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Torsion points and concurrent exceptional
curves on del Pezzo surfaces of degree one

Julie Desjardins and Rosa Winter

Abstract. The blow-up of the anticanonical base point on a del Pezzo surface 𝑆 of degree 1 
gives rise to a rational elliptic surface ℰ with only irreducible fibers. The sections of minimal 
height of ℰ are in correspondence with the 240 exceptional curves on 𝑆. A natural question 
arises when studying the configuration of these curves: if a point on 𝑆 is contained in ‘many’ 
exceptional curves, is it torsion on its fiber on ℰ? In 2005, Kuwata proved for the analogous 
question on del Pezzo surfaces of degree 2, where there are 56 exceptional curves, that if 
‘many’ equals 4 or more, the answer is yes. In this paper, we prove that for del Pezzo surfaces 
of degree 1, the answer is yes if ‘many’ equals 9 or more. Moreover, we give counterexamples 
where a non-torsion point lies in the intersection of 7 exceptional curves. We give partial 
results for the still open case of 8 intersecting exceptional curves.

1 Introduction

An elliptic surface ℰ over a field 𝑘 is an projective variety of dimension 2
endowed with a fibration in elliptic curves 𝜋 : ℰ −→ P1. In this paper, we
also assume this fibration has at least one section, which guarantees that ℰ
admits a description as solution of a Weierstrass equation with polynomial
coefficients, where the given section is set to be the zero-section. This object
can thus alternatively be seen as an elliptic curve ℰ𝑇 over 𝑘 (𝑇) whose rank
we call the generic rank of ℰ. A section of ℰ corresponds to a 𝑘 (𝑇)-point
of ℰ and vice versa. We call each fiber ℰ𝑡 := 𝜋−1 (𝑡) of the fibration the
specialization at 𝑡 ∈ P1.

Silverman’s specialization theorem predicts that when 𝑘 is a number
field, then for all but finitely many 𝑡 ∈ P1, the rank of the corresponding
specialisation is at most the generic rank of ℰ:

𝑟𝑘 (𝑇 ) (ℰ𝑇 ) ≥ 𝑟𝑘 (ℰ𝑡 ).

Two natural questions are thus:

Questions 1.1
(1) When do we have a rank jump, i.e. a value 𝑡 ∈ P1 such that

𝑟𝑘 (𝑇 ) (ℰ𝑇 ) < 𝑟𝑘 (ℰ𝑡 )?
(2) When do we have a rank fall, i.e. a value 𝑡 ∈ P1 such that 𝑟𝑘 (𝑇 ) (ℰ𝑇 ) >

𝑟𝑘 (ℰ𝑡 )?

While the rank jump question has been investigated by several different
authors, much less is known about the second question. In this paper,
although we do not study the rank fall question in its current form, we
make progress toward the following variation:

Question 1.2 When do ‘many’ sections of an elliptic surface meet?
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2 J. Desjardins and R. Winter

Sections of ℰ that are non-torsion points in ℰ𝑇 (𝑘) can intersect fibers
of 𝜋 in non-torsion points, thus potentially contributing to the rank of the
fiber. If multiple sections of infinite order of ℰ intersect in one point, this
potential contribution to the rank of the fiber on which the intersection
occurs goes down (note that this does not automatically mean that there
is a rank fall, since there might be points of infinite order on the same
fiber, not coming from the specialization of a section). If the point at the
intersection of many sections is torsion, the potential contribution of these
sections to the rank drops to zero. Thus our final question is the following:

Question 1.3 When do ‘many’ sections of ℰ meet at a point which is
torsion on its fiber?

Questions 1.2 and 1.3 are very difficult to solve on a general elliptic
surface, and for this reason, we are looking at the case where ℰ has a
minimal model that is a del Pezzo surface of degree 1. In this case, ℰ is
rational. As mentioned in Remark 1.6, another motivation for us to study
the questions for these surfaces is the distribution of the rational points
on del Pezzo surfaces of degree 1.

A del Pezzo surface over a field 𝑘 is a smooth, projective, geometrically
integral surface over 𝑘 with ample anticanonical divisor. The degree of a
del Pezzo surface is the self-intersection number of the canonical divisor,
which is an integer between 1 and 9. Over an algebraically closed field, a
del Pezzo surface of degree 𝑑 is isomorphic to either P1 × P1 (for 𝑑 = 8),
or to P2 blown up at 9 − 𝑑 points in general position [Man74, Theorem
24.4.]. Over non-algebraically closed fields, this is in general not true, and
the arithmetic of these surfaces has been widely studied as we report in
Remark 1.8. As is evident from the known results on the distribution of
the rational points, the arithmetic complexity of del Pezzo surfaces goes
up as the degree goes down.

Over an algebraically closed field, a del Pezzo surface contains a finite
number of exceptional curves, depending on the degree of the surface; we
often call these lines.

For a del Pezzo surface 𝑆 of degree 1 and the corresponding elliptic
surface ℰ obtained by blowing up the base point of the anticanonical linear
system on 𝑆, we ask the following.

Question 1.4 If a point on 𝑆 is contained in ‘many’ lines, is the
corresponding point on ℰ then torsion on its fiber?

Of course, ‘many’ needs to be specified. In this paper we give a positive
answer to this question for ‘many’ equal to 9:

Theorem 1.5 If at least 9 exceptional curves on 𝑆 are concurrent in a
point, then the corresponding point on ℰ is torsion on its fiber.

We also show that if we take ‘many’ to be 7, the answer to this question
is negative, at least in most characteristics, by providing two counterex-
amples (Examples 3.1 and 3.3). These are the first known examples of a
non-torsion point contained in more than 6 lines.
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Torsion points and concurrent exceptional curves 3

We call a set of exceptional curves on a del Pezzo surface concurrent in
a point if that point is contained in all of them.

Remark 1.6 For del Pezzo surfaces of degree 2, the situation is simpler,
and a result similar to Theorem 1.5 is known. A del Pezzo surface of degree
2 is a double cover of P2 ramified along a quartic curve. On such a surface,
a point is contained in at most 4 exceptional curves, and this happens
exactly when its projection to P2 is in the intersection of 4 bitangents of
the quartic curve. In [Kuw05], Kuwata constructs elliptic surfaces from
del Pezzo surfaces of degree 2. He shows that for a point contained in 4
exceptional curves on a del Pezzo surface of degree 2, the corresponding
point on the elliptic surface is torsion on its fiber [Kuw05, Proposition 7.1].

The situation for del Pezzo surfaces of degree 1 is more complex. First
of all, outside characteristics 2 and 3 the maximal number of concurrent
lines on a del Pezzo surface of degree 1 is 10 [vLW23, Theorems 1.1 and
1.2], but as Theorem 1.5 shows, a point contained in 9 lines is already
torsion on its fiber. Moreover, 4 intersecting lines on a del Pezzo surface of
degree 2 intersect pairwise with multipliciy 1, but there are a priori many
different ways in which 9 or more concurrent lines on a del Pezzo surface
of degree 1 can intersect; we explain this in Section 4.

The question of whether one can find an example with 8 lines on 𝑆 that
intersect in a point which is non-torsion on its fiber of ℰ stays unsolved.
We show that the lines in such an example, if it exists, intersect each
other according to one of 15 prescribed configurations in general, and 13
in characteristic 0.

Theorem 1.7 If 8 exceptional curves on a del Pezzo surface 𝑆 of degree
1 are concurrent in a point, then the corresponding point on the elliptic
surface ℰ obtained by blowing up the base point of the anticanonical lin-
ear system is torsion on its fiber, except possibly in the following case.
Consider the graph G where each vertex corresponds to one of the 8 ex-
ceptional curves and two vertices are connected with an edge if and only
if the corresponding exceptional curves intersect with multiplicity 2. Then
the 8 exceptional curves intersect pairwise with multiplicities 1 or 2, and
the graph G equals one of the graphs with numbers 1, . . . 8, 10, . . . , 15, 19 in
Figure 1. In characteristic 0, numbers 7 and 15 can be excluded from this
list.

Remark 1.8 Our original motivation comes from the distribution of
rational points on del Pezzo surfaces.

