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Abstract

A positive even number is said to be a Maillet number if it can be written as the difference between two
primes, and a Kronecker number if it can be written in infinitely many ways as the difference between
two primes. It is believed that all even numbers are Kronecker numbers. We study the division and
multiplication of Kronecker numbers and show that these numbers are rather abundant. We prove that
there is a computable constant k and a set D consisting of at most 720 computable Maillet numbers such
that, for any integer n, kn can be expressed as a product of a Kronecker number and a Maillet number in
D. We also prove that every positive rational number can be written as a ratio of two Kronecker numbers.

2020 Mathematics subject classification: primary 11N05; secondary 37A44.

Keywords and phrases: difference of primes, Kronecker number, Δr
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1. Introduction

The distribution of the differences of primes is a recurring theme in number theory.
It is generally believed that every even number is the difference of two primes.

DEFINITION 1.1 (Maillet number, Kronecker number). An even number n is called a
Maillet number if it can be written as the difference of two primes and a Kronecker
number if it can be written in infinitely many ways as the difference of two primes.

For a given positive even number, we can check directly if it is a Maillet number by
finding a pair of primes. However, no concrete Kronecker number is known. Whether
2 is a Kronecker number is the well-known twin prime conjecture.

CONJECTURE 1.2 (Kronecker [11]). Every even number can be written in infinitely
many ways as the difference of two primes.

This conjecture is currently out of reach. However, recent breakthroughs towards
the twin prime conjecture indicate that there is a Kronecker number not exceeding 246
(see [2, 12, 14, 15]).
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Let K be the set of all Kronecker numbers. We investigate how ‘large’ this
set might be. A set S ⊂ N is called syndetic if there exists an integer k such that
{a + 1, a + 2, . . . , a + k} ∩ S � ∅ for any a ∈ N. Pintz [13] proved that K is a syndetic
set and Granville et al. [4] gave a different proof. Unfortunately, the integer k is not
determined effectively in [4, 13].

DEFINITION 1.3 (Δr-set and Δ∗r -set). Let r be a given positive integer.

• A Δr-set is a difference set of a set S ⊂ N with |S| ≥ r, that is,

Δ(S) = (S − S) ∩ N = {a − b : a, b ∈ S, a > b}.
• A set S ⊂ N is a Δ∗r -set if the intersection of S with any Δr-set is not empty.

Clearly, every Δ∗r -set is syndetic.

THEOREM 1.4 (Huang and Wu [10]). K is a Δ∗r -set for any r ≥ 721.

It is also mentioned in [10] that the number 721 can be sharpened to 19 if the primes
have level of distribution θ for every θ < 1. Given θ > 0, we say the primes have ‘level
of distribution θ’ if, for any W > 0,

∑
q≤xθ

max
(a,q)=1

∣∣∣∣∣π(x; q, a) − π(x)
φ(q)

∣∣∣∣∣ 	W
x

(log x)W .

The numerical bound for r in Theorem 1.4 gives an effective lower bound for the
density α of K among even numbers. As shown in the Appendix, one may deduce
from Theorem 1.4 that

α ≥ 1
360

∏
p≤720

(
1 − 1

p

)
.

We try to obtain more information on how large K is by studying the division
and multiplication of Kronecker numbers. Our first result about the representation of
integers by products of differences of primes is motivated by the following question.

QUESTION 1.5 (Fish [1]). For a given infinite set E ⊂ Z, how much structure does the
set (E − E) · (E − E) possess?

Fish [1] considered the question when E is a subset of Z of positive density. Using
Furstenberg’s correspondence principle, he proved that there exist k0 (depending on
the densities of E1 and E2) and k ≤ k0 such that

kZ ⊂ (E1 − E1) · (E2 − E2).

It is natural to consider the question when E is the set of primes. This case is not
covered by Fish’s work since the set of primes is an infinite set of Z but does not have
positive upper Banach density. In [3], Goswami used Theorem 1.4 to extend Fish’s
result to the case of primes, showing that

kZ ⊂ (P − P) · (P − P). (1.1)
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We can say more. On the right-hand side of (1.1), one factor can be restricted to a finite
subset of P − P, consisting of 720 Maillet numbers, while the other factor takes values
among Kronecker numbers.

THEOREM 1.6. There exist a computable constant k and a set D, consisting of at most
720 computable Maillet numbers, such that kZ ⊂ D · K .

The proof of Theorem 1.6 is based on Theorem 1.4 as well as recent work on linear
equations in primes by Green et al. [7]. The number 720 could be sharpened to 18 if
the primes have level of distribution θ for every θ < 1.

Seeking further evidence on the size of K , we also consider the ratio of two
Kronecker numbers and prove the following result.

