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Abstract

We consider the epidemic model with subpopulations introduced in Hethcote [5].
It is shown that if the endemic equilibrium exists, then the system is uniformly per-
sistent. Moreover, the endemic equilibrium is globally asymptotically stable under
the assumption of small effective contact rates between different subpopulations.

1. Introduction

The following system of 3/i autonomous ordinary differential equations,
taken from Appendix A of Jacquez, Simon, Koopman, Sattenspiel and Perry
[9], has been widely used in the study of the spread of infectious diseases
(cf. Hethcote [5], Sattenspiel and Simon [13], Lajmanovich and Yorke [10],
Hethcote [6], Post, DeAngelis and Travis [12], and Hethcote and Thieme [7]).
It includes the general SI, SIS, SIR and SIRS models used in mathematical
epidemiology and it takes the form

x\ = b^N, - xt) - *,.£ kuyj + K,Z, ,

for i = 1, . . . , n, where ^,(0), ^(0) and z(.(0) > 0 . Here x( (resp. yi;;
resp. z() denotes the number of susceptible (resp. infected; resp. recovered)
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[2] Global stability of endemic equilibrium 283

individuals in the /th subpopulation. Nt (resp. bt; resp. y,; resp. /c() is
the total size (resp. birth and death rate; resp. recovery rate; resp. rate at
which recovered individuals loses immunity) for the /th subpopulation. Ai;

is the effective contact rate between individuals in the /th subpopulation with
individuals in the yth subpopulation. All the parameters Nt, bt, yt, K •, Xtj

are assumed to be non-negative.
An outstanding unsolved problem in mathematical epidemiology is to de-

termine if the endemic equilibrium of (1.1), i.e. an equilibrium of the form
{x*, y*, z*) where JC* , y*, z* > 0, is globally stable. In this paper we shall
make a contribution to this global stability question by showing that if the
effective contact rates between different subpopulations are small, i.e. A.
(/ 7̂  j) is small, then the endemic equilibrium (if it exists) is globally stable.

The rest of the paper is organised as follows. In Section 2, we set up the
necessary notations and state some known results concerning the behaviour
of solutions of (1.1). We also include new proofs for the existence, unique-
ness and local asymptotic stability of the endemic equilibrium. The ques-
tion of uniform persistence (as introduced in the mathematical population
biology literature) will be considered in Section 3. It is shown that (1.1) is
uniformly persistent if and only if the endemic equilibrium exists. In Section
4, the global stability question will be considered. The endemic equilibrium
is shown to be globally stable under the assumption of small effective contact
rates between different subpopulations.

2. Some known results with new proofs

In this section, we recall some known results concerning (1.1) which were
proved in [6] and [7]. We also present new proofs for the existence, unique-
ness and local asymptotic stability of the endemic equilibrium.

From now on, we shall always make the following assumptions on the
parameters:

(HI) N(>0 for all / ,
(H2) yt > 0 for all i,
(H3) bt + Kt > 0 for all / , and
(H4) ktj > 0 for all /, j and ktj = 0 if and only if Xj( = 0.

We shall only be interested in (1.1) on the positive cone R^" . Clearly, K^1

is positively invariant under (1.1).
Let x = (xl, ... , xn), y = (ylt...,xn), z = ( z , , . . . , zn) and N =

(Nl, ... , Nn). If we set w = x + y + z, then by (1.1) w't = bj(Ni - wt) so
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that w((t) -tiVj as ( -»oo . The set

is positively invariant under (1.1). Since we are only interested in asymptotic
behavior, we can reduce (1.1) to a system of 2« equations

y, = - ( * , + v,)y, + (*, - y, - *,)
J (2.1)

z'i = -(bi + Ki)zi + yiyi.

Due to the reduction from (1.1) to (2.1), we shall only be interested in solu-
tions of (2.1) lying in the set

B = {(y,z)eR2
+":y + z<N}.

The origin Eo = (0, 0) e K2" is an equilibrium for (2.1), called the no-
disease equilibrium. Let

A = : .. : , (2.2)

A = | ; •-. : | , (2.3)

and
(bl+yi) ... 0 \

+ A. (2.4)
0 ... -(bn + yn)J

It follows from Perron-Frobenius theory that the eigenvalue, s(A), of A with
the largest real part is a real number.

