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Abstract. Let

G=SL(2,R), T = SL(2,Z), u, ' l

(where t e R) and let fi. be the G-invariant probability measure on G/Y. We show
that if x is a non-periodic point of the flow given by the (w,)-action on G/Y then
the («,)-orbit of x is uniformly distributed with respect to JU. ; that is, if SI is an open
subset whose boundary has zero measure, and / is the Lebesque measure on R
then, as T -> oo, T~ll{0 < t < T\u,x e SI} converges to ̂  (SI).

Let G = SL (2, R), the special linear group of 2 x 2 matrices, and let Y = SL (2, Z)
be the subgroup consisting of integral matrices in G. The homogeneous space G/Y
carries a unique G-invariant probability measure which we shall denote by fi. Let
(«,) be the one-parameter subgroup of G denned by u, = (I {) for all t e R. Let P
be the subgroup of G consisting of all upper triangular matrices in G.

Consider the action of (u,) on G/T. It is well-known that for any g e P F the
(«,)-orbit of gT in G/T is periodic. Further, if giPT then the («,)-orbit of gT is
dense in G/F. The object of this paper is to show that each of these dense orbits
is uniformly distributed on G/Y with respect to n; that is, if g&PY and SI is an
open subset of G/Y whose boundary has zero /x-measure then as T -* oo,

xn(u,gY)dt

converges to fi (SI) (xa is the characteristic function of Si). Similarly, we prove that
the orbit under (iterates of) u = «i of g&PY is also uniformly distributed in the
sense that for SI as above

1 «-i
- I Xniu'gY)
n ;=o

converges to /i(ft) as n -»oo (cf. theorem 6.1). It may be noted that these results
extend in a natural way to any subgroup of finite index in Y.

In § 6 we also discuss the dynamical significance of the result and an application
to number theory.

I would like to thank M. Ram Murty and S. Raghavan for helpful discussions.
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1. Preliminaries
Let R2 be the two-dimensional Euclidean space. We denote by {eu e2} the standard
basis of R2. Let ( , ) denote the inner product on Uz with a, e2 as an orthonormal
basis and let || • || be the corresponding norm on R2. Also let m be the Lebesgue
measure such that

A lattice A in U2 is a discrete co-compact subgroup (that is, R2/A is compact).
Given a lattice A any measurable subset F such that {A+F}AeA is a partition of
R2 (a fundamental domain) is of the same measure; the common value is called
the determinant of A and shall be denoted by d(A). We shall denote by if the set
of all lattices A in R2 such that d{A) = 1. We note that the lattice Ao = Z2 consisting
of elements with integral coordinates belongs to if.

In the sequel, we shall denote by G the (topological) group SL (2, R) of real 2x2
matrices of determinant 1. The natural action of G on R2 induces a G-action on
if. It is straightforward to verify that this G-action on if is transitive and that the
isotropy subgroup of the lattice Ao is precisely the subgroup SL (2, Z) consisting
of all integral matrices in G = SL (2, R). We shall write T for SL (2, Z). The map
associating gAo to gT for all g e G defines a canonical 1-1 correspondence of G/T
onto if. In the sequel we shall often identify if with G/T via the above correspon-
dence. In particular, we shall consider if to be equipped with the topology arising
from the identification with G/T, the latter having the topology as a homogeneous
space of G = SL (2, R).

Let A be a lattice in R2. A non-zero element A of A is said to be primitive in A
if A does not contain any element of the form t\ where 0 < t < 1. We shall denote
the set of all primitive elements of a lattice A by 0>(A). We need the following
lemma which is well known and easy to prove.

(1.1) LEMMA. Let Aeif. A sequence {Afc} in if converges to A in if if and only if
for all e > 0 and M>0 there exists k0 such that for all k > k0 the following assertions
hold: (a) for any Ae?(A) satisfying ||A||<A/ there exists xe^(Ak) such that
\\x - A || < e and (b) for any x' e 9 (Ak) satisfying \\x '|| < M there exists A' € S9 (A) such
that\\x'-\'\\<e.

For any subset E of R2 we put

W(E) = {A 6 <£\9> (A) n E is non-empty}.

(1.2) LEMMA. If E is an open subset of R2 then W(E) is open in if. If E is a closed
bounded subset of R2 then W(E) is closed. If E is a bounded subset of R2 such that
0 is not a limit point of E then W(E) is a bounded subset of SB.

Proof. The first assertion is obvious. Next let E be a closed bounded subset of R2.
Let {Ak} be a sequence in W(E) converging to a lattice A in if. By lemma 1.1 for
any e >0 , ^(A) contains an element within distance e from some element of E.
Since ^(A) is discrete and E is compact this implies that ^(A)nJB' must be
non-empty. Hence Ae W{E), thus proving the second assertion. The last assertion
follows from the well-known Mahler criterion (cf. [8, corollary 10.9]). •
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(1.3) LEMMA. Let C be a closed convex subset of U2 containing 0. Suppose that
m(C)<\.If Aegand

then ̂ (A) n C is contained in {±A}; that is, ^(A) n C does not contain two linearly
independent elements.

