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Abstract: Let G be a linear algebraic group over k, where k is an algebraically closed field, a pseudo-
finite field or the valuation ring of a non-archimedean local field. Let G = G(k). We prove that if γ ∈ G
such that γ is a commutator and δ ∈ G such that 〈δ〉 = 〈γ〉 then δ is a commutator. This generalises a
result of Honda for finite groups. Our proof uses the Lefschetz principle from first-order model theory.
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1. The main result

Let G be a group. We say that G has the Honda property1 if for any γ ∈ G such that
γ is a commutator and for any δ ∈ G such that 〈δ〉 = 〈γ〉, δ is also a commutator. If γ
has infinite order then the only generators of 〈γ〉 are δ = γ±1, so the condition above
is only of interest when γ has finite order. The following result was proved by Honda in
1953 [8].

Theorem 1.1. Any finite group has the Honda property.

Honda’s original proof is character-theoretic. Recently, Lenstra has given a short and
elegant proof that avoids character theory completely [9].
It is natural to ask which other groups have the Honda property. Pride has given an

example of a one-relator group with torsion which does not have the Honda property
[16, Result (C), p. 488]. In this note, we extend Theorem 1.1 to certain linear algebraic
groups. By a linear algebraic group over a ring k, we mean a smooth closed subgroup
scheme of GLn for some n ∈ N; if k is a field then these are just linear algebraic groups
in the usual sense [1], and they correspond to the affine algebraic groups of finite type
by [14, Corollary 4.10].

1 This terminology was suggested to me by Hendrik Lenstra.
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Theorem 1.2. Let G be a linear algebraic group over k and let G = G(k), where k is
one of the following.

(a) An algebraically closed field.
(b) A pseudo-finite field.
(c) The valuation ring of a non-archimedean local field.

Then G has the Honda property.

Remark 1.3. Let us say a group G has the strong Honda property if for any α, β ∈ G
and any δ ∈ G such that 〈δ〉 = 〈[α, β]〉, there exist σ, τ ∈ 〈α, β〉 such that δ = [σ, τ ].
Clearly, if G has the strong Honda property then G has the Honda property and any
subgroup of G has the strong Honda property. Theorem 1.1 implies that any locally finite
group has the strong Honda property. In particular, if G is a linear algebraic group over
Fp then G(Fp) is locally finite, so G(Fp) has the strong Honda property. (Here Fp denotes
the algebraic closure of the field with p elements.)
On the other hand, none of (P)GLn(C), (P)GLn(R), (P)SLn(C) and (P)SLn(R) has the

strong Honda property if n ≥ 2, so Theorem 1.2(a) fails if we replace the Honda property
with the strong Honda property. To see this, consider the group Γs = 〈a, b | [a, b]s〉. Pride
(loc. cit.) shows that if 0 < t < s then [a, b]t is not a commutator in Γs unless t ≡ ±1
mod s, so Γs does not have the Honda property if s > 6 (choose 2 ≤ t ≤ s− 2 such that t
is coprime to s). The group Γs is Fuchsian (cf. [10, § 1]), so it is a subgroup of PSL2(R).
Hence PSL2(R) does not have the strong Honda property, so PSL2(C), PGL2(R) and

PGL2(C) also do not have the strong Honda property. Now choose lifts â (resp., b̂) of a

(resp., b) to elements of SL2(R), and let Γ̂s = 〈â, b̂〉. The element [â, b̂] has order either

s or 2s, and [â, b̂]t is not a commutator in Γ̂s if 0 < t < s and t 6≡ ±1 mod s. Hence
SL2(R) does not have the strong Honda property (choose s > 6 and choose 2 ≤ t ≤ s− 2
such that t is coprime to 2s), so GL2(R), SL2(C) and GL2(C) also do not have the strong
Honda property. Since we may embed SL2(R) as a subgroup of (P)GLn(C), (P)GLn(R),
(P)SLn(C) and (P)SLn(R) for any n ≥ 3, the assertion above follows.

