GL(V), TrW4(A, B,C) = Tr A[B, C], 1.2)
where V is a d-dimensional vector space.
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2 T. Pdadurariu and Y. Toda

There is also a graded quasi-BPS category S&"(d),, which is equivalent (via Koszul duality) to a
subcategory

T(d), c D*(%(d)),

where & (d) is the derived moduli stack of zero-dimensional sheaves on C> with length 4. We will also
consider T-equivariant versions of these categories, where T = (C*)? is the Calabi—Yau torus of C>.
We denote by K = K(BT) = Z[qz—'l, q%l] and by F the fractional field of K. The (T-equivariant or not)
Grothendieck groups of S(d),, and S&"(d),, = T(d),, are isomorphic.

The purpose of this paper is to prove several properties of quasi-BPS categories analogous to BPS
sheaves in cohomological DT theory and use these properties to compute the T-equivariant K-theory of
quasi-BPS categories.

1.2. Semiorthogonal decompositions

We briefly review semiorthogonal decompositions with summands given by quasi-BPS categories
proved in [PTa, Pada].

In our previous paper [PTa], we constructed a semiorthogonal decomposition of the categorification
DT (d) of the DT invariant DT, which is a virtual count of zero-dimensional closed subschemes in
C3. The category DT (d) is defined by

DT (d) :== MF(NHilb(d), Tr Wy);
see [PTa, Subsection 1.5]. Here, NHilb(d) is the noncommutative Hilbert scheme of points
3 SS
NHilb(d) := (V ® Hom(V, V)® ) JGL(V).

More precisely, in [PTa, Theorem 1.1] we showed that there is a semiorthogonal decomposition

(1.3)

ok O0<vi/dy < - <vi/dp <1

DT(d) = <gi‘ls(di)vi+di(2f>j dj=Yj>i d;) di+---+dy=d )

There is also a semiorthogonal decomposition of D?(%(d)) in graded quasi-BPS categories; see
[Pada, Theorem 1.1]:

D”(%(d)) = <xf;;r(di)w (1.4)

V1/d1 <--'<vk/dk
di+-+di=d |

1.3. Numerical and cohomological BPS invariants

It is expected that, for any smooth Calabi—Yau threefold X, there are certain deformation invariant
integers called BPS invariants which determine the DT and Gromov—Witten invariants of X; see [PT14,
Section 2 and a half]. Denote by Q; the BPS invariants of C3 for d » 1. Then

Qp=—1foralld > 1. (1.5)

The wall-crossing formula for the DT invariants of C3, see [JS12, Section 6.3], [Tod10, Remark 5.14],
says that

3 DTag? = [ (1 -~y = [ | ;)d; (1.6

450 dx1 a1 (1= (=¢)?

see [PTa, Subsection 1.6] for more details.
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Davison—Meinhardt [DM20] constructed a perverse sheaf BPS, on Sym?(C?), called BPS sheaf,
whose Euler characteristic recovers the BPS invariant Q.. Davison [Davb, Theorem 5.1] showed that

BPS; = A ICgs, 1.7)

where A : C* < Sym“(C?) is the small diagonal. Davison [Davb, Lemma 4.1] also proved restrictions
on the support of BPS sheaves for tripled quivers with potentials and used [Davb, Lemma 4.1] to prove
purity results about stacks of representations of preprojective algebras [Davb, Theorem A]. We refer to
Equation (1.7) as Davison’s support lemma. The (cohomological) BPS spaces are the cohomology of
the BPS sheaf.

Properties (and computations in special cases) of BPS sheaves have applications in the study of
Hodge theory of various cohomological DT spaces (in particular, in proving purity of the Borel-Moore
homology of moduli of objects in K3 categories [Davc]) and in the study of Cohomological Hall algebras
[Dava, KV].

Our point of view is that the semiorthogonal decomposition (1.3) may be regarded as a categorification
of the wall-crossing formula (1.6) and the category S(d),, may be regarded as a categorical analogue of
the BPS invariant (1.5) or BPS sheaf (1.7). In this paper, we make the above heuristic more rigorous. Let
(d,w) € N x Z be integers with gcd(d, w) = 1. We first prove a categorical analogue of Equation (1.7),
namely any object of S(d),, is supported over the small diagonal in Sym? (C3). Further, for n € N, we
define a K-theoretic analogue of the cohomological BPS space:

P(nd)nw C Kr(S(nd)nw) = Ky (T(nd)nw)

and show that P(nd),wr = P(nd),w ®x F is a one-dimensional F-vector space, compare with
Equation (1.5).

1.4. Support of matrix factorizations in quasi-BPS categories

We prove a version of the support lemma (1.7) for categories S(d),, with gcd(d, w) = 1. We consider
the quotient stack X (d) defined in Equation (1.2) together with its good moduli space

m: X(d) — X(d) := Hom(V,V)® J GL(V).

Consider the diagram

Coh(C3, d) = Crit(Tr Wy)—— X (d)
Sym? (C3)c X(d) ——C,

where Coh(C?, d) is the stack of sheaves with zero-dimensional support and length d on C3. In Section 3,
we prove the following (see Theorem 3.1 for a more precise statement):

Theorem 1.1 (Theorem 3.1). For a pair (d,w) € N X Z with gcd(d,w) = 1, any object in S(d),, is
supported on ' (A).

The categorical support restriction in Theorem 1.1 implies a strong constraint on T-equivariant K-
theory classes of objects of quasi-BPS categories. Let © be the forget-the-potential map

©: K7 (MF(X(d), TrW,)) — Kr (MF(X(d),0)) = K[z, ., 231194, (1.8)
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see [Pid22, Proposition 3.6]. In Lemma 4.1, we show that if a complex F is supported on 7! (A), then
O([F]) is divisible by the element

(g1 =D Mg - 1) g1 - D' e K. (1.9)

In [PTa], we introduced certain complexes €4, € T(d),, using a derived stack of pairs of commuting
matrices, both of which have spectrum of cardinality one and have an explicit shuffle description (2.38).
In particular, Lemma 4.1 applies to £4,,, for ged(d, w) = 1. We remark that the divisibility by Equation
(1.9) is not obvious from the shuffle description of @([E4.44]).

1.5. Integral generator of K-theory of quasi-BPS categories

In [PTa, Theorem 1.2], we showed that the localized (i.e., taking ®xF) T-equivariant K-theory of T(d),,
(and thus of S(d),,) is generated by monomials in [E4,,,/] for d” < d and % = %. The divisibility by
Equation (1.9) will be useful to compute the T-equivariant K-theory of quasi-BPS categories without
localization. For a K-module M, we will use the notation M’ := M /(K-torsion). Using Lemma 4.1 and
Theorem 1.1, we show that:

Theorem 1.2 (Theorem 4.4). Let (d,w) € N X Z with ged(d,w) = 1. The K-module K (S(d),,)" is
free of rank one with generator [Ed,w]-

For (d,w) € N x Z with gcd(d,w) = 1, we believe the category T(d),, is generated by &4,
which in particular implies Theorem 1.2. Further, for « € {0,T}, we suspect there are equivalences
T.(1)o — T.(d),», but we do not have much evidence supporting this belief.

1.6. The coproduct

For the reminder of the introduction, we consider a pair (d,v) € N x Z with ged(d,v) = 1. The
Grothendieck group of the category T(nd),,, for n > 1 contains a contribution from partitions a +b = n
because the Hall product restricts to a functor

Ma,bp - T(ad)av ® T(bd)bd - T(nd)nv

fora,b > 1 with a + b = n; see [PTa, Lemma 4.8]. The category
Dy = @ T(nd)py (1.10)
n>0

is thus monoidal. For n = a + b, there is a coproduct
Aap: T(nd)py — T(ad)ay ® T(bd)py; (1.11)

see also [Pada, Section 5]. The construction also provides a T-equivariant version. In Section 5, we
prove that the Hall product is compatible with the above coproduct:

Theorem 1.3 (Corollary 5.6). Let (d,v) € N X Z be coprime, let a,b,c,e,n € N such that a + b =
c+e =n, and let S be the set of tuples ( fi, f2, f3, f4) such thata = fi + fo, b= f3+ fa, c = fi + f3,
e = f> + f1. The following diagram commutes:

Ma.b

Kr (T(ad)av)’ ® Kr (T(bd)py)" ————— K (T(nd)ny)’

! [

B Qb Kr (T(fid)py) —2— Kr(T(cd)er) ® Kr (T(ed)ey)s
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where we have used the shorthand notations A == @gAf s ® Ag o and m’ == Pg(m @ m)(1 ®
swp 5 ®1).

In the proof, we first construct a version of A, ;, for the subcategories M(nd),, C D? (X (nd))ny;
see Equation (1.1). We then construct the functor (1.11) by applying matrix factorizations and using the
Koszul equivalence.

In Propositions 5.7 and 5.8, we show that the product and the coproduct on K7 (D)’ are commu-
tative and cocommutative. We then obtain an isomorphism

K7 (Da,v)s = Ar, (1.12)
where Ar is the F-algebra of symmetric functions; see Subsection 2.12 for its definition. The elementary

functions e, € Ar are sent, up to a factor in FF, to E,4.v -

1.7. K-theoretic BPS spaces

We define the K-theoretic BPS space to be the space of primitive elements of K7 (T(nd),,) with respect
to the above coproduct:

P(nd),, = ker @ Aap : K1 (T(nd)ny) — @ K7 (T(ad)ay ® T(bd)py) |. (1.13)
a+b=n a+b=n
a,b>1 a,b>1

We show that the dimension over F of localized K-theoretic BPS spaces for all pairs (nd,nv) € Nx Z
is the same as the (numerical) BPS invariants (1.5) up to a sign:

Proposition 1.4 (Corollary 5.11). The F-vector space P(nd)y, g is one-dimensional.

Using the above proposition and [PTa, Theorem 1.1], we obtain a K-theoretic analogue of the wall-
crossing formula (1.6); see Subsection 5.5 and [PTa, Subsection 1.6] for more details.

Corollary 1.5 (Corollary 5.13). There is an isomorphism of N-graded F-vector spaces:

@KT(DT(d))FE ® ((X)Sym(P(nd)nv,F)). (1.14)

d>0 Oosv<d n>1
ged(d,v)=1

We conjecture an integral version of Proposition 1.4, which is a version of Theorem 1.2 for pairs
(nd,nv) foralln € N:

Conjecture 1.6. The K-module P(nd),,, is free of rank one.

The torsion-free version of the above conjecture for (d,v) = (1,0) and n = 2 follows from the
discussion in Subsection 4.3. We finally conjecture an analogue of Theorem 1.1 for all n € N.

Conjecture 1.7. The subspace P(nd),, C Ky (T(nd),,) = Kr(S(nd),,) is supported over n='(A),
alternatively, the following composition is zero:

P(nd)ny — Kr (S(nd)ny) = Kr (X(nd) \ 771 (A)).

2. Preliminaries
2.1. Notations
The spaces considered in this paper are defined over the complex field C, and they are quotient stacks

X = A/G, where A is a dg scheme, the derived zero locus of a section s of a finite rank bundle vector
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bundle £ on a finite type separated scheme X over C, and G is a reductive group. For such a dg scheme
A, letdim A := dim X —rank (), let A := Z(s) c X be the (classical) zero locus, and let X! := A°!/G.
We denote by Oy or O4 the structure sheaf of X'.

For G a reductive group and A a dg scheme as above, denote by A/G the corresponding quotient
stack and by A /G the quotient dg scheme with dg-ring of regular functions Of\;.

For a classical stack X with a morphism X — X to a scheme X and for a closed point p € X, we
denote by &), its formal fiber X, := X Xx Spec 6X,p'

For a (derived) stack A with an action of a torus 7, we denote by D? (X) the bounded derived
category of T-equivariant coherent sheaves on X’ and by G (X) its Grothendieck group. We denote by
Perfr (X)) the subcategory of T-equivariant perfect complexes and by K7 (X) its Grothendieck group.
When T is trivial, we drop T from the notation of the above Grothendieck groups. We introduce more
notations for categories and K-theory in Subsection 2.6.2.

Consider the two-dimensional torus

(€2 ST :={(11,02,13) € (C) | ritat3 = 1} € (C*). @2.1)

The isomorphism above is given by (11, 1;) > (21, t2, tl_ltz‘l). We denote by K := K7 (pt) = Z[qfl, q%l]
and let F be the fraction field of K. For V a K-module, we use the notations V' := V/(K-torsion) and
Ve =V @gF.

For a dg-category D, a full dg-subcategory C C D is called dense if any object in D is a direct
summand of an object in C.

2.2. Weights and partitions

2.2.1.
For d € N, let V be a C-vector space of dimension d, and let g = gI(V) := End(V). When the dimension
is clear from the context, we drop d from its notation. Let

7: X(d) := R(d)/G(d) := g1(V)®/GL(V) = X(d) := gl(V)®}JGL(V).