Proof. Let Aeif and A,A'e0>(A)nC and suppose that A'#±A. Then the
parallelogram formed by 0, A, A' and A +A' contains a fundamental domain for A
and consequently its area must be at least 1. Hence the area of the triangle formed
by 0, A and A' must be at least \. But clearly the triangle is contained in C and
consequently its area is less than \, which is a contradiction. Hence A' = ±A. •

For any subset E of U2 let C(E) denote the smallest closed convex subset containing
E and {0}. Also for any subset fl either of U2 or of if let dfl denote the (topological)
boundary of O in the respective space.

(1.4) PROPOSITION. Let E be a bounded open subset of U2 such that m{C{E))<\.
Suppose that —E and dE are disjoint. Then

d{W(E))=W(dE).

Proof. Let Ae W(dE). There exists

Let {Afc} be a sequence in E converging to A. It is easy to see that one can construct
a sequence Afc in if converging to A and such that

Hence A is contained in the closure of W(E) which in view of lemma 1.2 coincides
with

By lemma 1.3 ? (A)nC(£) is contained in {±A}. Since EcC(E) and neither A
nor -A can be contained in E we deduce that 0>(A) nE is empty. Thus A£ W(E).
Consequently Aed(W(E)). Thus

Next let Aed(W(E)). Since by lemma 1.2 W(£ua£) is closed,

AeW{EudE).

Thus 3P(A) n (E u dE) is non-empty. Since by lemma 1.2 W(E) is open, W(E) and
d(W(E)) are disjoint. Hence A&W(E) and consequently ^(A^JS1 is empty.
Therefore i?(A)ndE is non-empty. Hence Ae W(dE), which shows that

= d(W(E)). •

(1.5) PROPOSITION. Let {Ek}T be a sequence of subsets of U2 such that
for all k. Suppose that Ex is bounded. Then
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Proof. Evidently W((~)°? Ek) is contained in f~)? W{Ek). Now let Aei? be such that
A 6 W(Ek) for all keH\ that is, f ( A ) n £ k is non-empty for all k. Since Ex is
bounded and 0»(A) is discrete the set &(A)nEi is finite. Therefore

cannot be empty unless & (A) n Ek is empty for all large k. Since the latter contradicts
our supposition

must be non-empty, i.e.

2. Invariant measures of the horocycle flow
Let the notations be as in § 1. Further, let («,) be the one-parameter subgroup of
G defined by

'1 t\

Also let P be the subgroup of G consisting of all upper triangular matrices. The
following lemma describes the set of periodic points of the flow defined by the
action of (u,) on G/T, on the left.

(2.1) LEMMA. The element gYe G/Y, where gePY^G, is a periodic point of the
flow defined by the action of (u,) on G/Y.

Proof. Since «i e Y, as an element of G/Y, Y is a periodic point of the flow. Next
let g = py where p e P and y eY. Then for any t we have

p y p p p p ) p

where a is a certain non-zero real number depending only on p. This shows that
Y = gY, where j3 = \a \~l. Thus gF is a periodic point whenever g e PY. •

Conversely, it is known that for any g£PY the orbit of gYeG/Y under the action
of (u,) is dense in G/Y and in particular not periodic (cf. [4] for a more general
result). In the sequel, we shall however not need this information; we show
independently that the orbits in question are uniformly distributed which is clearly
a stronger assertion.

Recall the identification of G/Y with i? as in § 1. It is straightforward to verify
that under the identification the set

corresponds to the subset J5?o defined by

There exists A S A, A(2.2) ^ 0 | A e ^
I such that w,A = A for all t e
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That is, if 0 is the set of those lattices which have some non-zero element common
with the 'x-axis', the latter being the set of points fixed by any ut, t # 0.

Lemma 2.1 may thus be restated as follows.

(2.3) LEMMA. Any Aeif0 is a periodic point for the action of (u,) on if.

The proof of uniform distribution depends on the following classification of
(«,)-invariant measures.

(2.4) THEOREM. Let v be a (u,)-invariant ergodic measure on G/Y. Then either TT

is G-invariant or it is a (u,)-invariant measure supported on the periodic orbit of an
element gY where gePY. If IT is a (u,)-invariant measure such that ir(PY/Y) = 0
then IT is G-invariant.