The proof of Theorem 1.2(a) uses the Lefschetz principle from first-order model theory.
The idea is very simple. Let G be a linear algebraic group over an algebraically closed
field k. For the moment, assume G is defined over the prime field F. Set G = G(k). We
can find an F -embedding of G as a closed subgroup of SLn for some n: so G is defined
as a subset of SLn(k) by polynomials over F in n2 variables and the group operations on
G are given by polynomial maps over F. If γ, δ ∈ G then 〈δ〉 = 〈γ〉 if and only if δ = γs

and γ = δt for some s, t ∈ Z. For fixed s and t, we observe that the condition

(∗)s,t for all γ, δ ∈ G, if γ is a commutator and δ = γs and γ = δt then δ is a commutator

is given by a first-order sentence in the language of rings involving the n2 variables of
the ambient affine space. Now (∗)s,t is true if k = Fp for any prime p, by Remark 1.3. It
follows from the Lefschetz principle that (∗)s,t is true for every algebraically closed field
k, including the characteristic 0 case. But s and t were arbitrary integers, so the result
follows. On the other hand, we see from Remark 1.3 that the analogous argument fails
for the strong Honda property, so the strong Honda property cannot be expressed in a
first-order way.
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If G is not defined over the prime field F then the argument above needs modification.
The trouble is that the polynomials that define G as a closed subgroup of SLn(k) may
involve parameters from k, so (∗)s,t may fail to translate into an honest sentence. We
get around this by using a trick from [13] (cf. also the discussion after Theorem 1.1 of
[12]): first, we replace these parameters with variables, then we quantify over all possible
values of these variables. This amounts to quantifying over all linear algebraic groups of
bounded complexity in an appropriate sense. In [13, § 3.2], this idea is formulated using
the language of Hopf algebras; here we give a more concrete description.
We present the details in § 2. The proof of Theorem 1.2(b) follows from a closely related

argument. We prove Theorem 1.2(c) in § 3.

Remark 1.4. J. Wilson gives some other first-order properties of groups that hold for
finite groups but not for arbitrary groups [19]; see [18], [5]. One can use the methods of this
paper to prove that these properties hold for linear algebraic groups over an algebraically
closed or pseudo-finite field. Likewise, Theorem 1.2 holds for definable groups in the sense
of [15, Introduction] over an algebraically closed or pseudo-finite field k ; in particular, this
includes group schemes of finite type over such k. I’m grateful to Lenstra and Tiersma
for these observations.

2. Model theory and the Lefschetz principle

We give a brief review of the model theory we need to prove Theorem 1.2. For more details,
see [11]. We work in the language of rings, which consists of two binary function symbols
+ and · and two constant symbols 0 and 1. A formula is a well-formed expression involving
+, ·, =, 0 and 1, the symbols ∨ (or), ∧ (and), → (implies), ¬ (not), some variables and
the quantifiers ∀ and ∃. For instance, (∃Y )Y 2 = X and (∀X)(∃Y )(∃Z)X = Y 2 +Z2 +2
and X 6= 0 → X2 = X are formulas. The variable X in the first formula is free because
it is not attached to a quantifier, while the variable Y is bound. A sentence is a formula
with no free variables; the second formula above is a sentence. For any given ring k, a
sentence is either true or false: for instance, the sentence (∀X)(∃Y )(∃Z)X = Y 2+Z2+2
is true when k = C and false when k = R. If a formula involves one or more free variables
then it doesn’t make sense to ask whether it is true or false for a particular ring k ; but if
ψ(X1, . . . , Xm) is a formula in free variables X1, . . . , Xm, k is a ring and α1, . . . , αm ∈ k
then the expression ψ(α1, . . . , αm) we get by substituting Xi = αi for 1 ≤ i ≤ m is either
true or false.
We can turn a formula into a sentence by quantifying over the free variables: e.g. quan-