THEOREM 2.1 (Hethcote [6]). The set B is positively invariant under (2.1).
If s(A) < 0, Eo is globally asymptotically stable on B. If s(A) > 0, Eo is
unstable on B.

THEOREM 2.2 (Hethcote and Thieme [7]). Assume A is irreducible and s(A)
> 0. Then there exists a unique equilibrium E* = (y*, z*) of(2.\), called the
endemic equilibrium, in the interior B of B. Furthermore, E* (if it exists)
is locally asymptotically stable.

We now give a new proof for Theorem 2.2 by means of the following
theorem. It is a slight modification of Theorem 2.1 in Smith [14] and can be
proved in a similar way.
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THEOREM 2.3. Given a system of ordinary differential equations

M; = F . ( M , , . . . , « „ ) ( / = 1 , . . . , n ) ( 2 . 5 )

where F = (Fl, ... , Fn) is C1 and u - (M, , . . . , un) e R" . Assume

(i) dFJdUj>0 (i?j),
(ii) M > v > 0 implies DF(v) > DF(u), where DF(u) denotes the

derivative (Jacobian) of F at u, and
(iii) given any e > 0, there exists a vector v € R" such that 0 < vl• < e

for all i and F(v) > 0 .

Then (2.5) has at most one positive equilibrium. If there is no positive
equilibrium, every solution is unbounded. If there is a positive equilibrium,
this equilibrium is globally asymptotically stable over R" .

PROOF OF THEOREM 2.2. We need to solve

~(b, + Yjy, + {Nt - y, - z,.) £ Xuyj = 0 (2.6)
j

and
-(6 / + «ci)z|. + W = 0 (2.7)

where yt, z. > 0 and yt + z, < iV(. for all i . From (2.7), zt - -^-y,.
Substituting this into (2.6), we obtain

y, = o. (2.8)

Denote the left-hand side of (2.8) by Ft{y) and consider the system

y \ = F i ( y i , ... , y n ) ( / = 1 , . . . , n ) . (2.9)

We now verify hypotheses (i), (ii) and (iii) in Theorem 2.3 for system (2.9).
First of all,

OF. (bt + y^NjAjj
dyj ~ [{bi + y,) -

where 8{j is the Kronecker delta. Thus (i) is satisfied. Since dFJdy. is de-
creasing with respect to each of its variables yl, ... , yn , (ii) is also satisfied.
As for (iii), since A is an irreducible matrix with non-negative off-diagonal
entries, there exists a positive eigenvector v = (v{, ... , vn) > 0 of A corre-
sponding to the eigenvalue s(A), i.e.

-{b( + yi)vi + Nt 2^X^Vj — s(A)vt for all i.
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Hence, for any number p > 0,

pvi[s(A)Ni-pvi (l + j i j - ) (S(A) + b, + y,.)]

, +pvt (l + jjZ|j-) (5^) + bt

Now (̂̂ 4) > 0 implies Ft{pv) > 0 for /? sufficiently small. Thus (iii) is
also satisfied. Finally, since Fi{yx, ... ,yn) < Ni —yif (2.9) cannot have
unbounded solutions. The existence and uniqueness of the endemic equilib-
rium, E*, for (2.1) now follow immediately from Theorem 2.3. Of course,
one needs to show y* + z* < Nt for all / but that is clear from (2.6).

To show that E* is (locally) asymptotically stable, we first note that by
(2.6)

Let

M =

V
(Nx-y\-z\ -

A.
V 0

Then M is irreducible and has non-negative off-diagonal entries. Moreover,
by (2.10), My* = 0. Thus s(M) < 0. Consequently, there exists a diagonal
matrix C = diag{c,, ... ,cn) with c(. > 0 for all / such that s(CM + MJC)
< 0 . The Jacobian matrix of right hand side of (2.1) at E* is given by

\ r K) '
where / = d i ag{ - E ,^ i , - ?* , • • • > - E , ^ n / J ) > r = diasly! , . . . , yn} and
T̂ = diag{-(Z), + K , ) , . . . , -(ftn + Kn)}. Define 5 = diag{C, D}, where

Z) = diag{c/(, . . . , dn} and rf, = (cjy^ E , ^,/^J > 0 • Then

° 12DK) '
Since

yj,...,-cn}2X y)) ,
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and s(CM + MJC) < 0, therefore SQ + QJS is a stable matrix. A well-
known theorem of Lyapunov (cf. [11]) shows that Q is a stable matrix.
Hence the endemic equilibrium is locally asymptotically stable.