Del Pezzo surfaces of degree at least 2 over a field 𝑘 with a 𝑘-rational
point are known to be 𝑘-unirational under the extra condition for degree 2
that the 𝑘-rational point lies outside a closed subset [Seg43, Seg51, Man74,
Kol02, Pie12, STVA14]. Del Pezzo surfaces of degree 1 over a field with
characteristic not 2 are known to be unirational if they admit a conic
bundle structure [KM17], but outside this case, there is no example of a
minimal del Pezzo surface of degree 1 that is known to be 𝑘-unirational,
nor of one that is known not to be 𝑘-unirational. Unirationality for del
Pezzo surfaces of degree 1 in general is considered an extremely difficult
problem. Over infinite fields there are several partial results on Zariski
density of the set of rational points on these surfaces [VA11, Ula07, Ula08,
Jab12, SvL14, Bul18, DW22], which is a weaker notion in the sense that it
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is implied by unirationality. However, there are still many families of del
Pezzo surfaces of degree 1 for which even Zariski density of rational points
is not proven.

For several of the earlier mentioned results, one requires the existence of
a rational point on the surface which is not contained in too many lines. For
example, in the paper [STVA14] the authors show that a del Pezzo surface
of degree 2 is unirational if it contains a point that is not contained in 4
lines, and lies outside a specific subset of the surface. As another example,
one of the conditions for the set of rational points on a del Pezzo surface
of degree 1 to be dense in [SvL14] is the existence of a point not contained
in 6 of these lines. At the same time, several of the results on density of
rational points on a del Pezzo surface of degree 1 require the existence of
a point which is non-torsion on its fiber of the elliptic surface obtained
by blowing up the base point of the anticanonical linear system; see for
instance [SvL14, DW22]. The paper [SvL14] contains several examples of
a point on a del Pezzo surface of degree 1 for which their method fails, and
in all cases, the point is contained in the intersection of at least 6 lines,
and it is torsion on its fiber. This observation motivates Question 1.4.

The paper is organized as follows. In Section 2 we present the necessary
background on the exceptional curves on a del Pezzo surface 𝑆 of degree 1,
the relation to the root system E8, the elliptic surface ℰ obtained from 𝑆,
and the strict transforms on ℰ of the exceptional curves on 𝑆. In Section 3
we show that 7 concurrent lines do not always intersect in a torsion point,
by giving two counterexamples (Examples 3.1 and 3.3). In Section 4 we
prove Theorem 1.5. In Section 5 we study the case of 8 lines and prove
Theorem 1.7.

Part of this paper appeared in the PhD thesis of the second author.
Specifically, Sections 2 and 4 are slight modifications of [Win21, Chapter
5 and Sections 1.4.2, 1.4.3]. The innovative material compared to what is
found in the thesis is Sections 3 and 5, which includes Theorem 1.7.

Computations were done in magma [BCP97]; the code is available online
[DW].
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2 Background

In this Section we give the necessary background for the rest of this paper.
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Torsion points and concurrent exceptional curves 5

2.1 Exceptional curves and the 𝐸8 root system

Definition 2.1 Let 𝑟 ≤ 8 be an integer, and let 𝑃1, . . . , 𝑃𝑟 be points in P2.
We say that 𝑃1, . . . , 𝑃𝑟 are in general position if there is no line containing
three of the points, no conic containing six of the points, and no cubic
containing eight of the points with a singularity at one of them.

As mentioned in the introduction, a del Pezzo surface over an alge-
braically closed field is isomorphic to either P1 × P1 (for 𝑑 = 8), or to P2

blown up at 9 − 𝑑 points in general position [Man74, Theorem 24.4].

Definition 2.2 An exceptional curve on a del Pezzo surface 𝑆 with
canonical divisor 𝐾𝑆 is an irreducible projective curve 𝐶 ⊂ 𝑆 such that

𝐶2 = 𝐶 · 𝐾𝑆 = −1.

We often call exceptional curves lines, since for a del Pezzo surface of
degree 𝑑 ≥ 3, the images of these curves under the anticanonical embedding
in P𝑑 are lines. Over an algebraically closed field, we know exactly how to
describe the lines on a del Pezzo surface in terms of curves in P2.

Theorem 2.1 ([Man74, Theorem 26.2]) For an integer 𝑑 ∈ {1, . . . , 8},
let 𝑃1, . . . , 𝑃9−𝑑 be 9 − 𝑑 points in general position in P2. The exceptional
curves on the del Pezzo surface of degree 9 − 𝑑 obtained by the blow-up of
𝑃1, . . . , 𝑃9−𝑑 are

• the exceptional curves 𝐸𝑖 above the points 𝑃𝑖 for 𝑖 ∈ {1, . . . , 9 − 𝑑},

and the strict transforms of the following curves in P2.
• The line 𝐿𝑖, 𝑗 passing through the points 𝑃𝑖 and 𝑃 𝑗 , for 𝑖 ≠ 𝑗 ,
• the conics passing through five of the points,
• the cubic 𝐶𝑖, 𝑗 not passing through 𝑃 𝑗 , passing twice through 𝑃𝑖 and

passing once through the six remaining points,
• the quartic 𝑄𝑖, 𝑗 ,𝑘 passing through the eight points with a double point

in 𝑃𝑖, 𝑃 𝑗 and 𝑃𝑘 for 𝑖, 𝑗 , 𝑘 distinct,
• the quintics passing through the eight points with double points at 6 of

them, and
• the sextics passing through the eight points with double points at 7 of

them, and a triple point at one of them.

Notation 2.2 Throughout the paper, for 𝑟 points 𝑃1, . . . , 𝑃𝑟 in general
position in P2, and for 𝑖 ∈ {1, . . . , 𝑟}, we use the notation 𝐸𝑖 for the ex-
ceptional curve above 𝑃𝑖 on the del Pezzo surface obtained by blowing up
𝑃1, . . . , 𝑃𝑟 . Similarly, for 𝑖, 𝑗 , 𝑘 ∈ {1, . . . , 𝑟} we write 𝐿𝑖, 𝑗 , 𝐶𝑖, 𝑗 , 𝑄𝑖, 𝑗 ,𝑘 for
the lines, cubics, and quartics in P2, as defined in Theorem 2.1.

From now on, we focus on del Pezzo surfaces of degree 1. Let 𝑆 be such a
surface over an algebraically closed field. From Theorem 2.1 it follows that
𝑆 contains 240 exceptional curves. These are in one-to-one correspondence
with the root system E8, as we will now describe.

Let 〈·, ·〉 be the negative of the intersection pairing on Pic 𝑆, and let 𝐾𝑆

be the canonical divisor of 𝑆. Then 〈·, ·〉 on R⊗ZPic 𝑆 induces the structure
of a Euclidean space on the orthogonal complement 𝐾⊥

𝑆
of the class of the
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canonical divisor, and with this structure, the set

𝑅 = {𝐷 ∈ Pic 𝑆 | 〈𝐷, 𝐷〉 = 2; 𝐷 · 𝐾𝑆 = 0}

is a root system of type E8 in 𝐾⊥
𝑆

[Man74, Theorem 23.9]. Let 𝐼 be the set
of the 240 exceptional curves in Pic 𝑆. For 𝑒 ∈ 𝐼 we have 𝑒 + 𝐾𝑆 ∈ 𝐾⊥

𝑆
and

〈𝑒 + 𝐾𝑆 , 𝑒 + 𝐾𝑆〉 = 2, and this gives a bijection

𝐼 −→ 𝑅, 𝑒 ↦−→ 𝑒 + 𝐾𝑆 . (2.1)

For 𝑒1, 𝑒2 ∈ 𝐼 we have 〈𝑒1 + 𝐾𝑆 , 𝑒2 + 𝐾𝑆〉 = 1 − 𝑒1 · 𝑒2. As a consequence
of this bijection, the group of permutations of 𝐼 that preserve the inter-
section pairing is isomorphic to the Weyl group 𝑊8, which is the group
of permutations of E8 generated by the reflections in the hyperplanes or-
thogonal to the roots [Man74, Theorem 23.9]. Another way of stating the
bijection (2.1) is to note that the weighted graphs on 𝐼 and E8 and their
automorphism groups are isomorphic (Remark 2.3).