tifying over all X in the third formula above gives the sentence (∀X)X 6= 0 →
X2 = X, which is false for any field with more than two elements. Note that if
k = R then the expression (∀X)(∃Y )Y 2 = πX is not a sentence in the above sense
as it involves the real parameter π. This problem does not arise with the expression
(∀X)(∃Y )(∃Z)X = Y 2 +Z2 +2: we don’t need to regard 2 as a real parameter, because
we get 2 = 1 + 1 for free by adding the constant symbol 1 to itself. More generally, if
f(X1, . . . , Xm) is a polynomial over Z in variables X1, . . . , Xm then (say) the expression
(∃X1) · · · (∃Xm) f(X1, . . . , Xm) = 0 is a sentence.
An infinite field k is pseudo-finite if it is a model of the theory of finite fields: that is,

a sentence is true for k if it is true for every finite field. A non-principal ultraproduct of
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an infinite collection of finite fields is pseudo-finite. For instance, if U is a non-principal
ultrafilter on the set of all primes then the ultraproduct

∏
U Fp is a pseudo-finite field

of characteristic 0, and many of the infinite subfields of Fp are pseudo-finite fields of
characteristic p. See [2] and [3, (5.1)] for more details and examples.
We will use the following version of the Lefschetz principle (see [11, Corollary 2.2.9

and Corollary 2.2.10]).

Theorem 2.1 (The Lefschetz principle). Let ψ be a sentence.
(a) Let p be 0 or a prime. If ψ is true for some algebraically closed field of characteristic

p then ψ is true for every algebraically closed field of characteristic p.
(b) ψ is true for some algebraically closed field of characteristic 0 if and only if

for all but finitely many primes p, ψ is true for some algebraically closed field of
characteristic p.

We have an immediate corollary.

Corollary 2.2. Let ψ be a sentence. If ψ is true for k = Fp for every prime p then ψ
is true for every algebraically closed field.

Now fix a field k. Let G be a linear algebraic group over k. Choose an embedding of G
as a closed subgroup of SLn for some n. We regard SLn(k) as a subset of affine space kn

2

in the usual way. Denote the co-ordinates of kn
2
by Xij for 1 ≤ i ≤ n and 1 ≤ j ≤ n. Let

G = G(k). Our embedding of G in SLn allows us to regard G as a subset of kn
2
given by

the set of zeroes of some polynomials f1(Xij), . . . , fr(Xij) over k in the Xij.
Fix s, t ∈ Z. We want to interpret the condition in (∗)s,t as a sentence. The subset

SLn(k) of kn
2
is the set of zeroes of finitely many polynomials over Z in the matrix

entries and the group operations on SLn(k) are given by polynomials over Z in the matrix
entries, so the conditions on α, β, γ, δ, σ, τ ∈ SLn(k) that δ = γs, γt = δ, γ = [α, β] and
δ = [σ, τ ] are given by formulas in the matrix entries of α, β, γ, δ, σ and τ . (For instance,
if we denote the co-ordinates of α by Xij then the condition α ∈ SLn(k) is given by the
formula det(Xij) − 1 = 0.) However, the conditions α, β, γ, δ, σ, τ ∈ G may fail to be
given by formulas as the polynomials fl(Xij) may involve some arbitrary elements of k.
We avoid this problem as follows. Fix r ≥ n, let m1(Xij), . . . ,mc(Xij) be a listing (in

some fixed but arbitrary order) of all the monomials in the Xij of total degree at most r,
and let Vr be the subspace of the polynomial ring k[Xij ] spanned by the me(Xij). Let
Zab for 1 ≤ a ≤ c and 1 ≤ b ≤ c be variables. Define gd(Xij , Zab) =

∑c
e=1 Zedme(Xij)

for 1 ≤ d ≤ c. Now let ε = (εab)1≤a≤c,1≤b≤c be a tuple of elements of k. We define

Gε = {ηij ∈ kn
2
| det(ηij) = 1 and gd(ηij , εab) = 0 for 1 ≤ d ≤ c}.