The first part of the assertion is simply the particular case of theorem 6.1 in [3]
for G = SL (2, R), and F = SL (2, Z); it may be noted in this connection that in our
present special case PqY = PY for any rational matrix q in G = SL (2, R). The second
part of the assertion may be deduced from the first, using theorem 4.1 in [2] and
ergodic decomposition of a finite (u,)-invariant measure as a direct integral of
ergodic invariant measures. We also note that a proof of theorem 2.4 for a finite
(«,)-invariant (actually this is enough for the purpose of the present paper) is also
essentially contained in [1]. •

(2.5) THEOREM. Let IT be a (u,)-invariant measure on & such that ir(ifo) = 0 then
7T is G-invariant.

Proof. This follows from theorem 2.4 and the fact that under the identification of
G/Y with if the set PY corresponds to if0. •

3. Time averages of continuous functions
Let X be the one-point compactification of if, the extra point being denoted by
oo. The action of (w,) on if extends to a continuous flow on X with oo as a fixed
point. We shall denote the flow by (<£,); thus for all t e U <£,(A) = u,A for all Aeif
and 0((oo) = oo. Also in the sequel the notation W(E), E <=R2 as in §1, shall be
considered modified to include oo in W(E) whenever 0 is a limit point of E. The
main part of the proof of uniform distribution lies in proving the following.

(3.1) THEOREM. Let A e i f - i f o
c X . Then for any continuous function f on X,

as s-»oo

s Jo Jx

where fx is the probability measure on X such that ix ({oo}) = 0 and the restriction to
i? is the G-invariant probability measure on if.

The proof of the theorem is divided into several steps.

(3.2) LEMMA. Let {cr,} be a sequence of probability measures on a compact second
countable space Z, converging in the weak * topology to a probability measure <r. Let
Cl be an open subset of Z and let ail be its boundary. Suppose that ar(d£l) = 0. Then
as j -* oo, o-y(n) converges to tr(fl).
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Proof. Recall that convergence of cr; to a in weak* topology means that for any
continuous function / on Z, \fda-j converges to \fd<r. Let e >0 be arbitrary. By
inner regularity of cr there exists a continuous function / such that

0</(z)<=l forallzeZ, f(z) = O fo ra l l zeZ- f t

and

Thus

<T(Q.)< I fdcr + e

= lim f d(Tj + e

< lim inf o-y(ft)+ e.

Since e > 0 is arbitrary we get that

cr(ft) <lim info-, (ft).
j-»ao

Since this is true for

in the place of ft and o-(dft) = 0 we have

o-(ft) = 1 -cr(n') a 1 -lim inf o-y(ft')
, • - •00

>limsup(l-oy(n'))
/-»oo

>limsupo-,(n).

The last inequality follows from the fact that for any ;',
(7, (H) + 07 (ft') = cry (ft U ft') < 1.

Combining the two inequalities for cr(ft) we deduce the assertion in the lemma. •

Now for any s > 0 let ns be the probability measure on X such that for any
continuous function / on X

(3.3) \ fdir.=-\ f(4>,A)dt
ix s Jo

where A is a fixed lattice in SE-££0, as in the statement of theorem 3.1. Recall that
the space M(X) of probability measures on X, equipped with weak* topology, is
a compact second countable space. Thus for any / e N,

Lj = {irs|s>/}

(bar overhead denotes closure with respect to the weak* topology) is a compact
subset of M(X). Further Ls is a decreasing sequence and consequently L = C] Lj is
a non-empty compact subset of M(X).
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Arguing as in the standard proof of the Markov-Kakutani theorem it is easy to
verify that each TT in L is a (<£,)-invariant measure on X. In what follows, through
a sequence of steps we shall show that L consists of only one element; namely /u.
as in the statement of theorem 3.1. The theorem readily follows once the last
assertion is proved.

Now let 7T be an arbitrarily chosen element of L. Then evidently there exists an
increasing sequence {$,} of positive real numbers such that Sj -* oo and TTS, -» TT in the
weak* topology. In the sequel the sequence {s,} shall be considered fixed.

In the sequel, we shall use the following notation. Let (ei) be the subspace of
R2 generated by the basis vector e\\ i.e. the 'x-axis'. By an interval / on (ei) we
mean a set of the form

where a, b e U and a ̂  b; in this case b - a is called the length of / and is denoted
by /(/). For any interval

and 8 > 0 we put

B(I, 8) = {aei + (3e2\a-8<a<b+8 and|/3|<5},

Q(I, 8) = {x € U2\x£B{I, 8) and u,x eB(1,8) for some t >0},

R{I,8) = U2-{B{I,8)VJQ{I,8)).

For any set S in R2 we shall denote by xs the characteristic function of SonR 2 .
For any x e K2 we shall denote by g(x) and TJ(X) the e\ and e2 coordinates of x,
respectively; that is,

(3.4) LEMMA. Let I be an interval on (e^) and 8 > 0. Let {xk} be a sequence in
and {tk} be a sequence in U such that tk -» oo as k -* oo. Suppose that

u,k(xk)eB(I,8) for all k.
Then

tk\v(xk)\^>°o ask->oo.