THEOREM 1.7. Every positive rational number can be written as a ratio of two
elements from K .

2. Representation of integers

In this section, we give the proof of Theorem 1.6.

2.1. Linear equations in primes. We outline some of the work of Green and Tao
on linear equations in primes. More details can be found in [5]. Let d, t be integers.
A system of affine-linear forms on Zd is a collectionΨ = {ψ1, . . . ,ψt}with ψi : Zd → Z
being affine-linear forms. If N > 0, the size ‖Ψ‖N of Ψ relative to the scale N is

‖Ψ‖N :=
t∑

i=1

d∑
j=1

|ψ̇i(ej)| +
t∑

i=1

∣∣∣∣∣
ψi(0)

N

∣∣∣∣∣,

where

ψ̇i(ej) = ψi(ej) − ψi(0)

with e1, e2, . . . , ed being the standard basis for Zd. For a system Ψ, its local factor βp

for a prime p is

βp :=
1
pd

∑
n∈Zd

p

t∏
i=1

ΛZp (ψi(n)), (2.1)

where Zp = {0, 1, . . . , p − 1} is the set of residue classes of integers modulo p and
ΛZp (n) is the local von Mangoldt function defined by

ΛZp (n) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
p

p − 1
if (n, p) = 1

0 otherwise.

For a convex body K ⊂ [−N, N]d, the archimedean factor is

β∞ := vold(K ∩ Ψ−1(R+)t).
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DEFINITION 2.1 (Complexity). The complexity of Ψ is the least integer s such that,
for each ψi, one can partition the remaining t − 1 forms {ψj : j � i} into s + 1 groups,
such that ψi does not lie in the affine-linear span of any group; if no such s exists, we
say that the complexity is∞ (see [5, Definition 1.5]).

The main results of [5–7] can be summarised as follows.

THEOREM 2.2 (Green, Tao and Ziegler). Let N, d, t, L be positive integers and let
Ψ = {ψ1, . . . ,ψt} be a system of affine-linear forms with size ‖Ψ‖N ≤ L. Let
K ⊂ [−N, N]d be a convex body. If Ψ has finite complexity, then

#{n ∈ K ∩ Zd : ψ1(n), . . . ,ψt(n) prime} = (1 + ot,d,L(1))
β∞

logt N

∏
p

βp + ot,d,L

( Nd

logt N

)
,

where β∞ is typically of size Nd and the singular product
∏

p βp is always convergent.

Theorem 2.2 was first proved by Green and Tao assuming that the inverse
Gowers-norm conjecture and the Möbius and nilsequences conjecture are true (see [5,
Main Theorem]). These two conjectures were already known for the case s ≤ 2 (see
[5, Corollary 1.7]). In their following papers, they proved the Möbius and nilsequences
conjecture for any s (see [6, Main Theorem]) and, in combination with Ziegler, proved
the inverse Gowers-norm conjecture (see [7, Theorem 1.3]).

It was pointed out in [5] that the singular product
∏

p βp is always convergent, but
it may still vanish since βp = 0 is possible for small p. So, the theorem only works for
a system of affine-linear forms with βp � 0, for all p. (It is enough to consider small
p = Ot,d,L(1) here.)

2.2. Proof of Theorem 1.6. To prove our theorem, we will appeal to a special case
of Theorem 2.2, which we provide in the following lemma.

LEMMA 2.3. Let Ψ = {ψ1, . . . ,ψt} be a system of affine-linear forms of finite complex-
ity with ψi : Z+d → Z+, 1 ≤ i ≤ t, and βp � 0 for any prime p. Then there are infinitely
many lattice points n ∈ Z+d, which make all ψi(n) prime.

PROOF. In Theorem 2.2, we can take K = [−N, N]d. For ψi : Z+d → Z+,

β∞ := vold(K ∩ Ψ−1((R+)t) ≥ vold([−N, N]d ∩ Z+d) ≥ Nd.

Also, the singular product
∏

p βp does not vanish since βp � 0 for all p. Thus, the
asymptotic formula in Theorem 2.2 has a dominant main term, and the lemma follows
immediately. �

For j = 1, 2, . . . , 720, we define aj = 720!/j. We consider the system of affine-linear
forms Ψ = {ψ1, . . . ,ψ1440} defined by

ψ2j−1(n1, . . . , n720, m) = nj,
ψ2j(n1, . . . , n720, m) = nj + ajm,
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for j = 1, . . . , 720. Note that each form ψi ∈ Ψ lies in the affine span of all the other
forms, but we can partition the remaining forms into two groups, such that ψi does not
lie in the affine span of either group. For example, for i = 2j − 1, we may take ψ2j as
one group and the rest as the other group, and for i = 2j, we take ψ2j−1 as one group
and the rest as the other group. Thus, Ψ is a special system of affine-linear forms with
complexity s = 1. It is obvious that ψi : Z+d → Z+ since all coefficients are positive
integers.