Alternatively, X' (d) is the stack of representations of dimension d of the quiver Q with one vertex and
three loops {x, y, z}:

Q
Consider the superpotential W = x[y, z] of Q and the regular function
TcW=TrW,:=TrA[B,C]: X(d) —» C, 2.2)
where (A, B, C) € gl(V)®3,
Fix the maximal torus 7(d) € G L(d) to be consisting of diagonal matrices. Denote by M = EBfl: \Zpi

the weight space of T(d), and let M (d)r := M(d) ®z R, where 81, ..., B4 is the set of simple roots. A
weight y = Z?:l ¢;B; is dominant if

c1 <...<cq,
We denote by M* ¢ M and M} C My the dominant chambers. When we want to emphasize the

dimension vector, we write M (d) and so on. Denote by N the coweight lattice of T(d) and by Ny :=
N ®z R. Let (, ) be the natural pairing between Nr and Mg.
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Let W = S be the Weyl group of GL(d). For y € M(d)*, let I'gr(a)(x) be the irreducible
representation of G L(d) of highest weight y. We drop G L(d) from the notation if the dimension vector
d is clear from the context. Let w y := w(y +p) — p be the Weyl-shifted actionof w € Won y € M(d)r.
We denote by £(w) the length of w € W.

Denote by WV the multiset of 7' (d)-weights of R(d). If there is a natural action of a torus 7 on R(d),
we abuse notation and write WV for the multiset of (T X T(d))-weights of R(d). For A a cocharacter of
T(d), we denote by N*>° the sum of weights 3 in W such that {1, 8) > 0.

2.2.2.
We denote by p half the sum of positive roots of GL(d). In our convention of the dominant chamber, it
is given by
-1 6i-8))
p - 2 ]<l L J/*

We denote by 1, := z - Id the diagonal cocharacter of 7'(d). Define the weights

d
gd
04 ::Zﬁj EM, 14 := 7 € Mg.
=1

2.2.3.
Let G be a reductive group (in this paper, G will be a Levi subgroup of GL(d) for some positive
integer d), let T be a maximal torus of G, let X be a G-representation and let

X =X/G

be the corresponding quotient stack. Let JV be the multiset of 7 -weights of X. For A a cocharacter of
T:, let X' c X be the subspace generated by weights 8 € W such that (1, 8) = 0, let X**° c X be
the subspace generated by weights 8 € W such that (1, 8) > 0 and let G* and G**° be the Levi and
parabolic groups associated to 4. Consider the fixed and attracting stacks

Xt = XGA, X0 = x 0G0
with maps
Xt & 0 2y
Define the integer
ny = (4 (X0 - [g0). 23)

2.24.
Let d € N, and recall the definition of X'(d) from Subsection 2.2.1. For a cocharacter 1 : C* — T'(d),
consider the maps of fixed and attracting loci

X(d)' & x(@)y®0 2 x(a). (2.4)

We say that two cocharacters A and A’ are equivalent and write 4 ~ A’ if 4 and A" have the same fixed
and attracting stacks as above.

We call d := (d,-)l.k: , apartition of d if d; € N are all nonzero and Zf.‘:l d; = d. In Section 5, we allow
partitions d = (d,-)l.k: , to have terms d; equal to zero. We similarly define partitions of (d,w) € N X Z.
For a cocharacter A of T'(d), there is an associated partition (d; )l.k= , such that
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X(dyP" I x(a)t = xk X (d;).

Define the length £(2) := k.
Equivalence classes of antidominant cocharacters are in bijection with ordered partitions (d,-)l.k: | of

d. For an ordered partition d = (di)ik: | of d, fix a corresponding antidominant cocharacter 4 = A4 of
T (d) which induces the maps

X(d)' = x5 x(d) & x(@yP LS x(a).

We also use the notations py, = pa, g1 = qq. The categorical Hall algebra is given by the functor
p/l*qjl = pd*q;

m=mg: D?(X(d)))®-- & D" (X(dy)) — D”(X(d)). (2.5)

We may drop the subscript A or d in the functors p. and ¢g* when the cocharacter A or the partition d is
clear. We also use the notation * for the Hall product.

2.2.5.
Let (dl-)ik: | be a partition of d. There is an identification

k
P ma) = M,
i=1

where the simple roots §; in M (d;) correspond to the first d; simple roots 8; of d etc.

2.2.6.
Lete = (e,-)f: yandd = (dl-)l.k= , be two partitions of d € N. We write e > d if there exist integers

ap=0<a;<---<ap_1<ar=1

such that for any 0 < j < k — 1, we have
aj+l
Z e; = dj+1.
i:dj+l

We say e is a refinement of d. There is a similarly defined order on pairs (d,w) € N X Z.

2.2.7.
Let A be a partition (d;, wl-)l.k: , of (d,w), and consider its corresponding antidominant cocharacter A.
Define the weights

k
— [ >0
XA ‘_Zwdei’XA =XxAtg .
i=1

Consider weights x; € M (d;)z such that

k
Xh=D Xl
i=1
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Let v; be the sum of coefficients of x; for 1 <i < k; alternatively, v; := (14, x/). We denote the above
transformation by

A A (di,w)E | - (divi)k,. (2.6)

Explicitly, the weights v; for 1 <7 < k are given by

v,-=w,-+d,~(Zdj—Zdj). 2.7)

Jj>i Jj<i

2.3. Polytopes
The polytope W(d) is defined as

3
W(d) = Esum[O,/&’i —ﬁj] + Rty C M(d)R, 2.8)
where the Minkowski sum is after all 1 < i, j < d. For w € Z, consider the hyperplane
3
W(d),, = Esum[O, Bi — Bl +wtq € W(d). 2.9

For r > 0 and A a cocharacter of 7'(d), let F,-(1) be the face of the polytope 2rW(d) corresponding to
the cocharacter A, so the set of weights y in M (d)g such that

x € 2rW(d), (4, x) = {1, R(d)*").

When r = %, we use the notations F'(1). For y € M(d)g, its r-invariant r(y) is the smallest real number
r such that

X €2rwW(d).

For a cocharacter A of T'(d), denote by
3
W(a) = Esum[o’ﬁi -B;j] € M(d),

where the sum is after all weights 1 <, j < d such that (1, 8; — 8;) = 0.

2.4. A corollary of the Borel-Weyl-Bott theorem

For future reference, we state a result from [HLS20, Section 3.2]. We continue with the notations from
Subsection 2.2.3. Let M be the weight lattice of 7. We assume that X is a symmetric G-representation,
meaning that for any weight S of X, the weights 8 and — appear with the same multiplicity in X. Let
x be a weight in M. Let y* be the dominant Weyl-shifted conjugate of y if it exists and zero otherwise.
For a multiset J ¢ W, let

gy = Z ,3

peJ

Let w be the element of the Weyl group of minimal length such that w = (y — o7;) is dominant or zero.
We let £(J) = £(w).
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Proposition 2.1. Let X be a symmetric G-representation, and let A be an antidominant cocharacter
of T. Recall the fixed and attracting stacks and the corresponding maps

X/I/G/l It X’DO/G’DO LCN X/G.

For a weight y in M, there is a quasi-isomorphism

P ox @ T ((x =) W] - €] d| = paqi(Ox1 ® Taa(x)),
J

where the complex on the left-hand side has terms (shifted) vector bundles for all multisets J C {8 €
W {4,B) <0}

2.5. Matrix factorizations

In the notations from Subsection 2.2.1, we denote by
MF(X (d), Tr W)

the dg-category of matrix factorizations of the regular function Tr W, on the smooth stack X'(d). Its
objects consist of tuples

(e: F2G: B)suchthataof=Boa=-TrWg,

where F, G € Coh(X (d)); see [PTa, Subsection 2.6] for details. For an object 7 € MF(X (d), Tr W), its
internal homomorphism RHom(F, F) is an object of the Z/2-graded derived category of Coh(X (d)).
The support of F

Supp(F) c X(d)

is defined to be the support of RHom(F, F), which is a closed substack of X'(d). Alternatively, it is
the smallest closed substack Z c X'(d) such that |y g)\z = 0in MF(X(d) \ Z,Tr Wy).
Similarly to Equation (2.5), for d = d; + d, we have the categorical Hall product

m=mg, q,: ME(X(d)), Tt Wg,) ® MF(X (d2), Tt W4,) = MF(X(d), Tt Wy);

see [Pad22] for details. We sometimes write a * b instead of m(a, b).

We also consider equivariant and graded matrix factorizations for the regular function (2.2); see
[PTa, Subsection 2.6.2] for details. The group (C*)* acts on the linear maps corresponding to the edges
(x,y,z) of the quiver Q by scalar multiplication. Consider the two-dimensional subtorus

T = (C")? c (C*)?

which preserves the superpotential W = x[y, z]; see Equation (2.1). Then T acts on X' (d) and preserves
Tr W. We will also consider graded matrix factorizations, where the grading is given by scaling with
weight 2 the space gI(V) for V a vector space. For example, we can choose an edge e € {x,y, z} of Q
and let C* scale with weight 2 the linear map corresponding to e. Contrary to the 7T-action, the regular
function Tr W has weight 2 with respect to such a grading. The corresponding categories of matrix
factorizations are denoted by

MF; (X (d), Tr W) for = € {0, T}, e € {0, gr}.
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2.6. Quasi-BPS categories

2.6.1.
For w € Z, we denote by D? (X (d)),, the subcategory of D” (X (d)) consisting of objects of weight w
with respect to the diagonal cocharacter 1, of T'(d). We have the direct sum decomposition

Db (X(d)) = @ DP(X ().

wEeZ

We define the dg subcategories
M(d) € D"(X(d)), (resp. M(d),, € D (X (d))w)

to be generated by the vector bundles Ox () ® I'gr(a) (), where x is a dominant weight of T(d) such
that

x+p € W(d), (tesp. y +p € W(d),)- (2.10)

Note that M(d) decomposes into the direct sum of M(d),, for w € Z. The following is an alternative
description of the category M(d),,:

Lemma 2.2 [HLS20, Lemma 2.9]. The category M(d),, is generated by the vector bundles Oxq) ® I
for T a GL(d)-representation such that the T (d)-weights of T are contained in the set V., defined by

Vo, = {XEMR

1 1
~3Ma < {4, x) < zn,lforall/l: C" - T(d)} +WwTg.

For a partition A = (d;, w,-)l.k=1 of (d,w), define
My = =5 M(d))y,. (2.11)

2.6.2.
Recall the regular function (2.2). We define the subcategory

S(d) := MF(M(d), TrW;) c ME(X (d), Tr W)
to be the subcategory of matrix factorizations (@: F 2 G: 8) with F and G in M(d). It decomposes
into the direct sum of S(d),, for w € Z, where S(d),, is defined similarly to S(d) using M(d),, .
We also consider subcategories for = € {0, T}, e € {0, gr} defined in a similar way
S:(d) := MF; (M(d), Tt W,) € MF;(X(d), Tr Wy).
The subcategory Sg(d),, is also defined in a similar way. For a partition A = (d;, wl-)l.k:1 of (d,w),
the category S? , is also defined similarly to Equation (2.11). We denote the Grothendieck group of
S2(d)w by
K.(S*(d)y), =€ {0,T}, o € {0, gr}.

By [Tod23, Corollary 3.13], there are natural isomorphisms (which hold for all graded matrix factor-
izations as in Subsection 2.5):

K(S¥(d)w) = K(S(d)w), K1 (S¥(d)w) = Kz (S(d)w). (2.12)
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2.7. Complexes in quasi-BPS categories

Let V be a d-dimensional complex vector space, and recall that we denote by g = Hom(V, V) the Lie
algebra of GL(V). We set

V(d) =g**/GL(V),

where GL(V) acts on g by conjugation. The stack )(d) is the moduli stack of representations of
dimension d of the quiver with one vertex and two loops. Let s be the morphism

s: V() —g, (X,Y) [X,Y]. (2.13)

The morphism s induces a map of vector bundles 9 : g¥ ® Oge2 — Oyen. Let s71(0) be the derived
scheme with the dg-ring of regular functions

Os-1(0) = Oga2 [8" ® Oyez [ 111 dls | (2.14)
where the differential d; is induced by the map 9. Consider the (derived) stack
€ (d) :=s"1(0)/GL(V) = Y(d). (2.15)

For a smooth variety X, we denote by €oh(X, d) the derived moduli stack of zero-dimensional sheaves
on X with length d and by Coh(X, d) the classical truncation of €oh(X, d). Then € (d) is equivalent
to €oh(C2, d).

For a decomposition d = dj + - - - + di, let €(dy, . .., di) be the derived moduli stack of filtrations
of coherent sheaves on C2:

0=0pcQ1cQrcC---CQ (2.16)

such that each subquotient Q;/Q;_; is a zero-dimensional sheaf on C? with length d;. There exist
evaluation morphisms

G(d) % xC(dy) = €(d,....d) D €),

where p is proper and ¢ is quasi-smooth. The above diagram for k = 2 defines the categorical Hall
product

m=mg, a = p:q": D’ (€(d1)) ® D’ (€ (da)) — D”(€(d)), (2.17)

which is a special case of the product of categorical Hall algebras for surfaces defined by Porta—Sala
[PS23].

Let T be the two-dimensional torus in Equation (2.1) which acts on C2 by (¢, 1) - (x,y) = (t1x, 12y).
It naturally induces an action on € (d). There is also a T-equivariant Hall product

m=ma a = psq": D2(€(d))) ® DL (€ (d2)) — D5(%(d)). (2.18)

Here, the box product is taken over BT. In what follows, whenever we take a box-product in the
T-equivariant setting, we take it over BT. We also use the notation * for the Hall product.