Proof. Let a, b e U be such that

I ={aei\a < a <6}.

Since u,k(xk) e B(I, 8) we have

(3.5) a-8<£(xk) + tkt1(xk)<b+8 and

Hence to prove the lemma clearly it is enough to prove that |£(xk)|-»oo as k ->oo.
Suppose this is false; then passing to a subsequence if necessary, we may assume
that |f(*fc)| is bounded, say \g(xk)\<M for all A;. Then by (3.5), |?fcTj(xfc)| must also
be bounded and since (k->oowe have |i?(xk)| -» 0. Both coordinates being bounded,
{x/t} must be contained in a compact subset of U2. Since {xk, keN}is also contained
in the discrete set 0*(A) it must be finite. Since 0*(A) does not contain any element
on (e)\, in particular this contradicts the fact that |Tj(xfc)|-»0. Hence the lemma is
proved. •

https://doi.org/10.1017/S0143385700001474 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700001474


146 5. G. Dani

(3.6) LEMMA. For any interval I on (et) there exists e (/) > 0 such that the following
assertions hold:

(i) if 0 £ / then 0 £ S (/, 2e (/)),
(ii) m{C(B(J, e(/))))<i

(iii) /or any A e if, 0> (A) n B (/, e (/)) c {±x} /or some x.

Proof. Existence of e (I) satisfying conditions (i) and (ii) is obvious. Condition (iii)
follows from condition (ii) and lemma 1.3. •

An interval / on (ei) is said to be admissible if either

where 0 < a <o o r / = {0}. We shall denote by si the set of all admissible intervals
on (e%).

(3.7) LEMMA. Let Ie$4 and let e ( / )>0 be as in lemma 3.6. Then the following
conditions hold:

(iv) if I * {0} then for any A £ if,

0> (A) nf i (/,
contains at most one element,

(v) ifl = {0} then for any 0 < 8 < e (I),

is either empty or equals {±x} for some x.

Proof. Condition (iv) follows from conditions (i) and (iii) as in lemma 3.6. Condition
(v) follows from condition (ii) as in lemma 3.6 and the fact that

is symmetric (contains the negative of any of its elements). •

(3.8) LEMMA. Let I e M and e ( / )>0 be as in lemma 3.6. Then there exists a set
D(I) of positive real numbers such that the following conditions hold:

(vi) D(I)<=[0, £(/)] and [0, e(/)]-/?(/) is countable,
(vii) for any SeD(I), v(dW(B(I,S))) = 0. (Note that though oo may belong to

W(B(I, 8)) it is never a boundary point of the set.)

Proof. Observe that the sets

are pairwise disjoint. Further, for any I esi and any 8i<82<e(I), dB(I, Si) is also
disjoint from -SB (I, 82), the set of negatives. Hence by condition (ii) as in lemma
3.6 and lemma 1.3 the sets

{W(dB(I,8))}0<B<tlI)

are pairwise disjoint. Put

D(I) = {8\0<8<e(I) and ir(W(dB(1,8))) = 0}.

Since tr is a probability measure there could be only countably many mutually
disjoint sets of positive 7r-measure. Hence in view of the above disjomtness asser-
tion, condition (vi) must hold. Again, for any 8 clearly B(I,8) and -dB(I,8) are
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disjoint. Hence by condition (ii) in lemma 3.6 and proposition 1.4 we have

dW(B(I,8)) = W(dB(I,8)).

Hence for all 8 e D(I) condition (vii) holds. D

(3.9) PROPOSITION. Let I<ES£ and 8eD(I). Put B=B{I,8), Q = Q{I,8) and
R = R(I, 8). Let XB,XQ

 a^d XR be the characteristic functions of B, Q and R
respectively on U2. Let TI be the function on U2 - (e i) defined by TI (X ) = 1 if I ^ {0} and

Then

I I
' -*0 0 Sj xe3>(A)

Proof. By condition (vii) in lemma 3.8 and lemma 3.2 we have

(3.10) ir(W(B)) = lim 7rs(W(B)) = lim -l(E,)

where / is the standard Lebesgue measure on IR and

Et = {t|0 < t s Sj and u, A € W(B)}

for a l l /€ N. For any x e0>(A) a n d / e N put

E) = {t|0<r <sy and M,X eB} .

From the definition of W(B) we see that for each / € N,

E,= U E).
If / # {0} then by condition (iv) in lemma 3.7 for each / the sets

{E*}xeg>(A)

are pairwise disjoint. If / = {0} then by condition (v) in lemma 3.7 for each / the sets

are pairwise disjoint and cover Es. Since TI(JC) = 1 if / ^ {0}, in either case we have

(3.1D l(E,)= I T,(x)HEf)

for all / E N.
It is straightforward to verify, preferably by drawing a picture of the (u,) orbits

on R2, that for any

and / e M, I (El) satisfies the following conditions:

f1! ifxeOn(«_,7?)
(3.12)

= 0 if xe{Qnu-SjQ}uR

and

(3.13) 0 ^ / ( £ I
J

X ) < ( / ( / ) + 25)|TJ(X)~1| if x G S U ( « _ S J S ) .