To apply Lemma 2.3, we also need βp � 0. By (2.1), this is the case if, for each
p, we can find a lattice point n ∈ Zd

p such that (ψi(n), p) = 1 for all i. Obviously, the
lattice point n = (1, 1, . . . , 1, 0) ∈ Z721

p has this property. Thus, by Lemma 2.3, there are
infinitely many lattice points (n1, . . . , n720, m) ∈ Z+721, which make all ψi prime. That
is to say, for each m in this set of lattice points, the set {a1m, a2m, . . . , a720m} consists of
Maillet numbers. We choose m′ as the least one of these m; it is a computable number
since the system of affine-linear forms is specific.

To prove the theorem, we take the constant k = 720! m′ and the set to be

D = {a1m′, a2m′, . . . , a720m′}.

For any integer b > 0, Theorem 1.4 shows that there is at least one Kronecker number
in the set {b, 2b, . . . , 720b}. If jb with 1 ≤ j ≤ 720 is a Kronecker number, then

kb = ajm′ · jb ∈ D · K ,

which establishes Theorem 1.6.

3. Representation of rationals

In this section, we will use arguments from Ramsey theory to prove Theorem 1.7.
First we will prove three lemmas and then a more general Theorem 3.6 which implies
Theorem 1.7 as a corollary. The lemmas are standard and can be found in [9]. We
include the short proofs for the sake of completeness.

The notions of IP sets and IPr sets are well studied in Ramsey theory (see [9]). Let
P f (N) denote the collection of nonempty finite subsets of N.

DEFINITION 3.1. A set A ⊂ N is said to be an IP set if there exists a sequence 〈xn〉n∈N
such that A = FS(〈xn〉n∈N) = {∑t∈H xt : H ∈ P f (N)}. Similarly, a set A ⊂ N is said to be
an IPr set for some r ∈ N if there exists a sequence 〈xn〉rn=1 such that A = FS(〈xn〉rn=1).

A set is said to be an IP� set if it intersects every IP set and an IP�
r set if it intersects

every IPr set. Note that every IPr set contains a Δr set. To check this, let FS(〈xn〉rn=1)
be an IPr set and let

S = {x1, x1 + x2, . . . , x1 + x2 + · · · + xn}.

Then FS(〈xn〉rn=1) contains all elements of the form {s − t : s > t and s, t ∈ S}. Hence,
every Δ�r set is IP�

r . Again, every IP set contains an IPr set for some r ∈ N and hence
every IP�

r set is IP�. In particular, K is IP�
721 and hence an IP� set.
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A sub-IP set of FS(〈xn〉n∈N) is a set of the form FS(〈yn〉n∈N) ⊆ FS(〈xn〉n∈N), where
yt =
∑

s∈Ht
xs for each t ∈ N and (Hi)i∈N is a sequence in P f (N) such that Hi ∩ Hj = ∅

for each i � j.
The following lemma is a direct corollary of Hindman’s theorem [8]. Here,

‘colouring’ means a disjoint partition and a set is ‘monochromatic’ if it lies in one
part of the partition.

LEMMA 3.2. For every finite colouring of an IP set, there exists a monochromatic
sub-IP set.

The next lemma says that dilation of an IP� set by a number is again an IP� set.

LEMMA 3.3. Let A ⊆ N be an IP� set. Then for any m ∈ N, m · A = {mx : x ∈ A} is
again an IP� set.

PROOF. Let 〈xn〉n∈N be any sequence and for each i ∈ N, let xi ≡ j(i) mod m, where
j(i) ∈ {0, 1, . . . , m − 1}. As Zm is finite, there exists k ∈ {0, 1, . . . , m − 1} and an infinite
sequence (ni)i∈N such that xni ≡ k mod m. Let H1 be a set of m terms from the sequence
(ni) so that m | ∑t∈H1

xt. Continue to choose further sets of terms in this way to obtain
disjoint finite subsets of Hn of N such that m | ∑t∈Hn

xt for each n ∈ N. Choose a new
sequence 〈yn〉n∈N such that yn =

∑
t∈Hn

xt/m for each n ∈ N. Then A ∩ FS(〈yn〉n∈N) � ∅
and this implies m · A ∩ FS(〈xn〉n∈N) � ∅, finishing the proof. �

The next lemma says that any IP� set contains an IP set. In fact, it contains a sub-IP
set of any given IP set.