REMARK. In the case when A is reducible, system (2.1) decouples into two or
more (smaller) irreducible subsystems, by (H4). We can then apply Theorem
2.2 to each of these irreducible subsystems. Thus, the endemic equilibrium,
if it exists, must be unique and is locally asymptotically stable. Moreover,
the endemic equilibrium exists if and only if s(Ak) > 0 for all k, where Ak

is the A for the kth irreducible subsystem.
Following immediately from Theorem 2.2, we have

THEOREM 2.4. If A is irreducible and s(A) > 0, then there is a unique positive
equilibrium (x*, y*, z*) of (I.I) and it is locally asymptotically stable.

REMARK. AS in the case for (2.1), the endemic equilibrium for (1.1), if it
exists, is asymptotically stable, irrespective of whether A is irreducible or
not.

3. Uniform persistence

In the last section it was shown that the endemic equilibrium is locally
asymptotically stable when it exists. Hereafter, we shall study the global
asymptotic behaviour of solutions of (2.1) in the positively invariant set B .
In this section, we show that if the endemic equilibrium exists, then the num-
ber of each group (susceptible, infected and removed) in each subpopulation
will remain above a certain positive level. In other words, each group in each
subpopulation persists. If, in addition, A is irreducible and the disease exists
in any subpopulation, then it will spread immediately to all subpopulations.

Let

Then 5 , is positively invariant under (2.1) and is negatively invariant relative
to B. 5 , is referred to as the no-disease set.

Our first result says that if the disease exists in any one of the subpopula-
tions, then it will spread immediately to all subpopulations and remains in
every subpopulation from then on.

THEOREM 3.1. Assume A is irreducible. Let (y(t), z{t)) be a solution of
(2.1) in B. If (y(0), z(0)) e B \ Bx, then (y(t), z(t)) e B for all t> 0,
where B denotes the interior of B.
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Before we prove this theorem, we need the following two lemmas whose
proofs are standard.

LEMMA 3.2. / / (y(0), z(0)) e B, then (y(t), z(t)) eB for all t>0.

LEMMA 3.3. / / (j>(0), z(0)) €dB\B{, then there exists d >0 such that

(y(t), z{t)) e B forallO<t<d. (3.1)

PROOF OF THEOREM 3.1. Let (y(0), z(0)) e B \ Bx . If (y{0), z(0)) € B,
then (y{t), z{t)) e B for t > 0 by Lemma 3.2. If (y(0), z(0)) e dB\Bl, by
Lemma 3.3 there exists d > 0 such that (y(t), z{t)) e B for all 0 < t < S .
Hence (y{t), z(t)) eB for all t > 0.

It is known that if s{A) < 0 then the no-disease equilibrium EQ is the
unique equilibrium and it is globally asymptotically stable on B. When
s(A) > 0, we have the following result.

THEOREM 3.4. If A is irreducible and s{A) > 0, then (2.1) is uniformly
persistent in B with respect to dB. That is, there is an n > 0 such that
liminf^^y^O > n, liminf,^ zt{t) > n, and limsup,^,^*) + zt(t) <
Nt — r i , for all s o l u t i o n ( y ( t ) , z{t)) with i n i t i a l c o n d i t i o n i n B \ B { .

The biological interpretation of Theorem 3.4 is that if the threshold, s(A),
exceeds zero, the disease will not only exist in every subpopulation but in
fact the number of individuals in each group (susceptible, infectious and
removed) will always remain beyond a certain positive level rj.

The proof of Theorem 3.4 depends on a theorem in Hofbauer and So [8]
which we state below for the sake of easy reference. (See also Butler and
Waltman [1] and Garay [4].)