2.8. Subcategories T(d),
Let

i:6(d) — Y(d) (2.19)
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be the natural closed immersion. Define the full triangulated subcategory
T(d)y ¢ D*(V(d))
generated by the vector bundles Oy 4) ® I'Gr(q)(x) for a dominant weight y satisfying
x+peW(),.
Define the full triangulated subcategory
T(d), c D*(€(d)) (2.20)

with objects & such that i..£ is in T(d)v. In [PTa, Lemma 4.8], we showed that the Hall product restricts
to functors

m : T(dy)y, ® T(d2),, = T(d),

for (d,v) = (dy,v1) +(d, v2) and ;—i = ;—i. Also, there is a semiorthogonal decomposition; see [Pad23,
Corollary 3.3]:

2.21)

D) = (T mm T, | V0 ),

di+---+dy=d
In the above, each fully faithful functor
T(di)y, &+ ®T(di)y, — DP(€(d))
is given by the categorical Hall product (2.17).
Consider the grading induced by the action of C* on X' (d) scaling the linear map corresponding to
Z with weight 2. The Koszul duality equivalence, also called dimensional reduction in the literature,
gives the following equivalence [Isil3, Hirl7, Toda]:

®: DP(€(d)) > MFE(X(d), Tt W). (2.22)

Under this equivalence, we have that ®: T(d), — S&(d),.

2.9. Constructions of objects in T(d),

Here, we review the construction of objects €4, € T(d), (which also produces an object in Tt (d),)
following [PTa, Subsection 4.3]. Let Z c € (1, 1,...,1) be the closed substack defined as follows. Let
A be the cocharacter

A:C* = GL(V), t— (t4,¢%7, . 0. (2.23)

The attracting stack of )(d) with respect to A is given by
130 150\ %2 130
VD= (6%0) 7 [GLn ™, (2.24)

where GL(V)®®? ¢ GL(V) is the subgroup of upper triangular matrices. Then the morphism (2.13)
restricts to the morphism

s120. Y(@)B0 5 g0 (2.25)
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whose derived zero locus & (d)*>° is equivalent to ¥ (1,...,1). Let X = (x;,;) and Y = (y;,j) be
elements of g*>° for 1 < i, j < d, where xi,j = yi,; = 0fori > j. Then the equation sPYUX,Y)=0is
equivalent to the equations

Z Xi,aYa,j = Z Yi,aXa,j,

i<a<j i<a<j

for each (i, j) with i < j. We call the above equation E; ;. The equation E; ; is x; ;y:; — yi,iXii = 0,
which always holds but imposes a nontrivial derived structure on € (1, ..., 1). The equation E; ;; is

(xi,i = Xiv1,ie1)Yiiet = (Vii = Yisli+1)Xii41 = 0.
The above equation is satisfied if the following equation F; ;, is satisfied:
{xii = Xisr,i01 = 0,y = Yisr,inn = 0}
We define the closed derived substack
Z = Z(d) c Y*¥°(d) (2.26)

to be the derived zero locus of the equations F; ;4 for all 7 and E; ; for all i + 2 < j. We usually
drop d from the notation if the dimension is clear from the context. Then Z is a closed substack of
%(d)’l>0 = %(1,...,1). Note that, set theoretically, the closed substack Z corresponds to filtrations
(2.16) such that each Q;/Q;_; is isomorphic to O, for some x € C? independent of i.

We have the diagram of attracting loci

(1) =g L z@)*" 5 %),

where p is a proper morphism. We set

| v(i-=1)
ol 52

where 61' is the Kronecker delta function defined by 6: =1ifi=jand 61’ = 0 otherwise. For a weight

+od -6l ez, (2.27)

X = Zf:l n;B; with n; € Z, we denote by C(y) the one-dimensional G L(V)*>°-representation given by

GL(V)®° = GL(V)' = T(d) 5 ¢,

where the first morphism is the projection.

Definition 2.3 [PTa, Definition 4.2]. We define the complex &4, by
Eav = po(Oz ®C(my,...,mq)) € D*(€(d)),. (2.28)

The construction above is T-equivariant, so we also obtain an object &4, € D? (6(d)),-

In [PTa, Lemma 4.3], we showed that £, ,, is an object of T(d), and Tr (d), .
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2.10. Shuffle algebras

2.10.1.
Consider the N-graded K-module:

Shi=PE....5'

dz0

We define a shuffie product on Sh as follows. Let £(x) be defined by

b Lm0 g =g )

1-x
where g := q1q2. For f € K[z},...,z5] and g € K[2Z,,, ..., 2%, |, we set
frgi=—syml fg || éGegh | (2.29)
1<i<a,
a<j<a+b
where we denote by Sym(%(z1, . .., zq)) the sum of h(z(1), - - - » Zo(a)) after all permutations o € Sg.

Let S ¢ Sh be the subalgebra generated by le for [ € Z. Let Sp := S ®k F. It is proved in [Neg23,
Theorem 4.6] that there is an isomorphism

i.: P Gr(®(d) exF > Se. (2.30)
d>0

The above isomorphism is induced by the algebra homomorphism which will be defined in Equation
(2.37).

2.10.2.
Let

S c PG za)*

d=0
be the K-subalgebra generated by elements of the form
ki kg

/ 4 %y -1
A} :=Sym — — | I w(zizi) (2.31)
ke (1-q7'z;'2) - (1= q7'2}"  z4) Ll o

for various (ky,...,kg) € Z¢ and d > 1, for the shuffle product (2.29) where we replace £(x) with
w(x) defined by

_(I=4q7'0)(-q3'%)
B T g

Let S, := 8’ @k F. Consider the morphism

Pl 5% - PFG. )™ (2.32)

d>0 d>0
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defined by

FGuza) e Gz [ [0- a7 uzh ™

i#]
Then Equation (2.32) induces an algebra homomorphism & — &’. There is an isomorphism
Sp > 8L, (2.33)

see [PTa, Proof of Lemma 4.11]. For (d,v) € N X Z, we set A},  to be A}, for the choice of m, in
Equation (2.27). By [Neg22, Equation (2.12)], we have the followmg 1somorph1sm of K-modules:

S= P KA e AL (2.34)
vi/di <<y [dy
where the tuples (d;, vi)ik: , appearing above are unordered for subtuples (d;, vi)l.b: o Withvg/dg =+ =
vy /dp. We also define
Zm DRI Z d
Ag,y = Sym L d | le@zhH). (2.35)
' (I1-q7'g ) (1 - 725! 2a) B o
where the exponents m; for 1 < i < d are given by Equation (2.27).
2.10.3.
The T-equivariant Hall product (2.18) induces an associative algebra structure
m: Gr(€(d1)) ® Gr(€(d2)) = Gr(€(d)). (2.36)

Leti: €(d) — Y(d) be the closed immersion. The pull-back via Y (d) — BGL(d) gives the isomor-
phism

Gy =
P krBGL@) = P K[ ... 257 S P Kr (V(a)).
d>0 d>0 d>0
Therefore, the push-forward by i induces a morphism
EBGT(%(d))H@K S ARTTI o1 A (2.37)

d=0 d=0

The product (2.36) is compatible with a shuffle product defined on the right-hand side of Equation
(2.37); see [PTa, Subsection 4.5]. In [PTa, Lemma 4.11], we showed that

il€av]l = (1 =gy (1 - g3 Ag,y. (2.38)

2.11. Compatibility of the Hall product under the Koszul equivalence

In this subsection, we denote by m the Hall product (2.17) and by m the Hall product for the quiver
with potential (Q, W) from Subsection 2.2.1. Using the results in [Toda, Section 2.4], Koszul duality
equivalences are compatible with the Hall products by the following commutative diagram (see [Pad23,
Proposition 3.1]):
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D' (% (d1)) & D*(€(d2)) = D" (B(d)) (2.39)
Js [+
MEE (X (dy), Tt Wy,) 8 MEE (X (da), Tr Wa,) — 2 MEE (X (d), Tr W),

where the left arrow ® is the composition of Koszul duality equivalences (2.22) with the tensor product of

det((g”%)(2)) [~ dim g””°] = (detV;)™" ® (det V2)*' [d1da]. (2.40)
d; da
— | —
The cocharacter v: C* — T'(d) is v(t) = (¢,...,t,1,...,1), the vector spaces V; have dim V; = d; for

i =1,2and (1) is a twist by the weight one C*-character, which is isomorphic to the shift functor [1]
of the category of graded matrix factorizations.

2.12. Symmetric polynomials
Let A be the Z-algebra of symmetric polynomials [Mac79, Chapter I, Section 2], [Sch12, Subsection 2.4]:

~ T S,
A—l(inz[-xl’~"vxn] >

with multiplication defined by

flxr, .o xq) * g(Xaets - - o5 Xaup) = Z w(f(x1,. .., Xa)g(Xat1s -+ > Xarb))
6a+b/6u><6b

and comultiplication induced by the restriction map
Gll G(I 6
Zx1, ... Xasb] - > Zx1,. .., xa] "% @ Z[Xas1s .- s Xarb] 2.

Alternatively, A is isomorphic to the Grothendieck group of the monoidal category

R = (D Rep(S,).

n>0

where Rep(S,,) is the abelian category of finite-dimensional &, -representations, multiplication is given
by the induction functor

Ind : Rep(S, X Sp) — Rep(Suip),
and comultiplication is given by the restriction functor

Res : Rep(Sq1p) — Rep(S, X Gp).

The isomorphism R — A is given by sending an irreducible &,-representation W, corresponding to a
partition A of n to the Schur function s,, see [Mac79, Chapter I, Equation (7.5)].

For R a ring with a map Z — R, denote by Ag := R ®z A the R-algebra with multiplication and
comultiplication induced from those of A. Consider the elementary symmetric functions

e, = Z Xip ... X, €A

i1<...<Ip
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and the power sum functions

Pn = le” €A

4

We also denote by ¢, and p,, the images of these symmetric functions in Ag. Let # be a formal variable.
These functions are connected via the identity

(_1)n+1
Z ent" = exp(z . pnt"). (2.41)

n>0 n>1

There are isomorphisms (see [Mac79, Chapter I, Equations (2.4), (2.14)]):

Ag = Qler,ez,...] 2Q[p1.p2,...]. (2.42)

Forn > 1, let P(n) be the free one-dimensional Z-module with generator p,,. By Equation (2.42), there
is an isomorphism of N-graded Q-vector spaces

Ag = ® Sym(P(n)qg). (2.43)

n>1

3. The support of complexes in quasi-BPS categories

Recall the regular function (2.2). Consider the commutative diagram

Coh(C3, d) == Crit(Tr Wy)—— X (d) 3.1
Sym?(C3)c X(d) —— C,

where the vertical arrows are good moduli space morphisms and the horizontal arrows are closed im-
mersions. The left vertical arrow sends a zero-dimensional sheaf to its support. Let A: C> ¢ Sym?(C?)
be the small diagonal

C? c Sym?(C?), x > (x,...,x).

We abuse notation and denote the image of A also by A = C>. We consider the pull-back 77! (A) c
Coh(C3, d), which is a closed substack of Crit(Tr W) c X (d). Davison [Davb, Theorem 5.1] showed
that the BPS sheaf for the moduli stack of degree d sheaves on C? is

BPS4 = AICcs.

Recall the notations involving formal completions from Subsection 2.1. The following is the main result
of this section, which will be proved in Subsection 3.1:

Theorem 3.1. Consider a pair (d,w) € N X Z, and let F be an object in S(d),,. Assume there exists
p € Sym?(C3) \ A such that the support of F intersects n~'(p). Write p = Zlep(i), pl =
d(i)x(i), d¥ ¢ Z=0, x@ # x() for i # i’ and | > 2. Then there exist nonzero objects F; €
MF (X, (dD), Te W) for 1 <i <1 with

w0
PO 1)
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and wV + -+ wD = w. In particular, if gcd(d,w) = 1, then any object in S(d),, is supported on
7Y (A). The same result holds for the categories S2(d),, introduced in Subsection 2.6.2.

In Subsection 4.1, we discuss divisibility properties of complexes supported on 77 !(A); see
Lemma 4.1. In Subsection 4.2, we use Theorem 3.1 and Lemma 4.1 to show that K7 (S(d),,)’ is a
free K-module with generator [£4,,, ] When gcd(d, w) = 1.

3.1. Proof of the main result

Proof of Theorem 3.1. Suppose that an object F € S(d),, has support not contained in 77! (A). Then
there is p € Sym?(C?) \ A such that Flx, () # 0 in MF(X),(d), Tr Wg), where X, (d) is the formal
fiber of p along the good moduli space morphism X (d) — X(d). Since p ¢ A, it is written as

p= p(i), p(i) = d(i)x(i), d¥ e Z~0, x@ %) fori # i’ 1= 2.

l
i=1

The unique closed point in 77 (p) corresponds to the semisimple Q-representation

)
R = @V(i) ® R(i),
i=1

where R(?) is the one-dimensional Q-representation corresponding to O, ) and V(" is a d¥)-dimensional
0]

vector space such that () + - - + d) = 4. Below we write a basis of V() as ﬁl(i), . ’ﬂdm and set
1 1 2 2
{ﬂl’ v an} = {ﬂi )’ e 71851()1)’185 )’ cee ’ﬂ;(;)’ o }
The étale slice theorem implies that
— |
Xp(d) = Exto(R,R)/G)p, 3.2)

. — |
where G, = Aut(R) = I—[f»=1 GL(V®) and Extg (R, R) is the formal fiber of the origin along the
morphism Extlg (R,R) — ExtlQ (R,R)/Gp. By Lemma 3.2, the Ext-group Extlg (R, R) is computed as
follows:

1
Exty (R, R) = (P End(v®,v)® & (5 Hom(v ), v(7)®2, 3.3)

i=1 i#]

Note that the maximal torus T(d) ¢ GL(V) is contained in G p,.
We define

S, (d)y C MF(X,(d), Tr W,)

to be the full subcategory generated by matrix factorizations whose entries are of the form I', (x) ® O,
where y is a G ,-dominant T'(d)-weight satisfying

X+pp€Wp(d)y. (3.4)

Here, p,, is half the sum of positive roots of G, and W (d),, is defined as in Equation (2.9) for the
G ,-representation ExtlQ (R,R)

1
W, (d)y = Esum[O,,B] + wtg,

https://doi.org/10.1017/fms.2023.103 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2023.103

20 T. Pdadurariu and Y. Toda

where the Minkowski sum is after all weights § in ExtlQ(R, R). By Lemma 3.5, we have F|x, ) €
Sp(d)w, in particular S, (d),, # 0.