Those enumerated in (3.12) and (3.13) indeed cover all the possibilities for x e U2.
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Substituting (3.11) and (3.12) in (3.10) we get

lim-\ I rI(x)Xa(x)XR(u,lx)(l(I)

+ I
Bu«_,.B)

The proposition would therefore be proved if we show that as / -» oo

-I I r/W/(£,")U.

Since the contribution from the elements in ^>(A)nB is independent of / and
s;-»oo, in view of (3.13) it is enough to prove the convergence to 0 as/-»oo of the
sequence {0,} defined by

(3.14) e,=- I rI(x)XB(uSix)\r1(x)-1\.
S 9

By conditions (iv) and (v) in lemma 3.7, for any / eM there exists at most one
element x e 0>(A) such that TI(X)^0 and uSjx &B. Let Z be the set of / for which
such an element does exist and for k e Z let xk e 0*(A) be the unique element such
that T/ (xk) = 1 and uSkXk e B. Then clearly

di = \sjr1(xj)\-
1 if jeZ

and dj = 0 otherwise. Thus if Z is bounded 6/ is indeed eventually 0. If Z is
unbounded, by lemma 3.4 0k -* 0 as k -» oo in Z. In either case 0, -» 0 as / -* oo, thus
proving the proposition. D

(3.15) PROPOSITION. Let Iu I2&sdbe such that

Then

Proof. Since /(/i) = /(/2)>0 there exists an admissible interval / o e ^ such that
/iu/2<=/0. Put

D=D(I1)nD(I2)n[0,e(Io)]
and let SeD. For r = 0, 1 and 2 let Bt =B{h 8), O, = (?(/„ 6) and i?, =R(Ih S). By
proposition 3.9 we have for i = 1,2,

(3.16) ir{w{Bl)) = iimk±^l i XQt(x)XRl(u,lx)\r,(x)-1\.

It is straightforward to verify that the sets QiAQ2 and RiAR2 (where A stands
for symmetric difference of sets) are contained in Bo. Hence for any x e^(A) and
/ 6 N we have

\X
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Thus from (3.16) and (3.17) we get that

(3.18)
i-"** Sj xe3>(A)

Evidently

- X \V(XT1\XBO(X)-+0 as j-KX>.
Sj xe

On the other hand since 8 < e (70) the same argument as was used to show that the
sequence {#,} in (3.14) converges to 0, now shows that

- I h(jc)"1|ArBoKx)^0 as/ ->oo.
Sj xe#(A)

Hence (3.18) implies that

ir(W{Bi)) = ir(W(B2)).
That is,

ir(W(B(Ju 8))) = TT(W(B(I2, 8))) for all 8eD.

Evidently D contains all but countably many positive numbers in some neighbour-
hood of 0. In particular, there exists a decreasing sequence {8k} in D such that
8k -» 0. Since for i = 1 and 2,

W(I,)=r\ W{B(I,,Sk))

in view of proposition 1.5, we get

(3.19) COROLLARY. 7r(ifo) = 0.

Proof. Since if0 may be expressed as a countable union of sets of the form W(I),
where I e si and / ^ {0} it is enough to prove that n(W(I)) = 0 for all I e si, I ¥= {0}.
Let / e si and / # {0} and let c = 1(1). For each k e N put

Ik={v+2kce1\vel}.

Then for all k e N, Ik esi and l(Ik) = /(/) = c. Further {/t}teN are pairwise disjoint.
Evidently this implies that {W{Ik)}keN are pairwise disjoint subsets of =S?0- But by
proposition 3.15 for any keN,

Since TT is a probability measure this is not possible unless ir(W(I)) = 0. •

(3.20) PROPOSITION. TT({OO}) = 0.

Proof. Let h = {0} € si. By the Mahler criterion (cf. [8, corollary 10.9])

{W(B(IuS))}6>o

is a fundamental system of neighbourhoods of oo in X. Hence for any decreasing
sequence {£&} such that 8k -» 0,
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Let p = ae\ where a > 0 and let I2 = {p}. Let Io be the interval

{aei|0<a <a}.

Let

D=D(I1)nD(I2)n[0,e(Ioy]

and 5 € D. For / = 0, 1 and 2 let Bt=B(/,-, S),Qt = Q(/,-, 5) and /? f = R (Ih S). Let T
be the function on R2-(ei> denned by T(X) = 1 if ti{x)>0 and T(JC) = O if
By proposition 3.9 we have

(3.21) 7r(W(Bl)) = lim—
>-°° Sj

and

(3.22) 7r(W(S2))>liminf— I T(X)XQ2(X)XR2(U,IX)\V(XV1\.
i-*00 Sj xe3>(A)

Clearly Q1AQ2 and Ri AR2 are contained in Bo. Hence for x e 0>(A) and jeNv/e
have

\XQ1(X)XR1{USIX)-XQ2(X)XR2(USIX)\<XBO(X)+XBO(USIX).