Let Sf be a metric space with metric d, f : 8? -* Sf be continuous and
y c 8? be closed with f(& \ ¥) c Sf \ y . Suppose 8P has a compact
global attractor X and let M be the maximal compact invariant set in y .
Then we have

THEOREM 3.5 (Hofbauer and So [8]). / is uniformly persistent with respect
to y if and only if

1. M is isolated in X, and
2. W\M) c y , where W\M) denotes the stable set of M.

PROOF OF THEOREM 3.4. Let 8? = B, y = dB and / be the time one map
of the flow denned by (2.1). It follows from Theorem 3.1 that f(2P\y) c
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Clearly X = co(B), where co(B) is the w-limit set of B , a global
attractor of 3?. Let M be the maximal compact invariant set in "^.

CLAIM. M — {Eo} .

Suppose not, then there exists (y°, z°) e M and either (i) (y°, z°) G
B \BX or (ii) (y°, z°) e BX\{EO}. Let (y(t), z(t)) be the solution with
initial condition (y°, z°). If (i) holds then (y(t), z(t)) e B, by Theorem
3.1, contradicting M c dB. On the other hand, if (ii) holds then the solution
must take the form

, ,.> , . , ,~ n —(b,+K.)t -(*n+Kn)'N

( y ( t ) , 2 ( 0 ) = ( 0 , . . . , 0 , c , £ > ' " , . . . , c l e y " " ' )

where cx, ... , c are not all zero. Clearly for t sufficiently negative, {y(t),
z(t)) £ B, which contradicts the invariance of M.

In order to show uniform persistence, it suffices to verify conditions 1
and 2 in Theorem 3.5. We will do this by constructing a suitable Lyapunov
function. Let V(y) = vTy where v = (vx, ... ,vn) is a positive eigenvector
of AT corresponding to the eigenvalue s(A). Then there exists a > 0 such
that V(y) > a\\y\\ for all y > 0, where ||y|| = m a x , . ^ ! } . Since s(A) > 0
and the derivative of V along solutions is

V' = s(A)vTy - £ u.(y. + 2,.)

V' > 0 in a neighbourhood Â  of Eo relative to B\BX . It follows that any
solution in N must leave N at a finite time. Consequently, M is isolated
and the stable set of M, WS{M), is equal to B{ .

REMARK. In the case when A is reducible, by using Theorem 3.4 and follow-
ing the same line of reasoning as in the Remark following Theorem 2.2, one
can easily show that if the endemic equilibrium exists, then (2.1) is uniformly
persistent with respect to dB.

THEOREM 3.6. If the endemic equilibrium (x*, y*, z*) exists, then (1.1) is
uniformly persistent, i.e. there exists rj > 0 such that for all i we have,
l im in f^x^O > n, l i m i n f ^ j ^ O > r\, and liminf,_>oo2|.(0 > rj, for
all solutions (x(t), y{t), z{t)) of (I A) with (x(0), y(0), z(0)) e R3

+"\S0,
where

S0 = {(x,y,z)em3
+

n:y = 0}.
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4. Global stability of the endemic equilibrium

[9]

In this section we show that if the effective contact rates between differ-
ent subpopulations are sufficiently small, i.e. ktj {i ^ j) is small, then the
endemic equilibrium E* = {y*, z*) for (2.1) (if it exists) must be globally
stable. Our approach is to construct a Lyapunov function V(y, z) for the
case when A,. • = 0 for all / ^ j
to be a Lyapunov function when A(. •
identical to zero.

Let Ut = y( - y* -

and show that this function V continues
(/ / j) is small but not neccessarily

t and W. = (z. - z*f . The functions Ui

have been used by many authors (cf. So [15] and Freedman and So [3]). Since

*/ = N-y-zi.*; = *ft-yl-<' -(y,+^)+^H+(*;/y;)i:^ VJ= °
and —(bi + Kt)z* + yty* = 0, we have (after some simplications)

and
W[ = 2(z,. - z*)[-{bt + K,)(Z, - zj) + y,(j;, - y')].