Below, in order to simplify the notation, we treat the case / = 2. Since any zero-dimensional sheaf O
on C3 supported on p decomposes into Q") & 0?, where Q¥ is supported on x), we have

Coh,(C3,d) = Crit(Tr Walx, a)) = Coh ) (C,dV) x Coh ) (T, d?). (3.5)

Here, CTO\/’lp(C?’,d) is the formal fiber of the left vertical arrow in Equation (3.1) at p. Indeed, by

Lemma 3.3, we can show that, by replacing the isomorphism (3.2) if necessary, the regular function
Tr Wy restricted to X, (d) is written as

Tr Wlep(d) =TrtW,;0) BTr W, Bgq. 3.6)

Here, Tr W) is the regular function (2.2) on X' (d () restricted to X, (d () and ¢ is a nondegenerate

G p-invariant quadratic form on U @ U" given by g(u,v) = (u,v), where U is the following self-dual
G ,-representation

U := Hom(V\",v?) @ Hom(v®,v).

The decomposition (3.6) in particular implies Equation (3.5).
We have the following diagram

i J
uc i UslU +1— X,(d)

|

Xy (dD) X X, (dP),

where U is the vector bundle on X ) (d (1)) X X 2 (d (2)) determined by the G p,-representation U, i
is the closed immersion x +— (x,0), and j is the natural morphism induced by the formal completion
which induces the isomorphism on critical loci of Tr W,;. We have the following functors

Y .= jY.p": MF(Xp(l) (d(l)), TrW,m) R MF(XP(z) (d(z)), TrW,o0) 3.7
S MEU o U, Tr Wy) & ME(X, (d), Tt Wy).
Here, the first arrow is an equivalence by Knorrer periodicity (see [Hirl 7, Theorem 4.2]), and the second

arrow is fully faithful with dense image (see [Todb, Lemma 6.4]). By Lemma 3.4, the above functor
restricts to the fully faithful functor

S,0(@dD)0 8BS0 (dP)0 = Sp(d)w. (3.8)
w4 =y

w® 1dD =y @ 7g@

Below, we show that the above functor (3.8) has dense image, and thus the conclusion follows. By
the semiorthogonal decomposition (2.21) together with Equation (2.39), we have

MF(X (d), Tr Wy) 3.9)

_ [k Vi Vk _
= <*i—1S(di)v,~+di<zi>jdj2j>i ap g < s d_k’dl +otdy = d>~
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The weights w; :=v; +d;(¥;5; dj — X j>; d;) are computed as in Equation (2.7):

k

k
D ity = Y vita, — g, (3.10)
i=1

i=1

where g is the Lie algebra of GL(d) and A is the antidominant cocharacter corresponding to the
decomposition d = dy + - - - + dk:

di 1753
A(r) = (5, R R R ). (3.11)

Forx € C3,let g = d[x] := (x,...,x) € Sym?(C?). Since G, =GL(V) and X, (d) = g;‘;ﬁo]/GL(V),
the argument showing Equation (3.9) applies verbatim to show the semiorthogonal decomposition

MF(X,,(d), Tr W) (3.12)

— [k Vi Vi
= <*i—1Sq(di)v,»+di<zi>,~ diSpidy) | g <<

,d1+-~-+dk=d>.
k

From Equation (3.12), the left-hand side of Equation (3.7) admits a semiorthogonal decomposition
S whose summands are of the form

a (1) b (2
.S 0)(d! =28 o (d . 3.13
=15, ()0, 40 (5, a5, a®) B S,@ (470,005, a0 s a®) (3.13)

Here, the left-hand side in Equation (3.8) comes to the rightmost part of the semiorthogonal decompo-
W = dl.(])x(f), the integers dl.(J) satisfy

i

sitionS,p
(1 M _ (1 (2 (2 _ 402
dl +'”+d5 —d(),dl +”-+d; —d<),

and we have the inequalities

b0 W0 V§2>< <V§f)
oSS e g
d! i’ dl dl

We write

{vil) o vf) VE’Z)} {1 < -+ < g}
I T S el SN = l’ll /Jk s
(0 §) 2 )
d] da dl db

where k is the number of distinct elements in the left-hand side. For 1 < i < k, we replace (dl.(j ), v§j )) by

(dl(j)’ Vl(j))’ if u; = vl(j)/dl(j) for some /,

(di(j)’ v;j)) —
(0,0), otherwise.

The subcategory (3.13) of Equation (3.8) is unchanged under the above replacement. Therefore, we may
assume that a = b = k and, by setting (d;, v;) = (di(l), vl(l)) + (dl.(z), vl@), we have

)
vi Vi ow Yk

= — << —,
di gV’ d dy
Here, the first identity holds whenever (dfj ), ij )) # (0,0).
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Let us take decompositions V) = @leViU ) with dim Vl.(j ) = dfj ) and a cocharacter as in Equation
(3.11)

1:C" - GLIVWY)x GL(V?) (3.14)

which acts on Vl.(j ) with weight k + 1 — i. The diagrams of attracting loci with respect to A give the
commutative diagram; see [Todb, Proposition 2.5]:

&f:l(MF(ngn(dl.(l)),TrWd_m) ® (MF(X o (dP), TrW ) —— &5 MF(X,, (d;), Tr Wy,)

*IZI*\L *J
MF (X, (d"), Tr W) ® ME(X 0 (d@), Tr W) —————— MF(X,,(d), Tr Wy).

Here, the vertical arrows are categorical Hall products determined by A, p; := plm + pl@, the bottom

horizontal arrow is Equation (3.7), and the top horizontal arrow is the composition of the Knorrer
periodicity equivalences with the tensor product of (a shift of)

k
2 (2 (1 (1)
det((U/bO)v) - ®((detvi<1>)z.->_,»d, L4 @ (det V)i 4 L dj )

i=1

By the above commutative diagram together with the fact that Equation (3.7) restricts to the functor
(3.8), the functor (3.7) sends Equation (3.13) to

1Sy (dD)visdy (3o dy-3,y-s dy) © ME(X)(d), Tr Wo). (3.15)
Let us take a decomposition
w=vi+--+VvVp=wi+---+Wg,

where w; is given in Equation (3.10). Then by Lemma 3.6, the subcategory (3.15) for £ > 2 is right
orthogonal to S,(d),,. Together with the semiorthogonal decomposition S with summands (3.13),
we conclude that the functor (3.8) has dense image. Indeed, for an object A € S,(d),, there is a
distinguished triangle

a5 Al oa, (3.16)

where A is a direct summand of an object ¥(B;) for some B; in the left-hand side of Equation (3.8)
and A; is a direct summand of an object ¥(B;) for some B, in Equation (3.13) for a = b > 2. Then
Y(B,) is an object of Equation (3.15) for k£ > 2, hence B is a zero map by Lemma 3.6. So « is an
isomorphism, hence the functor (3.8) has dense image. O

We have postponed several lemmas, which are given below:

Lemma 3.2. The Ext-group ExtlQ (R, R) is computed as Equation (3.3).

Proof. By the Euler pairing computation, we have yo (RW,RW) = 2. Since Hom(R¥,RV)) = Co;j,
we have

C2, i#],

ExtL (R®,RV)) =
of ) o i),

Therefore, Equation (3.3) holds. O
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Lemma 3.3. By replacing the isomorphism (3.2) if necessary, the identity (3.6) holds.
Proof. We may assume x'!) = (0,0, 1) and x® = (0,0, 0). We write an element of ExtIQ(R, R) as
(X0, y(0, 7 x@ y@) 72) 402 4C) p12) pED)y 3.17)
where X € End(V¥) and A(/) € Hom(V®,V{)). We have the morphism of algebraic stacks
— |
v: Exto(R,R)/Gp — X)p(d)
which sends Equation (3.17) to
x(D A402) Yy pa2) zW 41 0 &3
((Am) x®@ ) (B<21> y® ) ( 0 Z(2>)) €g.
Indeed, the above correspondence is GL(V)-equivariant using the embedding G, € GL(V), so it
determines a morphism v. Note that v(0) corresponds to the polystable Q-representation R = (V) @

RM)y @ (VP @ R?)), where R corresponds to O, ).
We now explain that the morphism v is étale at v(0). The tangent complex of X (d) at v(0) is

10
Tx@lvo) = (End(V) - End(V)@3), a (0,0, [a,u]), u= (O O)'

The kernel of the above map is End(V(") @ End(V?)), and the cokernel is ExtlQ (R, R), so the morphism
v induces a quasi-isomorphism on tangent complexes at v(0).
A straightforward computation shows that

V' TrWy =Te(ZV XD,y D)) + e (2P [ x P, Y ?))
+ Tr(A(u) (B(21) +B@H Zz() _ Z(Z)B(Zl)))
+Tr(B(12)(Z(2)A(21) —A@HZz() _ A(21))).

By the following G ,,-equivariant variable change
ACD s 72D ACD _ AQD 7D _ A@D gL, p21) 4 pCDHZ() _ 7(2) p21)
we obtain the identity (3.6). )

Lemma 3.4. The functor (3.7) restricts to the functor (3.8).

Proof (cf. the proof of [KT21, Theorem 2.7]). For a cocharacter 1: C* — T(d), let
— >0 ’ — >0
Map = </l’ LX,,(d) |0>’ Mp = </l’ LXP(I)(d(l))x){p(z) (d(Z))i0>'
Define the sets of weights

1
- En/l,p < <A7X> <

Vow = {X € My ny,p forall /l; +wTty,

- En:l,]? < </l,)(> <

RO — =

Vo = {)( € Mg n) , forall /l; +Wwg.

Then an object in the right- (resp. left-) hand side of Equation (3.7) lies in the right- (resp. left-) hand
side of Equation (3.8) if and only if its T'(d)-weights are contained in V,, ,,, (resp. V;),w); see [HLLS20),
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Lemma 2.9]. Let £ be an object in the left-hand side of Equation (3.8). Using a Koszul resolution, the
complex W (E) is generated by p*(£) ® A*U. Let y be a T(d)-weight of p*(£) ® A*U. We then have that

1, L,
—3Mp* AU < (A, x) < Mp* (A, U0y,
Since U is self-dual, we have (A4, U/l<°) =—{(4, U”>°). Moreover, from Equation (3.3), it is easy to see
that
1, 1
Fp (A, U0 = -
Therefore, W (&) is an object of the right-hand side of Equation (3.8). O

Lemma 3.5. If a T(d)-weight x satisfies Equation (3.4), then
x+p € W(3d),. (3.18)

Conversely if a GL(V)-dominant T(d)-weight y satisfies Equation (3.18), then it satisfies Equation
(3.4).

Proof. 1f a T(d)-weight y satisfies Equation (3.4), it is written as

x*pp= 2 B -+ S P - pP), (3.19)

i,j,a i,j,atb
where 0 < cfj‘.‘) <3/2and 0 < cfj‘.‘m < 1. Since we have
1 b
p-pr=5 p, BB (3.20)
i,j,a<b

the weight y + p satisfies Equation (3.18). Conversely, if y is a GL(V)-dominant 7'(d)-weight satisfying
Equation (3.18), from [PTa, Proposition 3.5] it is written as

X+p= Zcij(ﬁi - Bj)

i>j
for 0 < ¢;j < 3/2. Therefore, from Equation (3.20), the weight y + p,, is written as Equation (3.19). O

Lemma 3.6. The subcategory (3.15) for k > 2 is right orthogonal to S, (d),, for w = wi +--- + wg,
where w; is given in Equation (3.10).