Definition 2.3 By a graph we mean a pair (𝑉, 𝐷), where 𝑉 is a set of
elements called vertices, and 𝐷 a subset of the power set of 𝑉 such that
every element in 𝐷 has cardinality 2; elements in 𝐷 are called edges, and
the size of the graph is the cardinality of 𝑉 . A graph (𝑉, 𝐷) is complete if
for every two distinct vertices 𝑣1, 𝑣2 ∈ 𝑉 , the pair {𝑣1, 𝑣2} is in 𝐷.
By a weighted graph we mean a graph (𝑉, 𝐷) with a map 𝜓 : 𝐷 −→ 𝐴,
where 𝐴 is any set, whose elements we call weights; for any element 𝑑 in
𝐷 we call 𝜓(𝑑) its weight. If (𝑉, 𝐷) is a weighted graph with weight func-
tion 𝜓, then we define a weighted subgraph of (𝑉, 𝐷) to be a graph (𝑉 ′, 𝐷 ′)
with map 𝜓 ′, where 𝑉 ′ is a subset of 𝑉 , while 𝐷 ′ is a subset of the inter-
section of 𝐷 with the power set of 𝑉 ′, and 𝜓 ′ is the restriction of 𝜓 to 𝐷 ′.
A clique of a weighted graph is a complete weighted subgraph. Its size is
the number of vertices.
An isomorphism between weighted graphs (𝑉, 𝐷) and (𝑉 ′, 𝐷 ′) with weight
functions 𝜓 : 𝐷 −→ 𝐴 and 𝜓 ′ : 𝐷 ′ −→ 𝐴′, respectively, consists of a bijec-
tion 𝑓 between the sets 𝑉 and 𝑉 ′ and a bijection 𝑔 between the sets 𝐴 and
𝐴′, such that for any two vertices 𝑣1, 𝑣2 ∈ 𝑉 , we have {𝑣1, 𝑣2} ∈ 𝐷 with
weight 𝑤 if and only if { 𝑓 (𝑣1), 𝑓 (𝑣2)} ∈ 𝐷 ′ with weight 𝑔(𝑤). We call the
map 𝑓 an automorphism of (𝑉, 𝐷) if (𝑉, 𝐷) = (𝑉 ′, 𝐷 ′), 𝜓 = 𝜓 ′, and 𝑔 is
the identity on 𝐴.

Definition 2.4 By Γ we denote the complete weighted graph whose vertex
set is the set of roots in E8, and where the weight function is induced by
the dot product. Similarly, by 𝐺 we denote the complete weighted graph
whose vertex set is 𝐼, and where the weight function is the intersection
pairing in Pic 𝑆.

Remark 2.3 There is an isomorphism of weighted graphs between 𝐺 and
Γ, that sends a vertex 𝑒 in 𝐺 to the corresponding vertex 𝑒 + 𝐾𝑆 in Γ, and
an edge 𝑑 = {𝑒1, 𝑒2} in 𝐺 with weight 𝑤 to the edge 𝛿 = {𝑒1 + 𝐾𝑆 , 𝑒2 + 𝐾𝑆}
in Γ with weight 1−𝑤. The different weights that occur in 𝐺 are 0, 1, 2, and
3, and they correspond to weights 1, 0,−1, and −2, respectively, in Γ. As a
consequence, the weighted graphs 𝐺 and Γ have isomorphic automorphism
groups, given by the Weyl group 𝑊8.
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2.2 The elliptic surface

Let 𝑆 be a del Pezzo surface of degree 1 over a field 𝑘 with canonical
divisor 𝐾𝑆. The surface 𝑆 can be embedded in the weighted projective
space P(2, 3, 1, 1) with coordinates (𝑥 : 𝑦 : 𝑧 : 𝑤) as the set of solutions to
the equation

𝑦2 + 𝑎1𝑥𝑦 + 𝑎3𝑦 − 𝑥3 − 𝑎2𝑥
2 − 𝑎4𝑥 − 𝑎6 = 0, (2.2)

where 𝑎𝑖 ∈ 𝑘 [𝑧, 𝑤] is homogeneous of degree 𝑖 for each 𝑖 in {1, . . . , 6}. The
linear system |−𝐾𝑆 | induces a rational map 𝑆 d P1, (𝑥 : 𝑦 : 𝑧 : 𝑤) ↦→ (𝑧 :
𝑤), which is defined everywhere except in the base point of |−𝐾𝑆 |, given
by O = (1 : 1 : 0 : 0). The blow-up of 𝑆 in O gives a rational elliptic surface
ℰ with only irreducible fibres,1 and we denote this blow-up by 𝜋 : ℰ −→ 𝑆.
We denote the induced elliptic fibration on ℰ by 𝜈 : ℰ −→ P1. The generic
fiber ofℰ is an elliptic curve 𝐸 over the function field 𝑘 (𝑡) of P1. We call the
Mordell–Weil group of 𝐸 the Mordell–Weil group of ℰ. Points in 𝐸 (𝑘 (𝑡))
correspond to sections of 𝜈 that are defined over 𝑘 [Sil94, Proposition 3.10].
For (𝑧0 : 𝑤0) ∈ P1

𝑘
, the fiber 𝜈−1 ((𝑧0 : 𝑤0)) is isomorphic to the cubic curve

in P2
𝑘

with affine Weierstrass equation

𝑌2+𝑎1 (𝑧0, 𝑤0)𝑋𝑌+𝑎3 (𝑧0, 𝑤0)𝑌 = 𝑋3+𝑎2 (𝑧0, 𝑤0)𝑋2+𝑎4 (𝑧0, 𝑤0)𝑋+𝑎6 (𝑧0, 𝑤0).
(2.3)

The point at infinity on such a fiber is the intersection on ℰ with the
exceptional divisor Õ above O. For a point 𝑃 ∈ 𝑆 \ {O} we denote by 𝑃ℰ
the corresponding point on ℰ.

Remark 2.4 The linear system | − 2𝐾𝑆 | of the bi-anticanonical divisor of
𝑆 induces a morphism 𝜑, which is the composition of the projection of 𝑆 to
P(2, 1, 1) on the 𝑥, 𝑧, 𝑤-coordinates, and the 2-uple embedding of P(2, 1, 1)
in P3. This morphism realizes 𝑆 as a double cover of a cone in P3 ramified
over a sextic curve. Using the notation in (2.2), the morphism 𝜑 is ramified
at the points (𝑥0 : 𝑦0 : 𝑧0 : 𝑤0) ∈ 𝑆 for which we have 2𝑦0 + 𝑎1𝑥0 + 𝑎3 = 0,
and from (2.3) it follows that these are exactly the points that are 2-torsion
on their fiber on ℰ.

Remark 2.5 Since exceptional curves on 𝑆 are defined over a separable
closure of 𝑘 [VA09, Theorem 2.1.1], from [VA08, Theorem 1.2] it follows
that the exceptional curves on 𝑆 ⊂ P(2, 3, 1, 1) are exactly the curves given
by

𝑥 = 𝑝(𝑧, 𝑤), 𝑦 = 𝑞(𝑧, 𝑤),
where 𝑝, 𝑞 ∈ 𝑘 [𝑧, 𝑤] are homogeneous of degrees 2 and 3, respectively. Note
that this implies that an exceptional curve never contains O = (1 : 1 : 0 : 0).
Therefore, for an exceptional curve 𝐶 on 𝑆, its strict transform 𝜋∗ (𝐶) on ℰ

satisfies

𝜋∗ (𝐶)2 = −1, 𝜋∗ (𝐶) · 𝐾ℰ = 𝜋∗ (𝐶) · (𝜋∗ (𝐾𝑆) + Õ) = −1 + 0 = −1.

Thus 𝜋∗ (𝐶) is an exceptional curve on ℰ as well, and, since a fiber of 𝜈
is linearly equivalent to −𝐾ℰ, the curve 𝜋∗ (𝐶) intersects every fiber once.
This gives a section of 𝜈.

1Reciprocally, the contraction of the zero-section on a rational elliptic surface ℰ

produces a del Pezzo surface of degree 1 whenever ℰ has only irreducible fiber [Des16,
Corollaire 1.2.9, Lemme 1.2.10].