Define V = £,c,£/(. + £ , JF,, where c, - 2y,/A,, (assuming A,, > 0 for
all i). Then F > 0 and F = 0 if and only if (y, z) = ( / , z*). Moreover,
(after some simplications)

= - E - 2

*u

.x. X,
(4.1)

1. k{. = 0 for all i ;". System (2.1) decouples into n subsystems.
The zth subsystem involves only yt and z ( . E* exists if and only if

kiiNi > y, + 6,. for all i. (4.2)

In that case,

..* _

From (4.1),

F ' = - 2

zi =

- 2

so that F ' < 0 and F ' = 0 if and only if (j;, z) = (y*, z*). Hence, F is a
Lyapunov function for (2.1) and E* is globally stable over B.
Case 2. k(j (i / j) is small. We regard k.. > 0 (/ = 1 , . . . , « ) as fixed.
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THEOREM 4.1. Assume (4.2) holds. Then provided Xtj > 0 (i ^ j) are
sufficiently small and (H4) is satisfied, the endemic equilibrium E* is globally
stable over B.

Before we present the proof of Theorem 4.1, we need the following propo-
sition whose proof was inspired by an argument in Garay [4] as well as a
discussion with Josef Hofbauer of University of Vienna and James Selgrade
of North Carolina State University.

PROPOSITION 4.2. Let n : R+ x X —> X be a family of continuous semiflow
on a compact metric space X with metric d, where n e P and P is a metric
space with metric dp. Assume n : P xR+x X —* X defined by n(n, t, x) =
n(t,x) is continuous. Let {/ij be a sequence in P converging to some
fio€ P, as i tends to oo. If corresponding to each fii (i = 1, 2, . . . ) , there
is a compact subset sft of X which is invariant and chain-transitive under
n and s/t converges to some subset sf of X under the Hausdorff metric
dH on X as i tends to oo, then the limiting set srf is compact, invariant
and chain-transitive under nn .

fo

PROOF. The verification of the compactness and n -invariance of sf is
fo

straightforward. To show that srf is chain-transitive under n^ , let y, z e
s/ and let e, T > 0 be given. We need to show there is a (e, T) chain
from x to y. Since n is continuous and X is compact, there exists 0 <
5 < e/3 such that din^ (x,, t), n^ (x2, t)) < e/3 whenever d{x{, x2) < S ,
dp{nt, nQ) < 8 and t e [0, 2T]. Let / be such that dp(nt, n0) < 8 and
djji^,^) < 8. Then there exist p, q 6 sfi such that d(p, y) < 8 and
d{q, z) < 8. Since s^i is chain transitive under nu , there is a (e/3, T)
chain from p to q. That is, there exist pQ, ... , pn+l e ^ with Po = P
and pn+l =q and t0, . . . , tn > T such that din^tj, pj), pj+l) < e/3 for
all j = 1 , . . . , « . Without loss, we can assume /. < TT for all j . Since
dfjisf; ,sf) <8, there exist y0, ... , yn+1 e $f with yQ = y and yn+l = z
s u c h t h a t d(yj, o ) < 8 f o r all j = 1 , . . . , « + 1 . N o w ,

d(n,o{yj), yJ+l) < din^yj), n^)) + d{nMi(pj), pJ+l)

so that yQ, . . . , yn+i and tQ, ... , tn is a (e, T) chain in A from y to z .

PROOF OF THEOREM 4.1. From (4.2) and Theorem 2.2, we know that E*
exists and is asymptotically stable, provided X^ = 0 for all i ^ j . By
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implicit function theorem, E* continues to exist for sufficiently small A, > 0

According to (4.1), after some simplifications,

k + ^ ^ • M £ * t o
- 2j>, + K,.)(Z,. -z;f - £ j i ^ ^ 1 ( y i - * ) ( * , - O (4.3)

y

Therefore, V' < 0 and V' = 0 if and only if (y,z) = (y*, z*), provided the
associated quadratic form involving (>>, —y\), ... , (yn —y*n), {zx - z*), ...
and (zn — z*n) is negatively definite.

CLAIM. There exists r\ > 0 such that l iminf^^y^f) > tj for all / , and

for all solutions (y(t), z(t)) of (2.1) with (y(0), z(0)) e RJ" where Ay > 0
(/ # y) are sufficiently small.