Proof. Recall that w; = v; +d;(2;;d; — 2j>;d;). Choose weights y; € W, (d;)o for 1 < i < k.
From the proof of semiorthogonality in [Padda, Proposition 4.3], it is enough to show that the r-invariant
of the weight

Zk:'ﬁi+zklwi7d,- —zk:Ppi +pp (3.21)
i=1 i=1 i=1
with respect to the polytope W, (d) is bigger than 1/2. Here, the polytope W, (d) is defined as follows:
W, (d) := %sum[O,,B] + Ry,
where the sum is after all weights in ExtlQ (R,R).
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Suppose the contrary, that is, the weight (3.21) lies in W, (d),,. Let A be the cocharacter as in
Equation (3.14), and write it as A = (10, 1®), where 1\/) is the cocharacter of GL(V)). We set
g = End(V) and /) = End(V")). The weight (3.21) is written as

k k
1 (1 1 @
>0 (1)yA'V>0 (2)y1'¥>0
i+ iTd; — - = - = .
;:1 ¥ ;:1 ViTd; = 8 58 5(87)

By the assumption, the above weight is an element of W, (d),,. Then using an argument as in the proof
of Lemma 3.5, we have that

k k

3
> i+ > vita, - Eg“’ € W(d)y. (3.22)
i=1 i=1

Note that we have

k k k
3 . Vi W 3
/l, leﬁl + Zl ViTd; — Eg/1>0 - WTd> = El (k +1-— l)d,(zi - E) - </l, Eg/l>0>.
= 1= =

For 1 <i < k, define

Then vy +---+ 7 =0and V1 +---+V; < O0for1 <[ < k. Therefore,

2(k+ 1 _i)di(:l_i - %) = lz::(iﬁl) < 0.

i=1

It follows that

k k
3 3
</l, Z Wi+ Z: ViTq, — ngo _ W‘rd> < —</1, Egﬂ>0>. (3.23)
i= i=

On the other hand, we claim that for any weight y € W(d)y, we have that

A, x) > —</l, %g’l>0>. (3.24)

We thus obtain a contradiction with Equations (3.23) and (3.22). To prove Equation (3.24), write
X = Zi,j cij(Bi — Bj) with 0 < ¢;; < 3/2. Then

NS [ON]

3
.x) > Z cij(A, Bi — Bj) = Z A, Bi—Bj) = —</l, Eg’l>°>. .
(LBi=B)<0 (LBi=B;)<0

4. Integral generator of equivariant K-theory of quasi-BPS categories

Recall the graded quasi-BPS category S&"(d),,, which is equivalent via Koszul duality to

T(d), c D*(€(d)).
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In [PTa], we proved that the monomials [Eg, v, ]*- - -*[Eay v, ] forvi/d; = v/d give abasis of the F-vector
space K7 (T(d),) ®k F. In this section, we consider the torsion-free equivariant K-theory defined by

Kr (T(d),)" := Kr (T(d),)/(K-torsion).

It is conjectured by Schiffmann—Vasserot [SV 13, Conjecture 7.13] that K7 (€ (d)) is torsion free as a
K-module, so conjecturally K7 (T(d), )’ is isomorphic to K7 (T(d), ). We compute K7 (T(d),)’ when
ged(d,v) =1, and when (d,v) = (2,0). Theorem 3.1 plays a key role in the case of gcd(d,v) = 1.

4.1. Sheaves supported over the small diagonal
Let
Qg (a)[~1] = Spec Sym(Te (a)[1])
be the (—1)-shifted cotangent of & (d). An object £ € D (€ (d)) has singular support [AG15]:

Supp*¢(£) c (Qg(a) [-1])°.

We identify the right-hand side with Crit(Tr W;) c X' (d), which is isomorphic to the moduli stack of
zero-dimensional coherent sheaves on C> of length d. Under the Koszul duality equivalence (2.22), we
have by [Toda, Proposition 2.3.9] that

Supp*#(&) = Supp(P(&)).

In the following lemma, we show that the K-theory class of an object in D? (€ (d)) with singular
support contained in 77! (A) has a certain divisibility property. The proof is inspired by the proof of
wheel conditions in [Zha, Theorem 2.9, Corollary 2.10], [Neg23, Proposition 2.11]

Lemma 4.1. For any £ € D? (6(d)) whose singular support is contained in 1~'(A), the element
i.[€] € Kr (Y(d)) =Kz}, ..., zjl]g‘f is divisible by

(g1 =D g2 - 1) g1 - D' e K. 4.1)

Proof. By [PTa, Lemma 4.9], it is enough to show that, for F € MFr (X (d), Tr W) supported on
a7 1(A), its image under the forget-the-potential map (1.8):

O([F]) = [F'] - [F'] € Kr (MF(X(d),0)) = K[z}, ..., 257 42)
is divisible by (q; — )41 (g2 — )?"'(g142 — 1)¢~!. We consider the morphism

h: C4 1\ {0} - Crit(Tr Wy) c ¢®°
(tl?""td*]) '_> (070’ (tl""’td*170))’

where (11, . .., t4_1,0) is the diagonal matrix. Let T = (C*)? act on C4~! with weight qu q;l ,and let the

maximal torus 7(d) € GL(d) acton C?~! trivially. Then the above morphism % is T x T (d)-equivariant,
so it induces a morphism

h: (CINAON /(T X T(d)) = 8% /(T X T(d)) — 9% /(T x GL(d)).
By the localization sequence

Krxray({0}) = Krsr (@) (CTY) = Kryr () (CT1\ {0}) — 0,
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we have an isomorphism
Krxr (@ (C (0D = Klzi, 2511/ - g7l gz )4
Note that we have
woh(ty,. .. ta1) = {(0,0,11),...,(0,0,74-1), (0,0,0)} € Sym?(C?),
in particular the image of 4 does not intersect 77! (A) c Crit(Tr W,). We thus have that
W (O([FD) = 0in Krur (@) (C17\ {0}).
Therefore, the element (4.2) is divisible by (g1¢2> — 1)¢~!. By replacing & with

(t1, -5 ta-1) = (0, (11, .., 14-1,0),0),
(tls .o ’td—l) = ((tly oo std—lso)soso)s
the element (4.2) is also divisible by (g; — 1)471, (g2 — 1)47!, respectively. o

By combining the above lemma with Theorem 3.1, we obtain the following:

Corollary 4.2. For any object £ € Ty (d), with gcd(d,v) = 1, the element
i.[€] € Kr (V(d)) = K[z,...,z511%

is divisible by Equation (4.1). In particular, the element i,.[E4.,] in Equation (2.38) for ged(d,v) = 1 is
divisible by Equation (4.1).

Remark 4.3. It is not clear from the expression (2.38) that i.[£4,, ] is divisible by Equation (4.1) when
gcd(d, v) = 1. Further, the condition gcd(d, v) = 1 is necessary for the above divisibility. Indeed, for
d = 2, a direct computation shows that

(&0l = (-1 =g -a7' —ay' —qi' 3" + 27 2+ 2153,
io[€.]= (1= g7 (1= g3)(1 - q7'93") (21 +22).
The element i.[£;,0] is not divisible by Equation (4.1). In particular, the singular support of £ ¢ is not

included in 771 (A).

4.2. Integral generator for the coprime case

Recall that K7 (T(d), ) is expected to be torsion free as a K-module. We also expect that Ky (T(d),)
is freely generated by [£4,,] if ged(d,v) = 1. The following theorem, which is an application of
Corollary 4.2, gives evidence towards this expectation.

Theorem 4.4. Consider apair (d,v) € NxZwithged(d,v) = 1. There is an isomorphism of K-modules:
Kr(T(d)y)" = K[&qa,v].
Proof. By the isomorphism (2.30), the K-module K7 (T(d),)’ is isomorphic to the image of
i: Kr(T(d),) — K[zF, ..., z5]%.

It is enough to show that the image of the above morphism is generated by i, [£4,, ]| as a K-module. By
Corollary 4.2, we have

Im(i,) € (g1 = D (g2 = D" Nq1go - DK, .., 251
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Moreover, Im(i.) ® F is generated by i.[E4.,,] over F by [PTa, Theorem 4.12]. It is thus enough to
show that i, [£4,, ] is written as

i* [gd,v] = (ql - 1)d_1(q2 - l)d_l(qqu - l)d_l : E’

where E is not divisible by a nonunit element in K.
By Equation (2.38), we have that

mi mgqg
I -2y

Sym | 6@ | = (@g2 - D" - E. 4.3)
(1-g7'z'z) - (1= q7'2}  za) g !
By setting
d-1
fa(zi, .. za) = l_[(Zm — g7 z)(zin — 45" z0) 4.4
i=1
[G-a'aG - - a2,
j>i+l
we can write Equation (4.3) as
e a2 za)

(—g) 7@ D@D (72 )4 Sym 4.5)

[Tj5i(z; = 2)

Plugin z; = q‘i for 1 < i < d in the formula (4.5). The only nonzero term in the sum above corresponds
to the identity permutation. The factors of this term not in K* divide

¢t =1, ¢% - q;', or ¢ — g3 for some a > 1. (4.6

Next, plug in z; = q; for 1 < i < d in the formula (4.5). The only nonzero term in the sum of Equation
(4.5) corresponds to the identity permutation. The factors of this term not in K* divide

a5 =1, 95 —q;', or g5 — g1 forsomea > 1. 4.7

The only factors which divide terms in both sets (4.6) and (4.7) are g1 — g2 and g1q> — 1. The factor
q1q2 — 1 appears with multiplicity d — 1 as it corresponds to z;4; — q}lzi forl<i<d-1.

It suffices to show that g; — g2 does not divide Equation (4.5). We will be using computations from
[Neg22, Section 2]. Note that g1, g2, ¢ from our paper correspond to q;l, qgl, q‘l in loc. cit. Further,
the weight v € Z corresponds to k € Z in loc. cit. By [Neg22, Equation (2.35)], the equality Py x = E4.«
for ged(d, k) = 1 in loc. cit. (see [Neg22, Equations (2.6) and (2.35)]) and the isomorphism between
shuffle algebras Sy N SE’:, we can write

(qlqz—l)d_1~E:y+tinS®KK _—

for ¢ a K-torsion element and

(1-4;H0 -9 .2 ~
B S ’ iz ) |- 4.8
y (1-g;")(1-¢7") ym((l_‘IZZIIZZ)"‘(I—sz;l_lzd) gf(z z;) (4.8)
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It suffices to show that g; — g5 does not divide y. By setting

d-1
ga(z,. . za) = [ [(aint = 47'20) (zin1 = q20)- (4.9)
i=1

]_[ (zj —q7'z)(zj — 45" 20) (25 — q20),

J>i+l
we can write the Sym(—) term of y as
m me-— md—l
(cqa) 3@-DED (72 )24 gym 2 a2t za) @.10)
v v Hj>i(zj - zi)

It suffices to show that ¢; — ¢» does not divide Equation (4.10). Let z; = g~% for 1 < i < d. The only
nonzero term in the sum of Equation (4.10) corresponds to the identity permutation. The factors of this
term not in K* divide

g4 —1,4g7%- ql‘l,q‘“ — g for some a > 1.

None of these polynomials is divisible by g; — g2, and the conclusion thus follows. O

4.3. Integral generator for Kt (T(2)y)’

The computation of Kr (T(d),)” is more subtle when ged(d,v) > 1, since the monomials [Ey4, ] *
% [Egpv ] for vi/d; = v/d do not generate it over K; see Remark 4.8. We need to find other objects
giving K-basis of K7 (T(d), )’. Here, we give a computation for (d,v) = (2,0).
Let V be a two-dimensional vector space, and let sI ¢ g = End(V) be its traceless part. Note that
[s] = 1+27 22+ 212, € K(BGL(2)) = Z[zF!, 2211,

The structure sheaf of the classical truncation € (2)! fits into the exact sequence

-1 — oy A 1 _ B
0— Oy (CI1 1‘122) @ Oy(z)(qlqul) —sl® Oy(z)(Ch 1Q21) - Oyp) — O%(Z)Cl — 0. (4.11)
Here, over (X,Y) € 02, the maps A, B are given by
Alxyy = (X =T X - 1,2Y = TrY - 1), Blix.y)(Z) = TrH(Z[X, Y]).

We set My := Og )0 (q192). We also define a coherent sheaf M, on % (2)! by the exact sequence

1 BY AY
0— Oy (g7 ay") = s1® Oy = Oy (q1) ® Oy2)(q2) = My — 0. (4.12)

The sequences (4.11), (4.12) are the Eagon—Northcott complex and the Buchsbaum—Rim complex
associated with AY: s1 ® Oy ) — Oy(2)(q1) @ Oy(2)(g2), respectively. In particular they are exact;
see [Eis95, Theorem A2.10]. From the exact sequences (4.11), (4.12), we have M, M, € T(2)p.

Proposition 4.5. As a K-module, we have
Kr (T(2)0)" = K[M1] & K[M,]. (4.13)
Proof. 1t is enough to show that the image of

io: Kr(T(2)) — K[zE], z511® (4.14)
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is generated by i, M, i.M, and that i. M1, i, M, are linearly independent over F. Below, we omit i, from
the notation i, M ;. From the exact sequences (4.11), (4.12), we have

[Mi] = qig2+q7" + 45" —sl, [Ma] =q7'qy" +q1 +q2 —sL. (4.15)
A direct computation shows that

[E10x &0l = 1+q7" + 43" +47' 5% + 47705 +a77a3" — 25147 45! (4.16)
=q7'q;' ([M1] + [Ma)),
[E20] = (1 =g (1 =g5)sl-q7" - a5 —q7'g5")
= (g7 + ;) [M1] - (¢7'q5" + D[M].