2024/12/06 15:43

https://doi.org/10.4153/S0008439524000936 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439524000936


8 J. Desjardins and R. Winter

Remark 2.6 Theorem 1.5 seems intuitively true by the following argu-
ment, which was pointed out to us by several people. Let 𝑃 be a point on
𝑆 that is contained in at least 9 exceptional curves, say 𝐿1, . . . , 𝐿𝑛. These
curves correspond to sections �̃�1, . . . , �̃�𝑛 of ℰ (Remark 2.5), which in turn
correspond to elements in the Mordell–Weil group of ℰ. This Mordell–Weil
group has rank at most 8 over 𝑘 [Shi90, Theorem 10.4], so in this group
there must be a relation 𝑎1 �̃�1 + · · · +𝑎𝑛 �̃�𝑛 = 0, where 𝑎1, . . . , 𝑎𝑛 ∈ Z are not
all zero. Since all 𝑛 exceptional curves contain the point 𝑃, this specializes
to (𝑎1 + · · · + 𝑎𝑛)𝑃ℰ = 0 on the fiber of 𝑃 on ℰ. If one reasons too quickly,
it seems that this proves that 𝑃ℰ is torsion of order dividing 𝑎1 + · · · + 𝑎𝑛
on its fiber. However, it might be the case that 𝑎1 + · · · + 𝑎𝑛 = 0, so this
does not prove Theorem 1.5. The key part in our proof is therefore that we
show, using results from [WvL21], that there is always a relation between
�̃�1, . . . , �̃�𝑛 in the Mordell–Weil group of ℰ that specializes to a non-trivial
relation on the fiber of 𝑃ℰ; see Lemma 4.3.

3 The case of 7 lines: two examples

In this section we give two examples that show that for a point 𝑃 in the
intersection of 7 exceptional curves on a del Pezzo surface of degree 1,
the point 𝑃ℰ is not guaranteed to be torsion on its fiber. This gives a
negative answer to Question 1.4 for ‘many’ equal to 7 or less. As explained
in Remark 3.2, our examples hold in all but 10 characteristics.

Example 3.1 Let 𝑆 be the blow-up of P2
Q

in the eight points:

𝑃1 = (0 : 1 : 1); 𝑃2 = (0 : 14 : 13);
𝑃3 = (1 : 0 : 1); 𝑃4 = (21 : 0 : 13);
𝑃5 = (1 : 1 : 1); 𝑃6 = (6 : 6 : −1);
𝑃7 = (−2 : 2 : 1); 𝑃8 = (−3 : 3 : −1).

It is easy to check that these points are in general position, thus 𝑆 is a del
Pezzo surface of degree 1. Consider the following curves in P2 (see Notation
2.2): the line 𝐿1,2 given by 𝑥 = 0, the line 𝐿3,4 given by 𝑦 = 0, the line 𝐿5,6
given by 𝑥 − 𝑦 = 0, the line 𝐿7,8 given by 𝑥 + 𝑦 = 0, the cubic 𝐶1,2 given by

26𝑥3 + 42𝑥2𝑦 − 68𝑥2𝑧 − 33𝑥𝑦2 − 9𝑥𝑦𝑧 + 42𝑥𝑧2 − 36𝑦3 + 72𝑦2𝑧 − 36𝑦𝑧2 = 0,

the cubic 𝐶3,4 given by

36𝑥3 + 46𝑥2𝑦 − 72𝑥2𝑧 − 42𝑥𝑦2 − 4𝑥𝑦𝑧 + 36𝑥𝑧2 − 39𝑦3 + 81𝑦2𝑧 − 42𝑦𝑧2 = 0,

and the quartic 𝑄2,6,7 given by

1144𝑥4 + 1288𝑥3𝑦 − 808𝑥3𝑧 − 2910𝑥2𝑦2 + 4748𝑥2𝑦𝑧 − 3864𝑥2𝑧2 − 1092𝑥𝑦3

+318𝑥𝑦2𝑧−2352𝑥𝑦𝑧2+3528𝑥𝑧3+1521𝑦4−4797𝑦3𝑧+5040𝑦2𝑧2−1764𝑦𝑧3 = 0.

These 7 curves all go through 𝑄 = (0 : 0 : 1), and each of them gives rise
to an exceptional curve on 𝑆 by Theorem 2.1. The base point O of the
anticanonical linear system of 𝑆 is strict transform of the base point in P2

of the pencil of cubics through 𝑃1, . . . , 𝑃8, which is given by

𝐵 = (27 : 68 : 109).

The fiber of 𝑄 of the elliptic surface obtained by blowing up 𝑆 in O is given
by the strict transform of the cubic curve through 𝑃1, . . . , 𝑃8, 𝑄 with origin
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given by 𝐵. With magma we check that the point 𝑄 is non-torsion on this
elliptic curve.

Remark 3.2 The previous example also holds over any other field 𝑘, as
long as the characteristic of 𝑘 is 𝑝 for all but a finite number of primes 𝑝.
In fact, the only characteristics for which this does not hold are the ones
for which 𝑃1, . . . , 𝑃8 are not in general position, and for which the fiber
of 𝑄 is not an elliptic curve, i.e., for which it is singular. We compute this
with magma and find the primes {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 3319}.
It is not hard to generate similar examples that hold in some of the missing
characteristics; for example, the eight points in P2 given by Example 3.3 are
in general position with a non-singular fiber in all but 29 characteristics,
and this gives, together with Example 3.1, examples of 7 exceptional curves
that are concurrent in a point 𝑃 such that 𝑃ℰ is not torsion on its fiber
for each characteristic except for 𝑝 = 2, 3, 5, 7, 11, 13, 17, 19, 23, 29.

Example 3.3 Let 𝑆 be the blow-up of P2
Q

in the eight points:

𝑃1 = (0 : 1 : 1); 𝑃2 = (0 : 3861 : 1957);
𝑃3 = (1 : 0 : 1); 𝑃4 = (1188 : 0 : −19);
𝑃5 = (1 : 1 : 1); 𝑃6 = (780 : 780 : 1883);
𝑃7 = (−52 : 52 : 51); 𝑃8 = (−9 : 9 : −17).

It is an easy check that 𝑃1, . . . , 𝑃8 are in general position, so 𝑆 is a del
Pezzo surface of degree 1. Again the line 𝐿1,2 is given by 𝑥 = 0, the line
𝐿3,4 by 𝑦 = 0, the line 𝐿5,6 by 𝑥 − 𝑦 = 0, and the line 𝐿7,8 by 𝑥 + 𝑦 = 0. The
cubic 𝐶1,2 is now given by

247𝑥3 − 15444𝑥2𝑦 + 15197𝑥2𝑧 − 56500𝑥𝑦2 + 71944𝑥𝑦𝑧
− 15444𝑥𝑧2 − 24336𝑦3 + 48672𝑦2𝑧 − 24336𝑦𝑧2 = 0,

the cubic 𝐶3,4 is given by

24336𝑥3 + 48425𝑥2𝑦 − 48672𝑥2𝑧 + 15444𝑥𝑦2

− 63869𝑥𝑦𝑧 + 24336𝑥𝑧2 + 7828𝑦3 − 23272𝑦2𝑧 + 15444𝑦𝑧2 = 0,

and the quartic 𝑄2,6,7 is given by

2705155115𝑥4−160214640456𝑥3𝑦+165198460765𝑥3𝑧−340717645684𝑥2𝑦2

+ 583405507724𝑥2𝑦𝑧 − 245421685080𝑥2𝑧2 − 86417174688𝑥𝑦3

+301295315984𝑥𝑦2𝑧−297351362880𝑥𝑦𝑧2 +77518069200𝑥𝑧3−6127758400𝑦4

+ 30306884800𝑦3𝑧 − 48030840000𝑦2𝑧2 + 23851713600𝑦𝑧3 = 0.

These 7 curves again all go through 𝑄 = (0 : 0 : 1), and completely
analogously to the previous example we check with magma that the point
𝑄 is non-torsion on its fiber.

Remark 3.4 The first steps of the process used to find Examples 3.1 and
3.3 allow us to find a point 𝑃 on 𝑆 contained in 6 lines which is non-torsion.
For instance, let 𝑘 be a field of characteristic 0, and consider the following
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points in P2
𝑘
.

𝑃1 = (0 : 1 : 1); 𝑃2 = (0 : 319 : −920);
𝑃3 = (1 : 0 : 1); 𝑃4 = (799 : 0 : 610);
𝑃5 = (1 : 1 : 1); 𝑃6 = (1 : 1 : −1);
𝑃7 = (31 : 1 : 123); 𝑃8 = (31 : 1 : 11).