If H is a subgroup of SLn(k) defined by polynomials over k in the Xij of degree at
most r then we say H has complexity at most r : in particular, Gε has complexity at
most r.2 Conversely, any closed subgroup H of complexity at most r is of the form Gε for
some ε (note that we need at most c polynomials of the form gd to define a subgroup of

2 We assume that r ≥ n, so the polynomial det(βij)− 1 has degree n ≤ r.

https://doi.org/10.1017/S0013091524000361 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091524000361


Powers of commutators in linear algebraic groups 5

complexity at most r because dimVr = c). Any closed subgroup of SLn(k) has complexity
at most r ′ for some r′ ≥ n.
Let φ(Zab) be the formula in free variables Zab given by

(∀Uij)(∀Vij)[[det(Uij) = 1 ∧ det(Vij) = 1] ∧ [gd(Uij , Zab) = 0 ∧ gd(Vij , Zab)

= 0 for 1 ≤ d ≤ c]]

→ gd(Wij , Zab) = 0 for 1 ≤ d ≤ c,

where Wij is shorthand for
∑n

l=1 UilVlj . Then Gε is closed under multiplication if and
only if φ(εab) is true. Likewise, there are formulas χ(Zab) and η(Zab) such that Gε is
closed under taking inverses if and only if χ(εab) is true, and the identity I belongs to
Gε if and only if η(εab) is true.
Now consider the condition ψn,s,t,r given by

[(∀Zab)φ(Zab) ∧ χ(Zab) ∧ η(Zab)] →

(∀α ∈ GZ)(∀β ∈ GZ)(∀δ ∈ GZ)(δ = [α, β]s ∧ [α, β] = δt) → ((∃σ ∈ GZ)(∃τ ∈ GZ) δ

= [σ, τ ]),

where α = (αij), β = (βij), . . . are tuples representing elements of SLn(k). Here α ∈ GZ

is shorthand for [det(αij) = 1]∧
[∧

1≤d≤c gd(αij , Zab) = 0
]
, and likewise for β ∈ GZ , etc.

We regard ψn,s,t,r as a sentence in variables Zab, αij, βij, etc. The above discussion yields
the following: for any field k and for any n, s, t, r, the sentence ψn,s,t,r is true for k if and
only if
(†) for every closed subgroup G of SLn(k) of complexity at most r and for every

α, β, δ ∈ G such that δ = [α, β]s and [α, β] = δt, there exist σ, τ ∈ G such that δ = [σ, τ ].
We see from the above discussion that

([) G(k) has the Honda property for every linear algebraic group G over k if and only if

the sentence ψn,s,t,r is true for k for all n, s, t, r.

Proposition 2.3. Let n ∈ N, let r ≥ n and let s, t ∈ Z. Let k be an algebraically closed
field or a pseudo-finite field. Then ψn,s,t,r is true for k.

Proof. Fix n, s, t and r. If k = Fp for some prime p then G(k) has the Honda property
for every linear algebraic group G over k by Remark 1.3, so ψn,s,t,r is true for k by ([).
Hence ψn,s,t,r is true for any algebraically closed field k by Corollary 2.2. If k is a finite
field then G(k) has the Honda property for every linear algebraic group G over k by
Theorem 1.1, so ψn,s,t,r is true for k by ([). Hence ψn,s,t,r is true for any pseudo-finite
field. �

Proof of Theorem 1.2(a) and (b). This follows immediately from Proposition 2.3
and ([). �
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Remark 2.4. We don’t know whether G(k) must satisfy the Honda property for G a
linear algebraic group over an arbitrary field k. Tiersma has observed that if the conclusion
of Theorem 1.2 holds for a field k then it holds for any algebraic field extension k

′
of k. To

see this, let G′ be a linear algebraic group over k
′
. Let α, β ∈ G′(k′). Let γ = [α, β] and let