Here, [€1,0 * £1,0] is computed from Equation (2.29) and [£;] is computed from Equation (2.38).
Therefore, we have

K[& 0]l @ K[E1,0 * E1,0] € K[M] ® K[M>]. 4.17)
Since we have
a7'q;" a7'q;"

det
a' vyt —(q7 gyt + 1)

=—q7'¢;' (1+q7") (1 +¢5") € K\ {0}, (4.18)

the embedding (4.17) is an isomorphism after taking ®xF. In particular, [M|], [M;] are linearly
independent over F.
By the above argument, we have

K7 (T(2)0) ®x F =F[&,0] @ F[&1,0 * E1,0] = F[M] ® F[M>],

where the first isomorphism is proved in [PTa, Theorem 4.12]. It follows that any element in the
image of Equation (4.14) is written as a) [M}] + a;[M;] for ay,a; € F. As it lies in K[z;—'l, zfl], from
Equation (4.15) we have

ai(q1q2 + qfl + qil) + ag(qflqgl +q1+q2) €K, a +a e K.
By solving the above equation, there exist b, ¢ € K such that

b b
ap :X’ a2:—K+C, (4'19)

where A is given by

A=q"+¢) v -q1 - 92— 7' 45"
=47'qy" (g1 - D (g2 - D(q1g2 - D).

Itis enough to show that bis divisible by A.If ay, a; are given by Equation (4.19), thena; [ M1 ]+az[M>] =
b + c[M;]. As we assumed that a;[M] + az[M;] lies in the image of Equation (4.14), by the wheel
condition [Neg23, Proposition 2.11] we have

(b+c[My)])]

= (b+c[M))] =0 (4.20)

— -1 — -1 ,,-1 g | — 1,1
zi=q7 "' zj=q7"q5" 2k zi=q;"'zj=q7"q;" 2

unless i = j = k; see Remark 4.6. By setting i = k = 1 and j = 2, we obtain b|y,4,-1 = 0. Similarly, we
also obtain b|,,=1 = blg,-1 = 0, so b is divisible by A. o
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Remark 4.6. In [Neg23, Proposition 2.11], it is assumed that 7, j and k are pairwise distinct for the
identity (4.20), but the proof in loc. cit. works unless i = j = k. Indeed, using the notation in loc. cit.,
let ¢ = (x;;) for xpe # 0, x;; = 0for (i, j) # (b,c), ¢y = (yij) for yap # 0, y;j = 0for (i, j) # (a, b).
Then ¢} ¢, is concentrated on (a, ¢) with value y,pxpc # 0, @@ is concentrated on (b, b) (either zero
or nonzero). Therefore, if [¢., ¢,] = O holds, then we must have a = b = ¢. Unless a = b = ¢, we have
1,1 (0) NV, = 0 in the notation of the proof of [Neg23, Proposition 2.11]. The rest of the argument is
verbatim.

Remark 4.7. Note that

€(2)" = [R/GL(2)] x C?,
where R is the determinantal variety of (3x2)-matrices, and M & M, gives a noncommutative resolution
of R x C2 by [BLdB 10, Theorem A].

Remark 4.8. Since Equation (4.18) is not invertible in K, the inclusion (4.17) is not an isomorphism if
we do not take Q.

Remark 4.9. For (d,v) € N x Z with ged(d,v) = 1 and n > 1, let P,4.,, be defined as in [Negl4,
Equation (1.2)]:

(ql—l _ l)nd(qgl _ 1)nd
Podny i= —— 2 : 421
R P T § 2D

v |_| G=hv
Sym IEE zi[dH 2l i nz—l s Bl Tt ]—[g(z_) |
- g ) S Zd(n-1) -+ -Zd(n-s) . \%j
Then we have
P20 =475 (q1 = D(q2 = D(q192 = 1) = q7' 45 (M1 — Mp). (4.22)
Together with (4.16), we have
K[P1,0* P1o] ® K[P20] € K[M] & K[M;] (4.23)

with cokernel Z/2. The inclusion (4.23) is an isomorphism after ®7Q.
More generally, we expect that

Kt (S(nd)nv)(é = @ KQ[Pnld,nlv Foeeok Pnkd,nkv]~

ni+--+ng=n

More details will be discussed in [PTb].

5. The coproduct on quasi-BPS categories and K-theoretic BPS spaces

Recall that Q is the quiver with one vertex and three edges x, y, z. Recall the regular function (2.2)
induced from the superpotential W := x[y, z]. We will denote by m the Hall product (2.5) of (Q, W)
and by m the Hall product (2.17). _

In Subsection 5.1, we define the coproduct A for the categories S;(d),, . In Subsection 5.2, we prove
the compatibility of the product and coproduct for the quasi-BPS categories S7. (d),y; see Theorem 5.2.
In Subsection 5.3, we use the Koszul equivalence to define the coproduct A for the categories T, (d), and
to check the compatibility between the product and the coproduct for the quasi-BPS categories Tr (d), .
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Recall the definition of Dy, for (d,v) € N x Z for ged(d,v) = 1 from Equation (1.10). In
Subsection 5.4, we show that K(D,., )z is isomorphic to the F-algebra of symmetric polynomials; see
Proposition 5.11. Further, we consider the space of primitive elements

P(nd,nv) c Ky (T(nd),y)

which we regard as an analogue of cohomological BPS spaces in K-theory; see Proposition 5.11 and
the equality (1.5).

Note that the definition of Hall multiplication involves attracting stacks of antidominant cocharacters.
The definition of the coproduct is through attracting stacks of dominant cocharacters. In this section,
we will use dominant cocharacters.

5.1. Preliminaries

Let d € N. Recall the stack of representation of Q of dimension d:
X(d) := R(d)/G(d) :=g%*/GL(d).

In this section, we allow partitions which have terms equal to zero. Forw € Z, let Hg4 ,, be the set of parti-
tions (ds, wi)k, of (d,w) withd; > 1fori € {1, k} such that, for vy = wi—di (s dj - 51 d;)

fori € {1,...,k}, we have
Vi Vi
—=...=—. 5.1
a4 ds (5.1
For a partition A = (d;, wl-)l.k:1 with terms possibly equal to zero, let I C {1,..., k} be the subset of i

with d; > 1, and define the partition of (d, w) with nonzero terms A= (diywiier-

5.1.1.

For A and p two cocharacters, let A, be the set of (T'(d) x T)-weights 8 of R(d) such that (1, 8) > 0,
let I C A, be the set of weights such that (u, 8) < 0 and let A’ C A, be the set of weights such that
{(u, B) = 0. Let Jf{ be the set of weights S of g such that (1, 8) > 0 and (u, 8) < 0. Define the weights

N =B g =) B,
i 7

5.1.2.
Let A and ¢ be dominant cocharacters of 7' (d) with associated partitions A = (di)l.k: ,and B = (e;),
respectively. Let W = &, be the Weyl group of GL(d), let W* = x{.‘z 1S4, be the Weyl group of GL(d)"
and let W# be the Weyl group of G L(d)*. Define the set of cosets
Mo _ 2
S, = WI\W /W7

A coset C € Sf{ corresponds to partitions (f;;) for 1 <i < kand 1 < j < s such that

s k
Difj=difori<i<k Y fij=ejforl <j<s.
j=1 i=1

Let v be a dominant cocharacter corresponding to the partition

(fit, s fiss ot Poso oo s frts oo s fs),s (5.2)
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and let x be a dominant cocharacter corresponding to the partition

(fii, -5 fres fizs o feas o fiss oo s fis)- (5.3)

Consider the permutation w of S, of minimal length which permutes blocks of consecutive integers

w=wc: (fit, , fiss o1 s s fils s Jrs) P 54
(fits- -5 Jes fize s Jeas oo s fise oo s Ss)-

Consider the partition
D = (fij, uij), (5.5)

where f;; are ordered as on Equation (5.2), and assume that D is in Hg,w. Then there also exists a

partition E with terms (f;;,#;;) where f;; are ordered as on Equation (5.3) such that E is in Haw.
Consider the order 1 < [ < ks of the pairs (7, j) as on the first line on Equation (5.4). Define the functor

swe B My — B M) g » (5.6)

=2 Ao B2 Aw)
which permutes the factors as in Equation (5.4). Define
SWe By & M(fife; — By B M(fi)a,»
-1 -1
A swe(A@ ONY gy I =105 1),
1 -1
where O(-N)" * +g" *) is a one-dimensional representation of G* = G*. Consider the maps

Ay

X(d)* =L (x (@) L x(a,

Finally, define
ﬁDE = pk’llu*quflﬂﬁc : MC - MB-
There are analogous such functors for categories of (equivariant and/ or graded) matrix factorizations
L]

— L]
mcg: S*,c — S*’B

5.1.3.

We introduce some more maps and functors needed in the rest of this section. Let A and ¢ be dominant
cocharacters, and let v be a dominant cocharacter corresponding to a partition in Sfl‘. The map p -1
factors as p ;-1 = my-11,-1, where

L R(d) /G0 = R(d)/G(d),
L R PYG()P0 = R(d) )G ()P,

There are similarly defined maps
S RE@HN(G)M) 0 = R [G (),

Lty s (REMY 20 /(G (") 20 — R(d)H /(G (dy)* .
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5.14.
Let u be a dominant cocharacter of T(d), let b € Z and let D? (X (d)“>0) <, be the subcategory of

DP (X (d)*>°) generated by complexes g},.A for A € D? (X (d)*); and i < b. There is a semiorthogonal
decomposition

pr(t@r) , = (P (x@r),

< SO—

b pu=0
1’D (X(d) )b>’
and there are equivalences g, : D (X (d)*), S Db (X(d)”>0)b. We define the functor
. nb u=0 b u=0
By : D (X(d) )gb =D (X(d) )b

to be the projection with respect to the above semiorthogonal decomposition.
5.1.5.

Let B = (d;, wi)l.k: , be a partition of (d,w) in Hy .. Let u be a dominant cocharacter for the partition
(d)k,, andlet b := % = (u, ¢">°); see Equation (2.3) for the definition of n,.

Lemma 5.1. There is a functor

~ -1

Ap = (q;;) B Pty : M(d)y — Mg = B M(d))w;. (5.7)
Proof. First, note that the image of p),(M(d),) is in DP (X (d)**%)¢, from the description of the
category M(d),, in Lemma 2.2. Thus, the image of Agisin D? (X (d)"),. Also, note that the category
M is a subcategory of D? (X (d)*)y, because B = (dj, w;) is in Hg, .

Let y be a dominant weight of T (d) such that y + p € W(d),,. If y + p is not on the face F(u) of

the polytope W(d), then

Bor; (Ox(a) ® ToLay(x)) = 0.
If x + p is on the face F(u), then by [Pidda, Corollary 3.4] we can write
1 k
X+p—Wia= EN”>O+;(‘”f +pi), (5:8)

where ; € M(d;) and y; + p; € W(d;)o. In particular, we have that

vi + 60 + wry.

k
X =

i=1
Write y = Zle xi- We have
diw u>0 u>0
(La;> xi) = - 7 (Lg;»8"77) =vi+(lg,, 6H77) = w;.
Further, we have that y; = ¢; + w;74,, s0 xi + pi € W(d;)w,. Therefore, we have

-1
(QZ) By P (Oxa) ® TorLia)(x)) = 8, (Ox 4 ® ToLian (xi)) € M.
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Let y be a dominant weight with y + p € W(d). Note that

~ Ox(ayn ® UL (x), if x € F(p),
A5(Ox( ® Torw(0) = {O S (5.9)
The functor (5.7) induces a functor
_ -1
o= (ap) Bopj: (D — 82 (5.10)

Let A = (d;, wi)i":1 and C = (f;, ui)l.l:1 be partitions in Hy,,, such that C is a refinement of A; see
Subsection 2.2.6. One can analogously define functors

KAC: MA —>Mc, ZAC: S;,A g S;,C

for categories S; as in Subsection 2.6.2.

5.2. Compatibility between the product and the coproduct

In this section, we show that 77 and A are compatible. Recall the forget-the-potential map (1.8):
0: Kr (MF(X(d), TrW)) — Kr (MF(X(d),0)).
Recall that K7 (Sa)r < K7 (My)g; see [PTa, Theorem 4.12 and Equation (4.36)]. Let
K7 (Sa) := Kr(Sa)/(K-torsion) — image(®: K7 (Sa) — Ky (Ma)).

Theorem 5.2. Consider a pair (d,w) € N X Z. Let A and u be dominant cocharacters with associated
partitions A = (di’ wl-)l.k:1 and B = (e;, v;);_,inHg, . Let Sﬁ C S’; be the set of partitions C = ( f;, u,-)f:l
with | = ks with C in Hg , and such that

Sl—ns+1 + fli-nyse2 + ...+ fis =di for 1 <i <k,

<
fi+fosxjt. .+ fle-nys+j=ejfor1 < j<s.

Then the following diagram commutes:

Kr(Sa) —2— K7 (S(d)w)’

l@ Aac \LA-B

@ca‘g Kr(Sc)’ % Kr(SB)’.

Theorem 5.2 is a T-equivariant version of [Pada, Theorem 5.2], and the same proof works to show
this statement. However, we present an alternative proof which first proves a categorical statement about
complexes in D? (X (d)*) which is stronger than the results in loc. cit. and is of independent interest for
computations in categorical Hall algebras.

Note that the compatibility of the product and coproduct for localized K-theory, either in the above
setting or in the setting of Corollary 5.6, follows by a direct computation and Propositions 5.7 and 5.8.