Since S <e(/0), as in the proofs of propositions 3.9 and 3.15 using lemma 3.4 we
can deduce from the above data that as / -* 00

1
(3.23) r(x)\r)(x) i\ixQi( -*0.

In view of (3.23) the relations (3.21) and (3.22) imply that

Tr(mBi))*ir(W(B2)).

That is,

ir(W(B(Ilt S)))^ir{W(B(I2, 8)))

for any SeD. Applying this to a sequence {Sk} in D such that <5fc-*0 and using
lemma 3.2 we deduce that

But since W(I2) <= Zo, by corollary 3.19 ir{W(I2)) = 0. Hence TT({OO}) = 0. D

Proof of theorem 3.1. In view of corollary 3.19, proposition 3.20 and theorem 2.5,
no measure other than the measure /u. as in the statement of theorem 3.1 belongs
to L. Since L is non-empty we get L ={/*}. Thus for any sequence {s>} such that
s,-»oo the measures irSj denned by (3.3) converge to /A in the weak* topology.
Therefore for any continuous function on X the contention of the theorem holds. •

4. Invariant measures of horocycle transformations
As before let G = SL (2, U), T = SL (2, Z) and P be the subgroup consisting of all
upper triangular matrices in G. Let w e G be the matrix (0 1). The aim of this
section is to prove the following analogue of theorem 2.4 for the cyclic subgroup
generated by u.
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(4.1) THEOREM. Let a be a measure on G/T which is invariant under the action
(on the left) of u on G/T. Suppose that a{PT/T) = 0. Then TT is G-invariant.

There is a well-known duality, introduced by H. Furstenberg [5], which (for the
case at hand) gives a natural 1-1 correspondence between H-invariant measures
on G/T and F-invariant measures on G/H, where H is any closed unimodular
subgroup of G (cf. [3, § 1] for details regarding the correspondence). Because of
the duality, to prove theorem 4.1 it is enough to prove the following.

(4.2) THEOREM. Let a be a Y'-invariant measure on G/U where U is the cyclic
subgroup generated by u. Suppose that o-(TP/U) = 0. Then a is G-invariant.

Proof. To begin with we note that in view of the duality as mentioned above, now
for the subgroup

H(i Ol-l
for H, the latter part of theorem 2.4 implies the following: If p is a F-invariant
measure on G/N and p(TP/N) = 0 then p is G-invariant. We shall now deduce
theorem 4.2 from this.

Let Cc be the space of non-negative continuous functions on N having compact
support. For <f> e C^ let o> be the measure on G/U defined by

= f
JN

for any Borel set E, where dn is a fixed Haar measure on N and for n e N,

ilrn:G/U->G/U

is the homeomorphism defined by

for all geG. (Since U is normal in N this is well defined.)
It is well known (cf. [7, theorem 7]) that the F-action on G/U is ergodic with

respect to the G-invariant measure A (the latter is unique up to a scalar multiple).
Under this condition and with the above notation proposition 2.5 in [10] asserts
the following: If o-̂  is absolutely continuous with respect to A for all tf> e Ct then
<r is a multiple of A, that is o- is G-invariant. Thus we only need to check that each
a<t,, <$> eCc is absolutely continuous with respect to A.

Let <f> € C t and consider a-^. Let r\:G/U^*G/N be the map defined by
v(gU) = gN for all g<sG. Since N/U is compact TJ is a proper map. Therefore a^
projects under r\ to a (locally finite) measure TJ(O>); we have

for any Borel set E. It is easy to verify that if rj(cr^) be absolutely continuous with
respect to the (unique up to scalar) G-invariant measure on G/N then cr^ is
absolutely continuous with respect to A. But 17 (0-4) is evidently a F-invariant measure
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on G/N and

= <T4,{YPIU)

= 1 a(YP/U)<j>(n)dn=O.

Hence by the observation made in the beginning of the proof, 17 (a>) is indeed a
G-invariant measure itself. Hence cr̂  is absolutely continuous for any <f> e C+

c and
consequently a is G-invariant, thus proving theorem 4.2 (and therefore theorem
4.1 also). •

In terms of the identification of G/Y and if, as in § 2, theorem 4.1 may be restated
as follows:

(4.3) THEOREM. Let TT be a measure on if which is invariant under the action of u.
Suppose that 7r(if0) = 0, where if0 is the subset of if as defined in § 2. Then IT is
G-invariant.