δ ∈ G′(k′) such that 〈δ〉 = 〈γ〉. There is a field k1 such that k ⊆ k1 ⊆ k′, k1/k is finite, G′

descends to a k1-group G1 and α, β, γ, δ ∈ G1(k1). Let G be the Weil restriction Rk1/k
(G1)

[4, A.5]. Then G(k) = G1(k1). Since G(k) satisfies the Honda property by assumption,
the result follows.
Here is another situation where we obtain a positive result. Let G be a connected

compact Lie group. Then every element of [G,G] is a commutator [7, Theorem 6.55],
and it follows that G has the Honda property. The link with linear algebraic groups
is the following: if G is a Zariski-connected real reductive algebraic group then G :=
G(R) is compact if and only if G is anisotropic, and in this case G is connected in the
standard topology [1, V.24.6(c)(ii)]. A similar argument using [17, Theorem] shows that
any connected reductive linear algebraic group over an algebraically closed field has the
Honda property; this recovers a special case of Theorem 1.2(a).

3. Profinite groups

In this section, we prove Theorem 1.2(c); by a non-archimedean local field we mean
either a finite extension of a p-adic field or the field of Laurent series Fq((T )) in an
indeterminate T for some prime power q. In fact, we prove a more general result for
profinite groups. Recall that a topological group is profinite if and only if it is compact
and Hausdorff and has a neighbourhood base at the identity consisting of open subgroups
[6, Proposition 1.2].

Proposition 3.1. Every profinite group has the Honda property.

Proof. Let G be a profinite group. Let Q be the set of finite-index normal subgroups of
G. Let γ, δ ∈ G such that γ is a commutator and 〈δ〉 = 〈γ〉. For N ∈ Q, let πN : G→ G/N
denote the canonical projection, and set CN = {(σ, τ) ∈ G×G |πN (δ) = [πN (σ), πN (τ)]},
a closed subset of G ×G. By Theorem 1.1, CN is non-empty for each N ∈ Q. If
N1, . . . , Nt ∈ Q then N1 ∩ · · · ∩ Nt ∈ Q and CN1∩···∩Nt = CN1

∩ · · · ∩ CNt ; in
particular, CN1

∩ · · · ∩ CNt is non-empty. By the finite intersection property for com-
pact spaces,

⋂
N∈Q CN is non-empty, so we can pick an element (σ, τ) from it. Then

πN (δ) = [πN (σ), πN (τ)] for all N ∈ Q. But
⋂

N∈QN = 1 as G is profinite, so [σ, τ ] = δ
and we are done. �

Remark 3.2. Lenstra has observed that if G is profinite then a variation of the Honda
property holds: if γ, δ ∈ G, γ is a commutator and the closures of 〈γ〉 and 〈δ〉 are equal
then δ is also a commutator. The argument is very similar to the proof of Proposition 3.1.

Proof of Theorem 1.2(c). Let F be a non-archimedean local field with associated
norm ν and valuation ring k. Fix a uniformiser π. Let G be a linear algebraic group over
k and let G = G(k). It is enough by Proposition 3.1 to show that G is profinite. By
assumption, there is an embedding of G as a closed subgroup of SLn for some n. So G
is a subgroup of SLn(k) and there are polynomials f1, . . . , ft in n2 variables over k for
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some t ∈ N0 such that G = {aij ∈ kn
2 | fi(aij) = 0 for 1 ≤ i ≤ t} (we need only finitely

many polynomials as discrete valuation rings are Noetherian). The operations of addition
and multiplication on k are continuous; it follows easily that G is a closed subspace

of kn
2
with respect to the topology on kn

2
induced by ν, and the group operations

on G are continuous. Hence G is a compact topological group. The open subgroups
Gn := {g ∈ G | g = 1 mod πn} form a neighbourhood base at the identity. It follows
that G is profinite, as required. �
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