LEMMA 3.4. Let FS(〈xn〉n∈N) be any IP set and let A be any IP� set. Then there exists
a sub-IP set FS(〈yn〉n∈N) of FS(〈xn〉n∈N) such that A contains FS(〈yn〉n∈N).

PROOF. Partition FS(〈xn〉n∈N) by

FS(〈xn〉n∈N) = (A ∩ FS(〈xn〉n∈N)) ∪ (FS(〈xn〉n∈N) \ A).

From Lemma 3.2, there is a sub-IP set FS(〈yn〉n∈N)) ⊆ FS(〈xn〉n∈N)) such that either
FS(〈yn〉n∈N)) ⊆ A ∩ FS(〈xn〉n∈N) or FS(〈yn〉n∈N)) ⊆ FS(〈xn〉n∈N) \ A. Since A is an IP�

set, FS(〈yn〉n∈N)) ∩ A must be nonempty. This immediately implies that the second
case is not possible. So, FS(〈yn〉n∈N)) ⊆ A and the lemma follows. �

The next lemma is the final ingredient for our proof.

LEMMA 3.5. The intersection of finitely many IP� sets is again an IP� set.

PROOF. Let A1, A2, . . . , An be IP� sets and let FS(〈xn〉n∈N) be any IP set. From Lemma
3.4, there is a sub-IP set FS(〈yn〉n∈N)) ⊆ A1 ∩ FS(〈xn〉n∈N) and so FS(〈yn〉n∈N)) ⊆ A1.
Applying Lemma 3.4 again gives a sub-IP set FS(〈zn〉n∈N)) ⊆ A2 ∩ FS(〈yn〉n∈N) and so
FS(〈zn〉n∈N)) ⊆ A2. Hence, FS(〈zn〉n∈N)) ⊆ A1 ∩ A2. Iterating this argument produces
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a sub-IP set FS(〈an〉n∈N) of FS(〈xn〉n∈N) such that FS(〈an〉n∈N) ⊆ A1 ∩ A2 ∩ · · · ∩ An.
As FS(〈xn〉n∈N) is any IP set, arbitrarily chosen, A1 ∩ A2 ∩ · · · ∩ An is an IP� set. This
completes the proof. �

The following theorem is an abstract formulation which strengthens Theorem 1.7.

THEOREM 3.6. If A is any IP� set and B is an IP set, then

Q>0 =
A
B
=

{a
b

: a ∈ A, b ∈ B
}
.

PROOF. Let m/n ∈ Q>0. Now m · B is an IP set and, from Lemma 3.3, n · A is an IP�

set. Hence, n · A ∩ m · B � ∅. Let x = na = mb, where a ∈ A, b ∈ B. Then m/n = a/b ∈
A/B. This completes the proof. �

PROOF OF THEOREM 1.7. AsK is an IP�
721 set, it is an IP� set. Again, by Lemma 3.4,

K contains an IP set. So the desired result follows from Theorem 3.6. �

The proof of Theorem 1.7 gives the following more powerful result.

COROLLARY 3.7. For any IP set D ⊂ K , we have Q>0 = K/D and hence also
Q>0 = D/K .
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Appendix. The density of Kronecker numbers

In this section, we provide a simple proof for

α ≥ 1
360

∏
p≤720

(
1 − 1

p

)
(A.1)

by providing a lower bound for the density of a general Δ∗r -set. With S = {a, 2a, . . . , ra}
in the definition of Δ∗r -set, the following fact is obvious.

LEMMA A.1. Let H be a Δ∗r -set and Ar(a) = {a, 2a, . . . , (r − 1)a}. Then, H ∩ Ar(a) � ∅
for any integer a > 0,

THEOREM A.2. If H is a Δ∗r -set, then

|H ∩ [1, N]|
N

≥
∏

p≤r−1

(
1 − 1

p

)
+ o(1).

PROOF. By Lemma A.1, every Ar(a) contains at least one element of H. We obtain a
lower bound for the cardinality of H by counting the number of the sets Ar(a) which
are mutually disjoint. If a < b are two integers with Ar(a) ∩ Ar(b) � ∅, then there are
integers i, j with (i, j) = 1 and 1 ≤ i < j ≤ r − 1 such that a/b = i/j. The sets Ar(a)
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where a is not divisible by any prime less than r − 1 are therefore mutually disjoint.
For sufficiently large N,

∣∣∣∣∣
{
a :
(
a,
∏

p≤r−1

p
)
= 1, Ar(a) ⊂ [1, N]

}∣∣∣∣∣ =
N
r

∏
p≤r−1

(
1 − 1

p

)
+ O(1).

The theorem follows immediately. �

Finally, (A.1) follows immediately from Theorems 1.4 and A.2 by taking r = 721.
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