The curves 𝐿1,2, 𝐿3,4, 𝐿5,6, 𝐿7,8, 𝐶1,2, and 𝐶3,4 in P2 all go through
𝑄 = (0 : 0 : 1), and each of them gives rise to an exceptional curve on
𝑆. This is not the first example of a non-torsion point contained in 6 lines,
see [Win21, Example 5.1.5]. However, the 6 lines in this example have a
different intersection graph than those in [Win21, Example 5.1.5], showing
that there are several families of such examples. Comparatively, there are
‘many more’ examples with 6 lines than 7 lines. While our method leads
without trouble to more examples of 6 concurrent lines, the further con-
ditions required by the construction of the 7th line lead to a much sparser
set of possibilities to obtain more examples like 3.1 and 3.3.

4 The case of 9 or more lines: proof of Theorem 1.5

In this Section we prove Theorem 1.5. Let 𝑆 be a del Pezzo surface of
degree 1 over a field 𝑘, let ℰ be the corresponding elliptic surface, and 𝐸

the generic fiber ofℰ. We start by describing a pairing on the Mordell–Weil
group of ℰ.

Let 𝜑 : 𝑆 → P3 be the morphism induced by the bi-anticanonical linear
system on 𝑆 as in Remark 2.4. Let 𝑒1, . . . , 𝑒𝑛 be at least 9 exceptional curves
on 𝑆 that are concurrent in a point 𝑄 that lies outside the ramification
curve of 𝜑. Let 𝐿1, . . . , 𝐿𝑛 be the corresponding sections of 𝜈 : ℰ → P1. Let
〈·, ·〉ℎ be the symmetric and bilinear pairing on the Mordell–Weil group of
ℰ as defined in [Shi90, Theorem 8.4]; that is, for 𝐶1, 𝐶2 in 𝐸 (𝑘 (𝑇)), we
have 〈𝐶1, 𝐶2〉ℎ = −(𝜑ℎ (𝐶1) · 𝜑ℎ (𝐶2)), where 𝜑ℎ : 𝐸 (𝑘 (𝑇)) −→ Pic ℰ is the
map given in [Shi90, Lemmas 8.1 and 8.2], and · is the intersection pairing
in the Picard group of ℰ. We call 〈·, ·〉ℎ the height pairing on 𝐸 (𝑘 (𝑇)).

Lemma 4.1 For two exceptional curves in Pic 𝑆, the height pairing of the
corresponding sections in the Mordell–Weil group of ℰ is the same as the
dot product of the roots in the root system E8 associated to these exceptional
curves under the bijection (2.1).

Proof This statement follows directly from the isomorphism between the
Mordell–Weil lattice of ℰ and E8; see Remark 4.2. We here illustrate how
one can also see it from the properties of the height pairing. Let 𝐶1, 𝐶2 be
two sections of ℰ that are strict transforms of exceptional curves 𝑐1, 𝑐2 in
𝑆. Since ℰ has no reducible fibers, by [Shi90, Lemma 8.1] we have

𝜑ℎ (𝐶1) · 𝜑ℎ (𝐶2) = ( [𝐶1] − [Õ] − 𝐹) · ( [𝐶2] − [Õ] − 𝐹),

where [𝐶1], [𝐶2], [Õ] are the classes of 𝐶1, 𝐶2, and the zero section,
respectively, and 𝐹 is the class of a fiber. This gives

𝜑ℎ (𝐶1) · 𝜑ℎ (𝐶2) = [𝐶1] · [𝐶2] − 1,

where we use that the zero section is an exceptional curve, and it is disjoint
from 𝐶1 and 𝐶2 (Remark 2.5). We conclude that we have 〈𝐶1, 𝐶2〉ℎ =
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1− [𝐶1] · [𝐶2]. Since 𝐶1, 𝐶2 are disjoint from Õ, the intersection pairing of
𝐶1 and 𝐶2 in Pic ℰ is the same as the intersection pairing of 𝑐1 and 𝑐2 in
Pic 𝑆. The statement now follows from the bijection (2.1). �

Remark 4.2 Lemma 4.1 is true for every section of the elliptic fibra-
tion, not only the ones coming from the lines on the del Pezzo surfaces
of degree 1. The key is to see that 𝐸 (Q(𝑡))/𝐸 (Q(𝑡))𝑡𝑜𝑟𝑠 and 𝑁𝑆(ℰ)/𝑇 are
isomorphic as lattices, where 𝑁𝑆(ℰ) is the Néron-Severi lattice and 𝑇 is
the trivial sublattice of 𝑁𝑆(ℰ) (generated by the zero section and fibre
components). Moreover, the latter is isomorphic to 𝐾⊥

𝑆
. See for instance in

[VAZ09, Section 7.4.] for a proof of these facts. We thank an anonymous
referee for pointing this out to us.

Let 𝑀 be the height pairing matrix of 𝑒1, . . . , 𝑒𝑛, that is, 𝑀 is the 𝑛× 𝑛
matrix with entries 𝑀𝑖 𝑗 = 〈𝐿𝑖 , 𝐿 𝑗〉ℎ for 𝑖, 𝑗 ∈ {1, . . . , 𝑛}.

Lemma 4.3 The kernel of the matrix 𝑀 contains a vector (𝑎1, . . . , 𝑎𝑛) in
Z𝑛 with 𝑎1 + · · · + 𝑎𝑛 ≠ 0.

Proof Recall the complete weighted graphs 𝐺 and Γ as defined in Defi-
nition 2.4. Since 𝑄 lies outside the ramification curve of 𝜑, where 𝜑 is the
morphism in Remark 2.4, the exceptional curves 𝑒1, . . . , 𝑒𝑛 correspond to
a clique of size 𝑛 in 𝐺 that is contained in a maximal clique in 𝐺 with only
edges of weights 1 and 2 [vLW23, Remark 2.11]. The latter corresponds to
a maximal clique 𝐶 in Γ with only edges of weights -1 and 0 by the bijection
(2.1). Since 𝑛 ≥ 9, the clique 𝐶 has size at least 9. The table in [WvL21,
Appendix A] contains all isomorphism types of maximal cliques in Γ with
only edges of weights -1 and 0 and of size at least 9 [WvL21, Proposition
21]; there are 11 maximal cliques of size 9, which we call 𝛼1, . . . , 𝛼11 in the
order that they appear in the table, there are 6 maximal cliques of size 10,
which we call 𝛽1, . . . , 𝛽6 in the order that they appear in the table, and
there is 1 maximal clique of size 12, which we call 𝛾. For each of these 18
cliques, whose elements correspond to roots in E8, we compute its Gram
matrix, which is the matrix where the entry (𝑖, 𝑗) is the dot product of the
roots corresponding to the 𝑖-th and 𝑗-th vertex in the clique after choos-
ing an ordering on the vertices. With magma we find the generators for the
kernels of these matrices. The results are in Table 1. Let 𝑟 be the number
of vertices of 𝐶, and let 𝑁 be the Gram matrix of 𝐶; then the kernel of 𝑁
is equal to one of the 18 kernels in the table, after rearranging the order
of the vertices in 𝐶 if necessary. Since we have 𝑛 ≥ 9, we see from Table 1
that for any subset of 𝑛 vertices in 𝐶, there is a vector (𝑎1, . . . , 𝑎𝑟 ) in the
kernel of 𝑁 which is 0 outside the entries corresponding to the 𝑛 vertices,
and such that 𝑎1 + · · · + 𝑎𝑟 ≠ 0. By Lemma 4.1, this gives a vector in the
kernel of 𝑀 as claimed. �

Proof of Theorem 1.5 Let 𝑃 be a point on 𝑆. If 𝑃 is contained in the
ramification curve of the morphism induced by the linear system of the bi-
anticanonical divisor, then 𝑃ℰ is torsion (Remark 2.4), and we are done.
Now assume that 𝑃 is not contained in this ramification curve, and that
there is a set of at least 9 exceptional curves that are concurrent in 𝑃. Let
𝐾1, . . . , 𝐾𝑛 be the corresponding sections of ℰ, and let 𝑁 be the height
pairing matrix of these sections. Let (𝑎1, . . . , 𝑎𝑛) ∈ Z𝑛 be a vector in the
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Clique Basis for the kernel
𝛼1 {(1, 1, 0, 0, 0, 0, 1, 0, 1), (0, 0, 1, 1, 1, 1, 0, 2, 0)}
𝛼2 {(1, 0, 1, 0, 0, 1, 0, 0, 1), (0, 0, 0, 1, 1, 0, 1, 0, 0)}
𝛼3 {(1, 1, 1, 0, 0, 1, 0, 0, 1), (0, 0, 0, 1, 1, 0, 1, 1, 0)}
𝛼4 {(1, 1, 0, 1, 0, 0, 1, 0, 1), (0, 0, 1, 0, 0, 1, 0, 1, 0)}
𝛼5 {(2, 1, 1, 0, 2, 0, 0, 1, 1), (0, 0, 0, 1, 0, 1, 1, 0, 0)}
𝛼6 {(1, 1, 1, 1, 1, 1, 1, 1, 1)}
𝛼7 {(1, 1, 1, 0, 1, 1, 1, 1, 1)}
𝛼8 {(0, 1, 1, 2, 2, 2, 1, 1, 0)}
𝛼9 {(2, 1, 1, 1, 1, 2, 2, 2, 2))}
𝛼10 {(2, 2, 0, 3, 1, 4, 2, 3, 1)}
𝛼11 {(6, 3, 1, 4, 4, 2, 2, 5, 3)}
𝛽1 {(1, 0, 1, 0, 0, 2, 1, 0, 0, 1), (0, 1, 0, 1, 2, 0, 0, 1, 1, 0)}
𝛽2 {(1, 1, 0, 0, 0, 0, 0, 0, 1, 1), (0, 0, 0, 0, 1, 1, 1, 1, 0, 0)}
𝛽3 {(1, 1, 0, 1, 0, 0, 0, 1, 0, 1), (0, 0, 1, 0, 1, 1, 1, 0, 1, 0)}
𝛽4 {(1, 1, 0, 1, 0, 1, 0, 0, 1, 1), (0, 0, 0, 0, 1, 0, 1, 1, 0, 0)}
𝛽5 {(1, 1, 0, 0, 0, 0, 0, 0, 1, 1), (0, 0, 1, 1, 1, 1, 2, 2, 0, 0)}
𝛽6 {(2, 1, 3, 0, 2, 0, 2, 0, 1, 1), (0, 0, 0, 1, 0, 1, 0, 1, 0, 0)}
𝛾 {(1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1), (0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0),

(0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0), (0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0)}

Table 1: Bases

kernel of 𝑁 such that 𝑎1 + · · · + 𝑎𝑛 ≠ 0, which exists by Lemma 4.3. Then
for all 𝑖 ∈ {1, . . . , 𝑛}, we have that

𝑎1〈𝐾𝑖 , 𝐾1〉ℎ + · · · + 𝑎𝑛〈𝐾𝑖 , 𝐾𝑛〉ℎ = 0,

and since the height pairing is bilinear this implies

〈𝐾𝑖 , 𝑎1𝐾1 + 𝑎2𝐾2 + · · · + 𝑎𝑛𝐾𝑛〉ℎ = 0 for all 𝑖 ∈ {1, . . . , 𝑛}, (4.1)

which implies

〈𝑎1𝐾1 + 𝑎2𝐾2 + · · · + 𝑎𝑛𝐾𝑛, 𝑎1𝐾1 + 𝑎2𝐾2 + · · · + 𝑎𝑛𝐾𝑛〉ℎ = 0.

From the latter we conclude that 𝑎1𝐾1 + 𝑎2𝐾2 + · · · + 𝑎𝑛𝐾𝑛 is torsion in
the Mordell–Weil group of ℰ [Shi90, Theorem 8.4], and since the torsion
subgroup is trivial [Shi90, Theorem 10.4], we conclude that

𝑎1𝐾1 + 𝑎2𝐾2 + · · · + 𝑎𝑛𝐾𝑛 = 0.

Since for all 𝑖 in {1, . . . , 𝑛}, the section 𝐾𝑖 contains the point 𝑃ℰ, we have,
on the fiber of 𝑃ℰ, the equality (𝑎1 + · · · +𝑎𝑛)𝑃ℰ = 0. Since 𝑎1 + · · · +𝑎𝑛 ≠ 0,
this implies that 𝑃ℰ is torsion on its fiber. � �

5 The case of 8 lines

Given that the rank of the Mordell-Weil group of the elliptic surface arising
from a del Pezzo surface of degree 1 is 8 (see also Remark 2.6), we conjec-
ture that points in the intersection of 8 lines are not always torsion, that
is, we expect to find an example of a del Pezzo surface with a non-torsion
point contained in the intersection of 8 lines. However, we have not yet
found such an example, nor do we have a proof that every point contained
in the intersection of 8 lines is torsion on its fiber. In this section we prove
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Theorem 1.7: we show that 8 lines that are concurrent in a non-torsion
point can only intersect each other according to one of 15 specific config-
urations, which reduces to 13 in characteristic 0. We also give strategies
for searching for examples with non-torsion points within these cliques, or
eliminating more cliques.

Let 𝑆 be a del Pezzo surface of degree 1 over an algebraically closed
field, and let ℰ be the associated elliptic surface. Let 𝐺 be the weigthed
graph on the 240 exceptional curves as in Definition 2.4. Note that its
automorphism group, the Weyl group 𝑊8, acts on the set of cliques of size
8 with only edges of weights 1 and 2.

Proposition 5.1 There are 47 orbits under the action of 𝑊8 of cliques of
size 8 with only edges of weights 1 and 2 in 𝐺. Their isomorphism types
are represented in Figure 1.

Proof Every clique in 𝐺 of size 8 with only edges of weights 1 and 2
contains at least one edge of weight 1, since the maximal size of cliques in
𝐺 with only edges of weight 2 is 3, which follows from [WvL21, Lemma 7],
using the bijection (2.1). Using this same bijection, it follows from [WvL21,
Proposition 6] that 𝑊8 acts transitively on the set of pairs of exceptional
curves that intersect with multiplicity 1, so we fix two such curves; let
𝑒1 be the strict transform on 𝑆 of the curve 𝐿1,2 in P2, and 𝑒2 the strict
transform of 𝐿3,4, where we use Notation 2.2. It follows that every clique of
size 8 with only edges of weights 1 and 2 in 𝐺 is conjugate under the action
of 𝑊8 to a clique containing 𝑒1 and 𝑒2. With magma we compute that there
are 136 exceptional curves that intersect both 𝑒1 and 𝑒2 with multiplicity
1 or 2. We define the graph 𝐻 with vertices these 136 exceptional curves,
with an edge between two vertices if they correspond to exceptional curves
intersecting with multiplicity 1 or 2, and no edge otherwise. The function
AllCliques(H,6,false) in the magma code [DW] gives all (not necessarily
maximal) cliques of size 6 in this graph; there are 8963624 of them. We
conclude that there are 8963624 cliques in 𝐺 of size 8 with only edges of
weights 1 and 2, that contain 𝑒1 and 𝑒2. This set 𝐴 of cliques contains
a representative for each 𝑊8-orbit of cliques of size 8 with only edges of
weights 1 and 2 in 𝐺, and we want to find a set of such representatives.
To reduce computing time we first sort all cliques in 𝐴 according to the
size of their stabilizer in 𝑊8. This gives 20 different sets 𝐴1, . . . , 𝐴20, where
each set contains only cliques in 𝐴 with the same stabilizer size. Finally,
for each of these sets 𝐴𝑖, we check whether the cliques inside are conjugate
under the action of 𝑊8, and end up with one representative for each 𝑊8-
orbit of the cliques in 𝐴𝑖. Doing this for all 𝐴𝑖 takes a very long time; we
let magma run for two weeks straight on the compute servers of the Max
Planck Institute for Mathematics in the Sciences, Leipzig. The output gave
47 cliques of size 8 with only edges of weight 1 and 2, where each clique
is a representative for a different 𝑊8-orbit. The isomorphism types follow
from the pairwise intersection multiplicity of the exceptional curves. �

Figure 1 contains the isomorphism types of 47 cliques in 𝐺, one repre-
sentative for each of the 47 orbits in Proposition 5.1; there are 45 different
isomorphism types. All graphs are fully connected subgraphs of 𝐺 with
edges of weights 2 (the ones that are drawn) and 1 (all other edges).
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Torsion points and concurrent exceptional curves 15

Figure 1: Isomorphism types of the cliques in 47 orbits of the set of cliques of size
8 with only edges of weights 1 and 2. All graphs are fully connected subgraphs
with edges of weights 2 (the ones that are drawn) and 1 (all other edges).