Suppose not, then there exists a sequence of parameters {fik}^Lx where

Hk = (A*),w and a sequence of solutions {(yk(t), zfe(f))}^l, of (2.1) cor-

responding to ,u* with (yk(0), zk(0)) € 5 such that l im in f^^y f^ ) -+ 0

as k —> oo, for some i. Let stfk = w((yfc(0), zfe(0))), the w-limit set of
the point (yk(0), zk{0)) under (2.1) corresponding to fik • By Theorem 3.4,
s/k c B for all k > 1. By going to a subsequence if necessary, we can as-
sume sfk converges to some subset srf of X under the HausdrofF metric as
k —> oo. By Proposition 4.2, sf is a compact subset of 5 and is invariant
and chain-transitive under (2.1) with A, • = 0 for all i ^ j . We now show
that stf = {Eo}. Since d(sfk, dB) -> 0, C?(J/ , dB) = 0. On the other
hand, since E* is globally stable over B for the case k^ = 0 (i ^ j) and
j / , being chain-transitive, cannot contain a non-trivial attractor, therefore
stf cannot contain a point in B. Thus sf C dB. Similarly, sf cannot
contain any point in dB except Eo. Hence stf = {£„} and s/k converges
to Eo as k —> oo. However, if y(., zi < e/2, by (2.1) we have
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By assumption (4.2), N^^ - bt - K, - eXu is positive for sufficiently small e
and thus yt > 0. Since s/k c B, this shows that it is impossible to have s/k

converging to Eo as k —» oo. This contradiction establishes the claim.
By the above claim, we can assume (without loss of generality) that the

coefficient in the third summation of (4.3), i.e.

is bounded. Moreover, it tends to 0 as Xtj -» 0 (/ ^ j). On the other
hand, it is clear that the coefficient in the fourth summation of (4.3), i.e.
(2yi/Xii){x*/y*)Xij , also tends to 0 as Xtj -> 0 (i ^ j). Thus, provided Xtj

(i T£ j) is sufficiently small, the associated quadratic form associated with
(4.3) is negatively definite and thus V is a Lyapunov function.

REMARK. Theorem 4.1 is a perturbation result, and as such is not surprising.
However, since a global conclusion is asserted, it does not follow directly
from the usual perturbation theorems. As an example, we consider

x =f{x):=x\\-x)

and
x = gAx) := x(x - e){l - x).

Then the equilibrium x = 1 is globally stable (over R+) for / but not
globally
interval.
globally stable for g . Moreover, g is C°-close to / on any compact

THEOREM 4.3. If the endemic equilibrium E* for (2.1) is globally stable over
B, then the endemic equilibrium (x*, y*, z*) for (1.1) is globally stable over

PROOF. Let us first assume A is irreducible. Given any solution (x(t), y(t),
z(t)) of (1.1) with (x(0),y(0), z(0)) <= ftf, its w-limit set ft must be
contained in S, since x{t) +y(t) + z(t) -> N as t -» oo. We will show that
ft = { ( * ' , / , z*)}.

CLAIM, ft ^ {(N, 0,0)}. Suppose not, then x(t) -»• N and y(t) - » 0 a s
t —» oo. Let V{y) = vTy be the Lyapunov function used in the proof of
Theorem 2.4. Then

V' = s(A)vTy - £ «.(^ - x,) £ A,, .y..
/ j
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Since y{t) > 0 and y(t) / 0 for all t > 0, then V' > 0 for sufficiently large
t. This contradicts y{t) —* 0 as ?-»oo.

Hence, £2 must contain a point (JC° , y°, z°) e 5 with either (i) y° — 0 or
(ii) y° > 0 . If (i) holds, since Cl is invariant, it contains the negative orbit
through (x°, y°, z°). However, this orbit is unbounded and this contradicts
the compactness of Q. Thus (i) is impossible. On the other hand, if (ii)
holds, since (N, 0, 0) is globally stable over S \ Sl, where

Sl={(x,y,z)eRln:y = 0},

then (x*, / , z ' ) e Q . However, since Q is chain-transitive and (x*, y*, z*)
is asymptotically stable, we have Q = {{x*, y*, z*)} , as desired.

In the case when A is reducible, all we need is to apply the above argument
to each of the irreducible subsystems as was discussed in the remark following
the proof of Theorem 2.2.

REMARK. Assume (4.2) holds. Then provided A. > 0 (i ^ j) are sufficiently
small and (H4) is satisfied, the endemic equilibrium (x*, y*, z*) for (1.1)
is globally stable over R^1 \ 5 0 .
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