It may be noted that the same method as above can be applied to extend H.
Furstenberg's result on the unique egodicity of the horocycle flow (corresponding
to a compact surface of constant negative curvature) to the following.

(4.4) THEOREM. Let D be a discrete subgroup of SL (2, R) such that SL (2, U)/D is
compact. Let

1 1\

Then the action ofu on SL (2, U)/D is uniquely ergodic; that is the SL (2, U)-invariant
probability measure is the only invariant probability measure.

Similarly the results in [10] and [3] can be extended to invariant measures (on
appropriate homogeneous spaces) of those subgroups U of a maximal horospherical
subgroup N such that U is normal in N and N/U is compact.

5. Time averages of functions (discrete time)
Let the notation be as in § 3. We now prove the analogue of theorem 3.1 for the
action of (iterates of) the single element

1

(5.1) THEOREM. Let X be the one-point compactification of if and let <j> be the
homeomorphism of X extending the action of u on if. Let

A e if-if(,
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Let f be any continuous function on X. Then as n -*oo

where p, is the probability measure on X such that fi {!£) = 1 and the restriction to i£
is G-invariant.

Proof. For any n let pn be the probability measure on X such that for any continuous
function /

It j=o

Let L' be the set of limit points of the sequence {pn}. It is well known that any
element of L' is a ^-invariant measure. As in the case of continuous time averages
in § 3 we shall be through if we show that L' = {/i}.

Let peL' be arbitrary. There exists a sequence {nk} in N such that nk -»oo and
pnk -*• p in the weak* topology. Now let 6 be the measure defined by

=\ p(u,E)dt
Jo

for any Borel subset E of X. Since p is invariant under u i = u it follows that 6 is
a (M,)-invariant measure. For any continuous function / on X we have

f fdO= f f f(u,x)dp(x)dt
Jx Jo Jx

= lim f(utx) dpnk(x) dt
Jo <=-<*> J x

= lim | I f(u,x) dpnk{x) dt

= lim ( - I /(M(M
J

fc-» Jo \«fc ;=0

1 f"fc

= lim — / (M,A) dtfc^°° nk Jo= f
JxJx

where the last step follows from theorem 3.1. This being true for all continuous
functions we get that 6 = p..

It is evident from the definition of 6 that for any Borel subset E of X which is
invariant under the action of the flow {ft,} (extending the (u,)-action on SB to X)
we have d(E) = p(E). Since i?0 and {oo} are clearly {$,}-invariant we have

and

Therefore by theorem 4.1 p = p.. Since peL' was arbitrary we get that L' = {p.}.
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Since the space of probability measures is compact with respect to the weak*
topology this means that pn converges to /u. in the weak* topology, which is precisely
the contention of the theorem. •

6. Conclusions and questions

I. Uniform distribution
Theorems 3.1 and 5.1 mean that the orbits of elements gYeG/Y where g£PY
under («,) or u respectively are 'uniformly distributed' in G/Y. To illustrate this
and bring it closer in form to what is more widely understood as uniform distribution
we note the following consequence of theorems 3.1 and 5.1.

(6.1) THEOREM. Let G = SL (2, U), T= a subgroup of finite index in SL (2, Z) and
P be the subgroup consisting of all upper triangular matrices in G. Let

and for teU,

- ( J 0-
Let fM be the G-invariant probability measure on G/Y. Let ft be any open subset of
G/Y such that fj. (dft) = 0 where dft is the topological boundary of ft. Let %n denote
the characteristic function of ft. Then for any x = gYe G/Y where g&PY

I Jo

and

1 n-i
- I Xniu'x) ->,u.(ft) asn->oo.
n y=o

Proof. For T = SL(2, Z) this follows from theorems 3.1 and 5.1 and lemma 3.2.
The general case may be deduced from the fact that any u -invariant measure on
G/Y which projects to the G-invariant measure on G/SL (2, Z) is itself G-invariant.

D

II. Recurrent and generic points
The class of dynamical systems for which all the points are recurrent/generic has
attracted some attention in the literature (cf. [6] and other references therein). The
homeomorphism <f> of X as in § 5 (extending the u -action on G/Y to its one-point
compactification) provides a natural example of a topologically transitive homeo-
morphism for which these properties hold.

We recall that if î  is a homeomorphism of a compact metric space Y it is said
to be topologically transitive if there exists y0 6 Y such that

{«A'yo|/6Z}
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is dense in Y; further, if y 6 Y then (i) y is said to be recurrent if there exists a
sequence {nk} such that nk -* °° and t/f"ky -» y and (ii) y is said to be generic if there
exists a measure /Lty on Y such that for all continuous functions f on Y

n->-°° n ; = o

(6.2) THEOREM. LetX be the one-point compactification ofG/T {where G = SL (2,1
F = SL (2, Z), awd /ef <f> be the homeomorphism extending the action of

'1 l\

to X. Then <f> is topologically transitive and every point of X is both recurrent and
generic with respect to <t>.