Definition 5.1 We say that a clique in 𝐺 contains an n-gon if it contains a
set of 𝑛 vertices 𝑒1, . . . , 𝑒𝑛, corresponding to 𝑛 exceptional curves 𝑐1, . . . , 𝑐𝑛
that intersect with multiplicity 2 for all {𝑖, 𝑗} ∈ {{𝑎, 𝑎 + 1} : 𝑎 ∈ {1, . . . , 𝑛 −
1}} ∪ {{1, 𝑛}}, and with multiplicity 1 otherwise.

Proposition 5.2 If a clique in 𝐺 contains an 𝑛-gon corresponding to 𝑛

exceptional curves that are concurrent in a point 𝑃 ∈ 𝑆, then the point 𝑃ℰ
is torsion on its fiber, of order dividing 𝑛.

Proof Let 𝑒1, . . . , 𝑒𝑛 be the 𝑛 exceptional curves corresponding to an 𝑛-
gon, and Let 𝐿1, . . . , 𝐿𝑛 be the corresponding sections of ℰ. From Lemma
4.1 and the bijection in (2.1) it follows that, in the Mordell-Weil group
of ℰ, we have 〈𝐿𝑖 , 𝐿𝑖〉ℎ = 2 for all 𝑖 ∈ {1, . . . , 𝑛}, and

〈
𝐿𝑖 , 𝐿 𝑗

〉
ℎ
= −1 for

{𝑖, 𝑗} ∈ {{𝑎, 𝑎+1} : 𝑎 ∈ {1, . . . , 𝑛−1}}∪{{1, 𝑛}}, and
〈
𝐿𝑖 , 𝐿 𝑗

〉
ℎ
= 0 otherwise.

We find

〈𝐿1 + · · · + 𝐿𝑛, 𝐿1 + · · · + 𝐿𝑛〉ℎ =

𝑛∑︁
𝑖=1

〈𝐿𝑖 , 𝐿𝑖〉ℎ +
𝑛∑︁
𝑖=1

〈𝐿𝑖 , 𝐿1 + · · · + 𝐿𝑖−1 + 𝐿𝑖+1 + · · · + 𝐿𝑛〉ℎ

= 2𝑛 + 𝑛(−2) = 0.

Therefore we have that 𝐿1 + · · · + 𝐿𝑛 is torsion in the Mordell–Weil group
of ℰ [Shi90, Theorem 8.4], and since the torsion subgroup is trivial [Shi90,
Theorem 10.4], we conclude that

𝐿1 + · · · + 𝐿𝑛 = 0.

Specializing the section 𝐿1 + · · · + 𝐿𝑛 to the fiber of 𝑃ℰ, gives 𝑛𝑃ℰ = 0. �

From Proposition 5.1 it follows that there is only one orbit of cliques of
types 7 and 15 in Figure 1. Combining this with the following proposition,
we can deduce that, in characteristic 0, cliques with those isomorphism
types do not correspond to lines that are concurrent in a point on a del
Pezzo surface. We do this in the proof of Theorem 1.7.

Proposition 5.3 Let 𝑘 be a field of characteristic 0. Let 𝑃1, . . . , 𝑃8 be
points in general position in P2

𝑘
, such that the lines 𝐿1,2, 𝐿3,4, 𝐿5,6 and

𝐿7,8 are concurrent in a point 𝑃. Then the curves in P2
𝑘

given by 𝐶1,2,
𝐶3,4, and 𝐶5,6 are not concurrent in 𝑃.

Proof Notice that none of the points 𝑃1, . . . , 𝑃8 equals 𝑃: otherwise, there
exists a subset of three of the 𝑃𝑖 such that they are aligned. Moreover, 𝑃 is
not collinear with any two of the three points 𝑃1, 𝑃3, 𝑃5, since this together
with 𝑃 ∈ 𝐿1,2 ∩ 𝐿3,4 ∩ 𝐿5,6 would also contradict the general position
of 𝑃1, . . . , 𝑃8. Thus 𝑃1, 𝑃3, 𝑃5 and 𝑃 are in general position, hence, after
applying an automorphism of P2 if necessary, we may assume that we have
𝑃 = (0 : 0 : 1), and

𝑃1 = (0 : 1 : 1); 𝑃3 = (1 : 0 : 1); 𝑃5 = (1 : 1 : 1).
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It follows that 𝐿1,2 is the line given by 𝑥 = 0, 𝐿3,4 is the line given by
𝑦 = 0, and 𝐿5,6 is the line given by 𝑥 = 𝑦. Since 𝐿7,8 is different from
𝐿1,2, 𝐿3,4, 𝐿5,6 and contains 𝑃, there exists an 𝑚 ∈ 𝑘 \ {0, 1} such that
𝐿7,8 is the line given by 𝑚𝑦 = 𝑥. Therefore there are 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 ∈ 𝑘 \ {0, 1}
such that we can write

𝑃1 = (0 : 1 : 1); 𝑃2 = (0 : 1 : 𝑎); (5.1)
𝑃3 = (1 : 0 : 1); 𝑃4 = (1 : 0 : 𝑏);
𝑃5 = (1 : 1 : 1); 𝑃6 = (1 : 1 : 𝑐);
𝑃7 = (𝑚 : 1 : 𝑑); 𝑃8 = (𝑚 : 1 : 𝑒);
𝑃 = (0 : 0 : 1).

We assume by contradiction that 𝐶1,2, 𝐶3,4, and 𝐶5,6 contain 𝑃. Let Mon3
be the decreasing sequence of monomials of degree 3 in 𝑥, 𝑦, 𝑧, ordered
lexicographically with 𝑥 > 𝑦 > 𝑧, and for 𝑗 ∈ {1 . . . 10} let Mon𝑖 [ 𝑗] be
the 𝑗 th entry of Mon𝑖. Let Mon1

𝑖
and Mon3

𝑖
be the list of derivatives of

the entries in Mon𝑖 with respect to 𝑆 and 𝑧, respectively. For sequence of
points in P2 given by 𝑅 = (𝑅1, . . . , 𝑅8), let 𝑀𝑅 be the matrix

𝑀𝑅 =
(
𝑐𝑖, 𝑗

)
𝑖, 𝑗∈{1,...,10} with 𝑐𝑖, 𝑗 =


Mon3 [ 𝑗] (𝑅𝑖) for 𝑖 ≤ 8
Mon𝑥

3 [ 𝑗] (𝑅8) for 𝑖 = 9
Mon𝑧

3 [ 𝑗] (𝑅8) for 𝑖 = 10
.

Then the point 𝑃 is on the cubic 𝐶1,2 if and only if the determinant of 𝑀𝑅

is 0, where 𝑅 = (𝑃3, . . . , 𝑃8, 𝑃1, 𝑃) [vLW23, Lemma 3.4 (iii)]. We compute
this determinant with magma (see [DW]) and find

det(𝑀𝑅) = −𝑚(𝑚 − 1) (𝑑 − 𝑒) (𝑐 − 1) (𝑏 − 1) (𝑔1𝑏 + 𝑔2),

where 𝑔1 = 𝑐𝑚2 + 𝑑𝑒− 𝑑𝑚− 𝑑− 𝑒𝑚− 𝑒−𝑚2 +2𝑚 +1 and 𝑔2 = −𝑐𝑑𝑒+ 𝑐𝑑 + 𝑐𝑒−
𝑐 + 2𝑑𝑒 − 2𝑑 − 2𝑒 + 2. Note that for each factor of det(𝑀𝑅) except the last
one its vanishing implies that 𝑃1, . . . , 𝑃8 are not in general position, giving
a contradiction. Therefore we find 𝑔1𝑏 + 𝑔2 = 0. Now assume that 𝑔1 = 0,
then it follows that 𝑔2 = 0. But then we have 0 = (𝑐 − 1)𝑔1 + 𝑔2 = (𝑐𝑚 − 𝑒 −
𝑚 + 1) (𝑐𝑚 − 𝑑 − 𝑚 + 1), and the latter is a product of two equations that
each say that three of the points are collinear (𝑃1, 𝑃6, 𝑃8 and 𝑃1, 𝑃6, 𝑃7,
respectively). It follows that we have 𝑔1 ≠ 0 and we can write