Proposition 5.3. Let A, B be as in Theorem 5.2. For 1 < i < k, let x; be a dominant weight of T (d;)
for 1 < i < k such that x; + p; € W(d;). Let y = Zf;l xi. For any C € S8, there are natural maps,

mcsAac(Ox i ® Toran (X)) = Apiia(Oxayr ® Toran (X)) (5.11)
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such that there is an isomorphism

EB cAac(Oxar ® Tarr(x)) = Apia(Ox @ ® T (X)). (5.12)
Ces®

Proof of Theorem 5.2. By Proposition 5.3, the following diagram commutes:

Kr (Ma) —24— K7 (M(d)y)

|®5ac |5

Deess KrMe) L7 Ky (1),

The maps m and A are compatible with the forget-the-potential map (1.8) by [Pad22, Proposition 3.6]
and [Pada, Proposition 5.1], respectively. The conclusion thus follows. O

Proof of Proposition 5.3. The argument follows closely the proof of [Pddb, Theorem 5.2]. We give an
overview of the proof. We use a Koszul resolution to compute 714 (O x(a@)t ® Lgra( X)) in terms of
O ®TGra)(0), where 8 = (xy — oy)* for oy a partial sum of weights pairing positively with 1. Let
O®T'GL(a)(6) be a vector bundle appearing in the Koszul resolution with nonzero A . Then the weight
6 is on a face of W(d); see Equation (5.9). We use Proposition 5.4 to characterize the highest weights
6 on a face of W(d) in terms of partitions C € § ﬁ. The proof then follows from a direct comparison
with the right-hand side of Equation (5.12). Let o7 be a sum such that y — o7 is on a face of W(d)
corresponding to C € Sﬁ with associated permutation w; see Equation (5.4). The swap morphism
appears because conjugating y — o7 to 8 = (y — o7)* first requires to act by w.

The multiplication m 4 is defined asm 4 = p -1 *q;_ -Lety := Zf.‘z 1 Xi- Consider the Koszul resolution

Mma(Ox a2 ® Tgrar(x)) = T4 51 (Ox @y ® Triap (X))

= Tty @ Or@) ®Tgrap<o(x —opllIll.d);
I1CA,y

see Proposition 2.1 for the notation. The differential 4 is induced by multiplication with generators (e;)!_,
of the polynomial ring C[R(d)*<°] = C[e,...,e,]. Fix C € S&, consider the associated dominant

cocharacters v and  and let w = we € S, as in Equation (5.4). Let ¢ := w™! u. There are natural maps
of complexes

T €D Oray ® Toriapeo(x) ® O(-NY = o) (1] + 1] d | > (5.13)
JcAY

m]*(@ Or(a) ® TgL(ay=o(x) ® O(=ap) 1], d

I1CA,
induced by the inclusion of sets
Ic :Z{Nf"'O—J |JCAf}C{0’[ |ICA,1}.

The differential d of the complex on the first line is induced by multiplication with generators of the
polynomial ring (C[(R(d)‘ﬁ)’ko]. For C,C’ different elements in Sﬁ, we have that Ic N Icr = 0. If

oce{or | I cCA}\ (UCesf IC), then OR(a) ® [ (ayr<0(x) ® O(=07) has uu-weights strictly less
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than nT“ = (u, g*>0) for all u € S ; see Proposition 5.4. It follows that

ZBMI*(OR(G,) & L1 (ay1e0(x) ®(9(—0'1)) -0 (5.14)
for such sums o; see Equation (5.9). It suffices to show that, for C € § ﬁ, we have natural isomorphisms
of complexes

N _N¥ _ ¢
Aty D Oria) @ Tor @y (x) © O(=N{ = o) (1151 +1J1).d (5.15)

JCAY
= mcepAac(Oxar ® Torar (X))
Using Equation (5.13), we obtain the natural maps (5.11), and further we obtain the isomorphism (5.12)
using the vanishing (5.14).
For J ¢ AY, we have that
ws (¥ —NY —oy)+p € F(u) c W(d);
see Proposition 5.4. Let w; € S, be the element of minimal length such that w; = ( X - N/‘f - O'J)
is dominant or zero. Observe that wy = w. However, for general J, we have that w; = uy o w for a

permutation u; in x}_, S, = W and {(w;) = {(w) + {(u,). By the Borel-Bott—Weyl theorem, there
is a natural isomorphism

m_l*((’)R(d) ® FGL(d)’KO ()( - N:'la - O'J)) =
721 (Or( ® Tariapen(w = (e = N = o) [-1751])
and further there are natural isomorphisms

Apmy, @ Or(a) ® Tgrapo(x =N§ — o) [+ 1J]].d (5.16)
JcA%

= Apmyr.| € Ore) ® Tgriayo (wx (x = N§ = o)) 151 = 151+ 1711, d
JcAY

= Tt €D Ortays @ Tiraywar (wx (x = NY = o) [IF] = f 1 +1711.d |
JcAY

We have that
X(d)Y =X(d)" and G(d)” = G(d)*. (5.17)
For a weight 8 of T (d), denote by
Y (Ox(a)x ® Tg(ay<(0)) = Ox(ayx ® Lg(ay«(w * ). (5.18)

For a subset J C A/‘f, letJ" = {wg | B € J} be the corresponding subset of I, := {8 weight of R(d)* |
(k, B) > 0}; see Proposition 5.5. There is an isomorphism
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O(X(d)u)xso ® F(GL(d)[J)KSO (W * ()( - N/‘f - O'J))[—l.]/‘lpl] = (519)

qi—ll_l(lp(o?((d)" ®Tgriay(x = NY)[-1US1) ® O(-0y)).
For B a complex in D? (X (d)”), by the definition of SW¢ we have that
swe(B) =¥ (B® O(—N/‘f)) [|I/‘f| - |J/‘f|]. (5.20)

We next want to use Proposition 2.1 for the map ¢,-1,,. For this, it is convenient to use the following
notation

F(O(R(d)”)“o ® F(G(d)ﬂ)’(so(e)) = OR(d)l‘ ® F(G(d)y)xso(e)
for 8 a dominant weight of 7' (d). We consider the Koszul resolution

LK‘ly*qz—ly(ﬁC (OX(d)K ®FGL(d)K(X))) = (521)

P Faii, (Fc(Oxwar ® Tarwx(x)) @ O=o)[1]].d |

J' Clyp

where the differential d is induced by multiplication with generators of the polynomial ring
C[(R(d)“)“<0]. Rewrite Equation (5.16) using Equations (5.18), (5.19), (5.20):

Ay €D Oriay ® Torapaax = N§ =) 111+ 111, d (5.22)
JcA®

= | @D Falor, (e (Oxan @ Toray (x) ® 0= [17'1],d) |

J'Clyp

There are isomorphisms

Aty D Oria) @ Torapa(x) @ O(=N{ = o) (1151 +171],d
JcAY

Q)] " — ’
= teun| 6P Falo, (e (Oxiar ® Torwr (1)) ® O(=a) (1],

J'Cley

(2) " —
= ﬂrly*twlmqk_lﬂ(swc(OX(d)K @ Tgrax(x)))

—~
w
=

R

mep(SWe (Oxay ® Toriay(x)))

—
N
=

IR

mcp (WVC (ZAC (Ox(ay ®griap (X))))-

Recall that ., = mcp and Ay =Aac. The isomorphism (1) is the isomorphism (5.22), and it respects
the differentials. The isomorphism (2) follows from Equation (5.21). The isomorphism (3) follows from
the definition of m¢ p. The isomorphism (4) follows from Equation (5.17) and the equality

ZAC(OX(d)’l 8T (X)) = Ox(ay ® Taray (X) = Oxayr @ Tariay« (x)- O

Proposition 5.4. Let A and u be dominant cocharacters of GL(d), and let w € W. Assume that y is a
dominant weight with y +p € F(A) and that I € A, such thatw * (y — o) +p € F(u). Let ¢ := w™ .
Then
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I={BeAy|{e.f) <0}uJ (5.23)

for a subset J C Af.
Conversely, for all I C A, as in Equation (5.23), we have w + (y — o) + p € F(w).

Proof. For two cocharacters T and 7/, we use the notations
NT>O Zﬁ NT_0T>0 Zﬁ
AT

Letv = (14, x). Write

1
X—v7d+p=§N’l>O+l//,

1
W*(X_VTd_O'I)+p=§N#>O+¢/7

1
X —VTa— 07 +p=§N"’>0+¢,

where ¢ € W(2)p and ¢ € W(p)o; see [Pad23, Proposition 3.4]. Then
| .
o1 =N+ (EN“"O’bO - ¢) (zﬁ - =N ¢>°) (5.24)

The weight ¢ := L N¥=04>0 — ¢ i a sum with nonnegative coefficients of weights 4 such that (¢, 8) = 0
and (4, 8) > 0 and weights 8’ such that (¢, 8’) = (1, 8’) = 0. The weight ¢ := ¢ — 1N*0-¢>0 s a sum
with nonnegative coeflicients of weights ,8 such that {1, 8) = 0 and (¢, 8) < 0 and weights 3’ such that
(p, B’ = (4,B") = 0. We denote by 0' o @ sum with nonnegative coefficients of weights 8 such that
(A4, B) > 0and (¢, B) = 0 etc. Then we can write

o1 =N§ =i +ogt—nyt, (5.25)

where all the sums on the right-hand side are further partial sums of weights in A,. We can rewrite
Equation (5.24) as

0_/1+

20 ot =0y + 5 ¢¢0 +y) +zp¢0 (5.26)

The ¢-weight of the left hand side is nonnegative, while the ¢-weight of the right-hand side is nonpos-

itive. Thus, o-{,}j: = n = z,b = 0. In particular, Equation (5.25) becomes

o = N g O'w,
which implies the first direction. The converse follows in a similar way. O

Proposition 5.5. For a subset J C A/‘f, the set J' = {wB | B € J} is a subset of I, :=
{B weight of R(d)* | {k,B) > 0}. This transformation induces a bijection of sets Af > Liu

Proof. It suffices to check the first claim. To construct an inverse of this transformation, send L C I,
toL°={w !B |BelL}.

Let B € A¥. Recall that ¢ = w™! 1, so we have that (w™'u, ) = 0, and thus (u, wpB) =

It suffices to show that if a weight §; — g, is in A/f, then («, By (i) — Bw(;)) > 0. For simplicity, we
discuss the case when k = s = 2. Rename f11 = fi1, fi2 = f2, fo1 = f3, foo = f4. The permutation w is
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i+f3if fi+1<i<fi+fo
W(i) = i—fz, iffl +f2+1 <i< f] +f2+f3,
i, otherwise.

‘We have that

(4, B; = B;) > 0and {u, By (i) — Bw()) =0,

so one of two possibilities happens:

Wh+HL+H+HI<i<fit ot fi+faand i+l <j<fitfo,

Q) fith+l<i<fi+tfo+frand]l <j < fi.
In case (1), we have thati = w(i) and f1 + f3+1 < w(j) < fi+ f3+ f2, and then («, B\, ;) = Bw(j)) > 0.
In case (2), we have that fi + 1 < w(i) < fi + f3 and j = w(j), and then (x, B\, (i) — Bw(j)) > 0. O

5.3. The bialgebra structure under the Koszul equivalence

Let (d,v) € NXZbe coprime integers. For n € N, denote by R, the set of ordered partitions A = (n;) l.kzl
of n with n; > 1. For each such partition A of n, denote also by A the partition (n;d, n,-v)l.k: | of (nd,nv).
Let y; be the weights of T for i € {1,2} with ¢¥ = g; € K. Let y = y| + 2, and let ¢” = ¢1¢». For
simplicity, we will denote g just by gq.

5.3.1.
The coproduct (5.10) induces coproduct maps

AAC: TA — TC
for C a refinement of A as follows. Recall the Koszul equivalence
@ : T(e), = S (e), (5.27)

for all pairs (e,v) € NXZ.Let A = (n;d, wl-)l.k:1 be a partition of (nd, nv) with associated prime partition
A’ = (nid, n,-v)l.k:l; see Subsection 2.2.7. Let T4 := ®f:lT(n,-d)niv. There is a Koszul equivalence

Dy Ty S5

Let @1‘41 be its inverse. For V a vector space of dimension nd, let [ := End(V)?4. Let A¢ be the antidom-
inant cocharacter of T'(nd) ¢ GL(nd)"4 corresponding to C; let wac := det((1'¢>%)Y) [~ dim [1c>?],
where T acts on [ with weight y := y; + . Note that det((I/’C>0)V) is a character of GL(d)"¢; hence,
it determines a line bundle on X (nd)c. We define the functor

AAC:TAHTC

by the commutative diagram
A
Tp—2° T c

mr {@c

S8 —— 5%
= - .
Aac (=) ®wic ¢
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When A = (nd,nv) and C is a two term partition (n;d, niv)l.zzl, the term wy, », = wac is Equation
(2.40) for dimV; = n;d for i € {1,2}. For these partitions, we let A, ,, := A s4¢. For such partitions A
and C, consider the (T X T'(d))-weight

Vai,ny = Z (ﬂi_ﬁj_7)~

i>n1d>j

Then wp, n, = (—1)d)-(md) gVnin - Alternatively, w,, ,, measures a ratio (called renormalized twist
in [VV22, Proof of Lemma 2.3.7]) constructed from the shuffle product for m with kernel

(1-q7"0)(1 - g3'x)(1 - gx)
1—-x

&'(x) =

and the shuffle product for m with kernel £(x); see the computation in [PTa, Proof of Lemma 4.9].

5.3.2.
Let (d,v) € N X Z be coprime integers, and let n € N. Consider partitions A = (di)l.kz , and B = (e;);,
of n. Let Sﬁ be the set of partitions C = (fi)l.l:1 of n with [ = ks such that

Sfli—)s+1 + fimnyse2 + ... + fis = d; for

i <k,
fi+fs‘+j+...+f(k_l)s+j =e;j for i

I <
I1<j<s.