Proof. By theorem 6.1 every x = gTeG/T where g£PY is generic with respect to
the G-invariant measure on G/Y. Since the G-invariant measure assigns positive
value to any open set, in particular we can deduce from the theorem that such an
x is also recurrent. Similar argument also shows that <f> is topologically transitive.

On the other hand if x = gT, where g ePT, then by lemma 2.1 the («,)-orbit of
x is periodic. The latter is therefore a ^-invariant circle and the restriction of <f> is
equivalent to a rotation of the circle in the usual sense. Hence every point on the
circle including x is both generic and recurrent.

Finally, the point at infinity is evidently generic as well as recurrent, which
completes the proof. •

In the light of various known results including those in [2] and the present paper
it seems reasonable to conjecture the following:

CONJECTURE. Let X be the one point compactification of

SL (n, R)/SL (n, Z)

where n > 2 and let (f> be the homeomorphism extending the action of a unipotent
element u (i.e. ( « - / ) m = 0 for some m > 2 , / being the identity matrix) on the
homogeneous space. Then every element of X is both generic and recurrent.

III. An application to number theory
For any 16 U let [t] denote the largest integer not exceeding t and let

{t}=t-[tl

For any two positive integers m and n let (m, n) denote the g.c.d. of m and n.

(6.3) THEOREM. For any irrational number d

I {mey
0<msT{m9} 4 ( 2 ) 77
(m,[m«])=l

where £ stands for the Riemann zeta function.
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Proof. Let the notation be as in § 1. Further put fi = —c~1ei and f2
 = ce2 where

c > 0 is such that c 2 < | . Let A be the lattice generated by /1 + 6/2 and /2. Clearly
-ifo. Put

S = {aei+/3e2\-c<a<0and0<l3<c}
(6.4)

= {p/i + o/2|0<p <c and 0<cr< 1}
and let O = W(S). Since

m(C(S)) = c2<i

by proposition 1.4 dfl= W(dS). Using a formula of Siegel, namely (25) in [9], it is
easy to see that

lx(n) = c2/£(2) and pu(dSl) = ^(W(dS)) = O,

/x being the G-invariant probability measure on 5£. Recall that we are identifying
56 with G/F and under the identification 56§ corresponds to PT as in the statement
of theorem 6.1. Thus by theorem 6.1 we have

1 rT

(6.5) l i m - xn(u,A)dt = lji(n) = c2/a2).
T-KX> I JQ

Now let xe^(A) and suppose that there exists f>0 such that utxeS. Since
x e ^(A) there exist coprime integers m and n such that

Then

u,x ={m-c2t{m0+n)}fi

Since u,x e S for some t > 0 from (6.4) we have

O<m0 + n < l and m >c2t(m6+n).

The first inequality implies that

n=—[md] and md+n={md}

and the second, in particular, implies that m > 1. Thus

x=m/i + {m0}/2

for some m > l such that (m, [m0]) = l. Conversely for any m > l such that

is a primitive element of A for which there exists t > 0 such that u,x e S.
As in the proof of proposition 3.9 we see that for any T>0

Xn(u,A)dt= I [ xs{u,x)dt
, , .,. Jo xe9"(A),Ti(x)>0 Jo
(6.6)

I 1(ET)

where

ET = {t\0 < f < r and «,(m/i+{mfl}/2) e 5}
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and / is the Lebesgue measure. A straightforward computation shows that

) = {m0}~1 iic2T{m0}>m

= 0 if c2T{m0}<m-c7

and

(6.8) 0 </(£•?) ^{m^r 1 if m-c2 <c2T{m0}<m.

Again, as before, since m(C{S))<\, for any r > 0 there exists at most one m > 1,
say mT, such that (m, [m0]) = 1 and

m-c2<c2T{m0}<m;

the latter is equivalent to

uT{mf1+{m0}f2)eS.

Further, by lemma 3.4 along any sequence of 7"s tending to oo, for which mT exists
T{mT0}^oo. This together with (6.6), (6.7) and (6.8) implies that

(m,[m9))=l

Therefore by (6.5)

(m,[mfl])=l

which proves the theorem. •

While above we have deduced theorem 6.3 from theorem 6.1, conversely it turns
out that the contention of theorem 6.3 together with theorem 2.4 implies theorem
6.1. Initially I attempted to prove theorem 6.3 directly and then deduce theorem
6.1. The question was discussed with number theorists. M. Ram Murty showed me
a proof of theorem 6.3 under a certain additional condition on 6, involving the
growth of the denominators of convergents of 6 (in its continued fraction develop-
ment). Using Roth's theorem the condition was shown to be true for all algebraic
numbers. However, it was not possible to get a proof for all irrational 0. It would
be of interest to know whether the theorem could indeed be proved directly.
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