𝑏 = −𝑔2
𝑔1

= − (−𝑐𝑑𝑒 + 𝑐𝑑 + 𝑐𝑒 − 𝑐 + 2𝑑𝑒 − 2𝑑 − 2𝑒 + 2)
(𝑐𝑚2 + 𝑑𝑒 − 𝑑𝑚 − 𝑑 − 𝑒𝑚 − 𝑒 − 𝑚2 + 2𝑚 + 1) . (5.2)

We now repeat this process twice and summarize what we find; for the
detailed computations see [DW]. The cubic 𝐶3,4 passes through 𝑃 if and
only if det(𝑀𝑅) = 0 with 𝑅 = (𝑃1, 𝑃2, 𝑃5 . . . , 𝑃8, 𝑃3, 𝑃). We factorize the
determinant, and find ℎ1𝑎+ℎ2 = 0 with ℎ1 = 𝑐+𝑑𝑒−𝑑𝑚−𝑑−𝑒𝑚−𝑒+𝑚2+2𝑚−1
and ℎ2 = −𝑐𝑑𝑒+𝑐𝑑𝑚+𝑐𝑒𝑚−𝑐𝑚2+2𝑑𝑒−2𝑑𝑚−2𝑒𝑚+2𝑚2. From (𝑐−1)ℎ1+ℎ2 =

(𝑐 − 𝑑 + 𝑚 − 1) (𝑐 − 𝑒 + 𝑚 − 1) and the fact that the latter factors imply
that 𝑃3, 𝑃6, 𝑃7 and 𝑃3, 𝑃6, 𝑃8 are collinear, respectively, we conclude that
ℎ1 ≠ 0 and we obtain:

𝑎 = − ℎ2
ℎ1

= − (−𝑐𝑑𝑒 + 𝑐𝑑𝑚 + 𝑐𝑒𝑚 − 𝑐𝑚2 + 2𝑑𝑒 − 2𝑑𝑚 − 2𝑒𝑚 + 2𝑚2)
(𝑐 + 𝑑𝑒 − 𝑑𝑚 − 𝑑 − 𝑒𝑚 − 𝑒 + 𝑚2 + 2𝑚 − 1) . (5.3)

Setting the configuration with 𝑎 and 𝑏 as in (5.2) and (5.3), we compute
det(𝑀𝑅) with 𝑅 = (𝑃1, . . . , 𝑃4, 𝑃7, 𝑃8, 𝑃, 𝑃5), which vanishes if and only if
𝑃 is contained in 𝐶5,6. We obtain ℎ1 = 𝑐 + 𝑑𝑒 − 𝑑𝑚 − 𝑑 − 𝑒𝑚 − 𝑒 +𝑚2 + 2𝑚 −
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1 = 0. But we already showed that this implies that the points are not
in general position, giving a contradiction. We conclude that the cubics
𝐶1,2, 𝐶3,4, 𝐶5,6 do not all go through 𝑃. �

We are now ready to prove Theorem 1.7.

Proof of Theorem 1.7 Let 𝑒1, . . . , 𝑒8 be 8 exceptional curves that inter-
sect in a point 𝑃 on 𝑆. If there are 𝑖, 𝑗 ∈ {1, . . . , 8} such that 𝑒𝑖 · 𝑒 𝑗 = 3,
then 𝑃 lies on the ramification curve of the morphism 𝜑 by [vLW23, Re-
mark 2.11], hence 𝑃ℰ is torsion on its fiber by Remark 2.4. Assume that
all 𝑒1, . . . , 𝑒8 pairwise intersect with multiplicities 1 and 2. From Proposi-
tion 5.1 it follows that the isomorphism type of their weighted intersection
graph is one of the 45 different graphs in Figure 1. Moreover, from Propo-
sition 5.2 we conclude that cliques in 𝐺 with isomorphism types 24-47 in
Figure 1 correspond to exceptional curves that, if concurrent, intersect in
a point which is torsion on its fiber. Finally, for cliques in 𝐺 with isomor-
phism types 9, 16, 17, 18, 20, 21, 22, and 23 in Figure 1, we check that
the Gram matrix of the corresponding sections in the Mordell-Weil group
of ℰ has at least one vector in the kernel whose entries do not sum to 0
[DW]. Completely analogous to the proof of Theorem 1.5, it follows that
if the exceptional curves corresponding to one of these cliques were con-
current in a point 𝑃, the point 𝑃ℰ would be torsion on its fiber, since the
corresponding sections specialize to a relation 𝑎𝑃ℰ = 0 for some 𝑎 ≠ 0.
This proves the first part of the theorem.

For the second part, let 𝑌 be a del Pezzo surface of degree 1 over
an field 𝑘 of characteristic 0. Without loss of generality we can as-
sume that 𝑘 is algebraically closed, and that 𝑌 is the blow-up of points
𝑃1, . . . , 𝑃8 ∈ P2 in general position. Let 𝐺 ′ be the weighted intersec-
tion graph of the 240 exceptional curves on 𝑌 . Let 𝐾1 = { 𝑓1, . . . , 𝑓8}
be the clique in 𝐺 ′ corresponding to the exceptional curves on 𝑌 given
by the strict transforms of 𝐿1,2, 𝐿3,4, 𝐿5,6, 𝐿7,8, 𝐶1,2, 𝐶3,4, 𝐶5,6, 𝐶7,8 ⊂
P2, and 𝐾2 the clique corresponding to the strict transforms of
𝐿1,2, 𝐿3,4, 𝐿5,6, 𝐿7,8, 𝐶1,2, 𝐶3,4, 𝐶5,6, 𝑄2,4,7 ⊂ P2. All exceptional curves
in 𝐾1 intersect pairwise with multiplicity 1, so the intersection graph
of 𝐾1 is equal to number 7 in Figure 1. Similarly, all exceptional
curves in 𝐾2 intersect pairwise with multiplicity 1, except the pairs
{𝐿5,6, 𝑄2,4,7}, {𝐶1,2, 𝑄2,4,7}, {𝐶3,4, 𝑄2,4,7}, which all intersect with mul-
tiplicity 2. Therefore, the intersection graph of 𝐾2 equals number 15 in
Figure 1.

Let 𝑒1, . . . , 𝑒8 be exceptional curves on 𝑌 that pairwise intersect with
multiplicities 1 and 2, and let 𝐶 be their weighted intersection graph. As-
sume that 𝐶 equals number 7 in Figure 1. By Proposition 5.1, there is
only one 𝑊8-orbit of cliques of size 8 in 𝐺 with intersection graph equal to
number 7. Therefore, after permuting the indices if necessary, there is an el-
ement 𝑤 ∈ 𝑊8 such that 𝑒𝑖 = 𝑤( 𝑓𝑖) for 𝑖 ∈ {1, . . . , 8}. Write 𝐸 ′

𝑖
= 𝑤(𝐸𝑖) for 𝑖

in {1, . . . , 8}, where 𝐸𝑖 is as in Notation 2.2. Then, since the 𝐸 ′
𝑖

are pairwise
disjoint, 𝑌 is isomorphic to the blow-up of P2 in points 𝑄1, . . . , 𝑄8 in P2

such that 𝐸 ′
𝑖

is the exceptional curve above 𝑄𝑖 for all 𝑖 [vLW23, Lemma 2.4].
It follows that, under this blow-up, the exceptional curves 𝑒1, . . . , 𝑒8 are
the strict transforms of the curves 𝐿1,2, 𝐿3,4, 𝐿5,6, 𝐿7,8, 𝐶1,2, 𝐶3,4, 𝐶5,6, 𝐶7,8
in P2, but now defined with respect to the points 𝑄1, . . . , 𝑄8. Assume that
the lines 𝐿1,2, 𝐿3,4, 𝐿5,6, 𝐿7,8 with respect to 𝑄1, . . . , 𝑄8 are concurrent in a
point 𝑃. Then by Proposition 5.3, the curves 𝐶1,2, 𝐶3,4, 𝐶5,6 with respect to
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𝑄1, . . . , 𝑄8 do not go through 𝑃. We conclude that the exceptional curves
in a clique with isomorphism type 7 are not concurrent. The same holds
completely analogously for clique number 15. This finishes the proof. �
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