4

Let D be the partition on n constructed as in Equation (5.5). Define m;

Equation (5.6). Theorem 5.2 implies the following:

¢ ‘= mpc °swc, for swc as in

Corollary 5.6. In the above setting, the following diagram commutes:

m

K7 (Ta) —2— K7 (T(d)w)’

@ lzs

@CGS/fg Kr(Tc)’ % K7 (Tg)".

Proof. For simplicity of notation, we assume that k = [ = 2, that A is the partition a + b = n, and that B
is the partition ¢ + ¢ = n. Then S := Sﬁ is the set of partitions C = (f; ;‘:1 € N* such that

hi+h=a fi+fa=b fi+tfz=c, h+fa=e
Note that, for such a partition C, the partition D is (f1, f3, f2, f4). The swap morphism is

sWap : K7 (T(ad)ay)’ ® Kr (T(bd)py)" — Kr (T(bd)py) ® K7 (T(ad)ay)’,
XQYyH yQ®ux.

We abuse notation and write m,, instead of m,4 54 and so on. We then need to show that the following
diagram commutes:

Kr (T(ad)ay)’ ® K1 (T(bd)p,) ———L——% Kz (T(nd)ny)’

I [

P QL Kr (T(fid)fv) —2— Kr(T(cd)ey)’ ® Kr (T(ed)er),

where m’ == Pg(mpp @mps)(1@swps®1)and A = PgAsp @App.
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For m € N, recall that oy, := mT1,, = Z:’;l Bi. Then 0yq = 0fa + 0pq and so on. In this proof, we
will use the notation z := ¢~ instead of ¢! to reduce the use of the letter . We use the notation ®,,
for the Koszul equivalence (5.27) for (nd, nv). Then

—bda—adqada'hdzabdz -bdoag ado‘bd(_z)abdz
9’ .

g’ =q Wap =4q q

Fix a tuplet C = ( fi);‘:] as above, and let w = wc € S,4 be its corresponding Weyl element as in
Subsection 5.1.2. Let x,,, € Ky (T(md)yy) for m € {fi,a,b,n | 1 < i < 4}. By the discussions in
Subsections 2.11 and 5.3.1, we have that

]~ _ 2
Mab (¥a B Xp) = O ap (Pa (xa)g ™17 @ By (x5)g 74 (<)),
_ 1 {~ _ _n
Aab(xn) - q)al = q)bl ((Aab(pn(xn))qbd(radq ada'bd(_z) d ab)’
§Wc()€f] RXxp RXxp IZIXﬁ) =xp; X (Xﬁqz‘ﬁo-&) X (xfzq_zfzo—f%) RXg.

We use the shorthand notations swo3 = 1 Rswy s R 1, m13 = my 5, mc := m13 R mo4 and so on in what
follows. We compute, by ignoring the z factor for simplicity of notation,

Acemap (xXq ®Xp) (5.28)

— q)ZI = q)gl (A(,f (”ﬁab(q)a(xa)q—bd(fad = q)b (xb)qad(fbd))qedo'cdq—cda'ed)

=o' B! Z mc (§Wc (le(q)a (Xa)g "9 7ed) @ Mg (P (xb)qadm"’)))qed”""q_cw""'
S

We next compute
Z m'A(xg B Xp) (5.29)
S
=0 m @ ) (i1 @iy (g @ g7 g AR g R
S

x swas (B 12(@a () g 27 g 174 ) @ (Bg (@ (x)) g 70 g P74 ) ).
We claim that the expressions (5.28) and (5.29) are equal. We only match the coefficients in K corre-
sponding to fi and f> as the computations for f3 and f4 are similar:

(fz+ﬁ1)d0'f]d —(fz+f4)d0’fld — qudo'f]dq—f;d(ff]d’

q q
q—(ﬁ+ﬁ)da'f2dq—(ﬁ+ﬁt)d0'f2d .q2f3d0'f2d — q_ﬁdo'fqu_ﬁdo'fzd_

Finally, the z factors in A..m,p and m’A are equal because

(_Z)dzab—dzce _ (_Z)—dzflfz—dzﬁﬁﬂﬂfl fird’ hfi m|

5.4. The localized bialgebra

Recall that for V a K-module, we let Vg := V ® F. Recall that (d, v) € N X Z are coprime. Consider the
N-graded F-vector space

V= K(Da)e = (D Kr (T(nd)uy ). (5.30)

n>0
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We next explain that the operations m and A endow V with the structure of a commutative and
cocommutative F-bialgebra. We show this by an explicit computation using the generators of these
vector spaces; see Equations (2.34) and (2.33). Recall the complex &, from Definition 2.3 and the
shuffle elements A/, , and A, ,, from Equations (2.31) and (2.35) for a pair (e,v) € N x Z.

Proposition 5.7. Let a,b € N with a + b = n. Then [Eaa.av] - [Epapv] = [Ebapv] - [Ead.av] in
K7 (T(nd)py).

Proof. By Equations (2.34) and (2.33), it suffices to check the statement for A,4 4w and Apg pw oI,
alternatively, for A/, d.aw and A d.bw for a,b € N. Any two such elements commute because they
are in the subalgebra of S/ = Sp generated by elements A/, , of fixed slope 7, and such algebra are
commutative; see, for example, [Neg19, Subsection 3.2]. O

For the following proposition, it is convenient to introduce the element

(=)™
(1= g7hnd=1(1 = g;1ynd-1

N n—1
And,nv = (—6]_1) And,nv = [gnd,nv] € KT (T(nd)nv)]F

Proposition 5.8. Let a, b, n € N be such that a + b = n. Then

Aub (AAnd,nv) = Aad,av X Abd,b\h
For d, v, n as above, let O,, and L,, be the following sets of (T x T'(d))-weights:

On={Bj—Bi+y|i>j+1},
Ly ={Bi=Bj+vi|i>j, 1<I<2}UO,.

For a subset I C L, let o be the sum of the corresponding 7' (d)-weights in I, let y; be the sum of the

weights of the corresponding T-weights in I and let g; := ¢g**. Let £(I) be the length of the minimal
Weyl element such that w * (y — o) is dominant or zero. Let

Vi

nd-1 . nd
vi v
Xn = ; (E +1- {Z-‘)(ﬁm - B+ 7 ;ﬁi € M(nd).
The element A4 1y € Kr (X (nd)) from Equation (2.35) can be written as

And,nv = Z (_l)lll_[(l)q;l [FGL(nd) ((Xn - O-I)+) ® OX(nd)]-
IcL,

Recall the framework on Subsection 5.3.1. Consider the composition of the Koszul equivalence (2.22)
and the forget-the-potential map (1.8):

¥ : Kr (T(nd)ny)s — Kr (S(nd)a)z > Kr (ME(X(d), 0))s = Kr (X (nd))s.

Using Equation (2.38) and the computation in [PTa, Lemma 4.3], we have that
\P((_q)nil And,nv) = And,nv .

Remark 5.9. Note that ‘I’(AAnd,nv) equals the shuffle element E 4 considered by Negut in [Negl8,

Equation 2.10], where g, k, d in loc. cit. correspond to ¢~', nd and nv, respectively, in our paper.
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Proof of Proposition 5.8. By the definition of A from Subsection 5.3.1, it suffices to show that

Aap (And,nv) = (Aad,av X Ahd,hv) ® (_q)(_l)abdzqva’b, (5.31)

where we are using Zab instead of Zad’bd. LetI c L,.. Then

nd
Xn—01+p= Zdij(ﬁi -Bj) +§Zﬁi’
=1

i>j
where
3 3 3 3
) <dj; < 373 <djs1,j < 53
Let A be the antidominant cocharacter associated to the partition (ad, bd) of nd. Assume such a weight
is on a wall F(w2) for some w € S,,4. Then there exists a partition E LU C = {1,--- ,nd} with |C| = ad
and

(5.32)

dy = 23forleE,]eCandz>],
—iforieE,jeCandi<j;

see [HLS20, Lemma 3.12], [Pida, Proposition 3.2]. We claim that C = {1, ..., ad}. Otherwise, there
exists 1 < j <adwithje Eand j+1¢€ C.Thendjy ; > —%, and this contradicts Equation (5.32).
Then d;; = —% fori > ad > j. Further, we have

IcQ={Bj-Pi+yli>ad>j,i—-1>j}

and I does not contain any weights 8; — 8; —y; fori > ad > j and | € {1,2}. Define L, and L,
similarly to L, using the weights §; with 1 < i < ad for L, and §; with ad < i < nd for L;,. We can
thus write I = Q U I, U I, where I, C L, and I, C Lj,. Let Z be the set of such sets I C L,,. We have
that (see Equation (5.9))

Aab(Ananv) = Aab Z(—l)ul_f(”q;l [Tormay ((in —01)*) ® Ox(nay] |- (5.33)
el

Write I =Q U, U, with I, c L, and I}, C L. A direct computation shows that

3
Xn—01+p= Z E(,Bi - B;) = (d*ab = 1)y + (xa — o1, + pa) + (xb — 01, + Pb)-

i>ad>j

Let w € S,y be the Weyl element of minimal length such that w * (y,, — o) is dominant, and let
wa € Gyq and wy, € S, be the Weyl elements of minimal length such that w, * (x4, — oy,) and
wp * (yp — oy,) are dominant. Then w = w,w,, therefore

n—01)" =vap+v+Wa—01,) + (xp —0p,)".
We have that |Q| = d?ab — 1, and
|| = d?ab — 1+ |I| + |Ip|, €(I) = (1) + £(Ip).
For m € {a, b,n}, let

Ep = (=)0 (TG 1 nay (Oom = 01,)*) @ Ox(mapy |-
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The coproduct (5.33) thus simplifies to

Aab(En) = (=) (-1)T P g0 (Eq @ Ep).
The conclusion thus follows. ]

Corollary 5.10. The operations m and A endow V with the structure of an N-graded commutative and
cocommutative F-bialgebra.

5.5. Primitive elements

Let R;, C R, be the complement of the trivial partition n. For A = (ni)l.k: 1o let Ty = ®l{‘=1T(n,~d)niv.
Define

P(nd) = kerl () A : K1 (T(nd)w) — ) Kr (Ta) |

AE€R;, AE€R;,

Let P(nd),y p := P(nd),, ®x F. Corollary 5.10 can be rephrased as follows; see the isomorphism (2.43):

Corollary 5.11. Recall the bialgebra Ag := A ®zF from Subsection (2.12). There exists an isomorphism
of bialgebras

O:Ap =V,

en And,nv .

In particular, the F-vector space P(nd)y,, r is one-dimensional.

Proof. Both Ar and V are commutative and cocommutative, and ® is a morphism of algebras by
construction. The coproduct is respected by Proposition 5.8. Finally, @ is an isomorphism of N-graded
vector spaces by [PTa, Theorem 4.12], so the conclusion follows. O

Remark 5.12. The isomorphism ® sends e, to A\nd’nv. Since A\nd,nv is not contained in the integral part
K7 (T(nd),y), it does not restrict to a morphism Ax — K7 (Dy,,). On the other hand, we expect the
existence of a McKay-type functor MF#" ([C39 /S,], 0) — T(nd),, which may induce an isomorphism

Ag > Kr (Da,v).

For a full understanding of K7 (T (nd),, ), we thus need to construct an isomorphism different from the
one in Corollary 5.11. Such an isomorphism will be discussed in [PTb].

Finally, we prove Corollary 1.5:

Corollary 5.13. There is an isomorphism of N-graded F-vector spaces

Prr@T@r (®Sym(P(nd>nv,F)).

d>0 Oosv<d n>1
ged(d,v)=1

Proof. For e € {0, gr}, there are equivalences S7.(d),, - S% (d)a+w- By [PTa, Theorem 1.1], there is
an isomorphism

k
KrOT@r= @ QK (S (5.34)
oy /di<...<vi/dr<1 i=1
di+...+di=d
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Further, there are isomorphisms of N-graded F-vector spaces

k
@ Kr (S(di)v, ) g = ® @ Kr (S(nb)pa)z |- (5.35)

0y /di<...<vi /di<1 i=1 o<u<l1 n>1
p=a/b, ged(a,b)=1

For each coprime (a,b) € Z X N, by Corollary 5.11 and the isomorphism (2.43), we obtain the

isomorphism
P kr S(b)na)z = (X) Sym(P(nb)na,z). (5.36)
n>1 nxl1

We obtain the conclusion by combining the isomorphisms (5.34), (5.35), (5.36). |

We explain how the above isomorphism categorifies Equation (1.6) up to a sign. We use the same
computation as in [PTa, Subsection 4.7]. Let ay := dimg K7 (D7 (d))r. We have that dimg P(nb),q 5 = 1
for any (a, b) with gcd(a,b) = 1 and n € Z,. For each d € Z, there is a bijection

{(n,a,b) €Z3,:d = bn,ged(a,b) = 1,0 < a < b} > {0,1,...,d - 1}

given by (n, a, b) — na. In particular, the number of the elements of the left-hand side equals to d. We
compute

1 1

d

aqq = —_— = _—

dz>;) 0<,11—L rl;! 1-g"" g (1—qd)d
p=a/b, ged(a,b)=1

Compare with the wall-crossing formula for DT invariants (1.6).
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