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Introducing Quantum Groups

The purpose of the first part of this text is to introduce objects called compact
quantum groups and to deal in full detail with their algebraic aspects and in par-
ticular their representation theory. It turns out that many interesting examples
of compact quantum groups fall into a specific subclass called compact matrix
quantum groups. This subclass has the advantage of being more intuitive, as
well as allowing for a simplified treatment of the whole theory. We will there-
fore restrict to it, and the connection with the more general setting of compact
quantum groups will be briefly explained in Appendix C.

We believe that there is no better way of introducing a new concept than
giving examples. We will therefore spend some time introducing one of the
most important families of examples of compact matrix quantum groups, first
defined by S. Wang in [72], called the quantum permutation groups.

1.1 The Graph Isomorphism Game

There are several ways of motivating the definition of quantum permutation
groups, because these objects are related to several important notions like
quantum isometry groups in the sense of non-commutative geometry (see, for
instance, [22] or [7]) or quantum exchangeability in the sense of free probabil-
ity (see, for instance, [50]). In this text, we will start from a recent connection,
first made explicit in [53], between quantum permutation groups and quantum
information theory. That connection appears through a game which we now
describe.

As always in quantum information theory, the game is played by two players
named Alice (denoted by A) and Bob (denoted by B). In this so-called graph
isomorphism game, they cooperate to win against the Referee (denoted by R)
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4 Introducing Quantum Groups

leading the game. The rules are given by two finite graphs,1 X and Y , with
vertex sets V (X) and V (Y ) respectively having the same cardinality, which
are known to A and B. At each round of the game, R sends a vertex vA ∈
V (X) toA and a vertex vB ∈ V (X) toB. Each of them answers with a vertex
wA ∈ V (Y ), wB ∈ V (Y ) of the other graph, and they win the round if the
following condition is matched.

Winning condition: ‘The relation2 between vA and vB is the same as the one
between wA and wB .’3

The crucial point is that once the game starts, A and B cannot com-
municate in any way. The situation can be summarised by the following
picture:

The question one asks is then, under which condition on the graphsX and Y
can the players devise a strategy which wins whatever the given vertices are?
It is not very difficult to see that the answer is the following (see Exercise 8.1
for a proof).

Proposition 1.1 There exists a perfect classical strategy if and only if X and
Y are isomorphic.

This settles the problem in classical information theory, but in the quantum
world, A and B can refine their strategy without communicating through the
use of entanglement. This means that they can set up a quantum mechanical
system and then split it into two parts, such that manipulating one part instantly
modifies the other one. We will not go into the details right now, but it turns out
that this gives more strategies, which are said to be quantum.4 By using these

1 The following discussion concerning graphs is only intended to motivate the introduction of
quantum permutation groups, hence we do not give precise definitions. A rigorous treatment
will be given in Chapter 8.

2 Here, by ‘relation’ we mean either being equal, being adjacent or not being adjacent.
3 This is not the most general version of the graph isomorphism game. We refer the reader to [2]

for a more comprehensive exposition.
4 The concept of quantum strategy turns out to be quite subtle, depending on the type of operators

allowed. We here use the term in a purposely vague sense and refer the reader to the discussion
at the beginning of Chapter 8 for more details.
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1.1 The Graph Isomorphism Game 5

quantum strategies, the previous proposition can be improved. Before giving a
precise statement, let us fix some notations.

• Given a Hilbert space H , we denote by B(H) the algebra of bounded (i.e.
continuous) linear maps from H to H;
• Given a graph X , we denote by AX the adjacency matrix of A.

The following result is a combination of [2, theorem 5.8] and [53, theorem
4.4].

Theorem 1.2 (Atserias–Lupini–Mančinska–Roberson–Šamal–Severini–Varvi-
tsiotis) There is a perfect quantum strategy if and only if there exists a matrix
P = (pij)16i,j6N with coefficients in B(H) for some Hilbert space H , such
that

• pij is an orthogonal projection for all 1 6 i, j 6 N ;

•
N∑
k=1

pik = IdH =

N∑
k=1

pkj for all 1 6 i, j 6 N ;

• AXP = PAY .

The proof of this result involves several tools coming from quantum infor-
mation theory, graph theory and compact quantum group theory. For those
reasons, we postpone it to Chapter 8.

Remark 1.3 From the perspective of quantum physics, this definition is at
least reasonable. Indeed, a family of orthogonal projections summing up to
one is a particular instance of a Positive Operator Valued Measure (see Def-
inition 8.1). We are therefore considering a collection of such objects with
compatibility conditions coming from the graphs.

Remark 1.4 It is not straightforward to produce a pair of graphs for which
there is a perfect quantum strategy but no classical one. The first example,
given in [2, section 6.2], has 24 vertices and is the smallest known at the time
of this writing.

An intriguing point of Theorem 1.2 is the operator-valued matrices which
appear in the statement. To understand them, let us consider the case H = C.
Then, the coefficients are scalars, and since they are projections, they all equal
either 0 or 1. Moreover, the sum over any row is 1, hence there is exactly one
non-zero coefficient on each row. The same being true for the columns, we
have a permutation matrix! We should therefore think of the operator-valued
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6 Introducing Quantum Groups

matrices as quantum versions of permutations, and this leads to the following
definition.

Definition 1.5 Let H be a Hilbert space. A quantum permutation matrix in H
is a matrix P = (pij)16i,j6N with coefficients in B(H) such that

• pij is an orthogonal projection for all 1 6 i, j 6 N ;

•
N∑
k=1

pik = IdH =
N∑
k=1

pkj for all 1 6 i, j 6 N .

Moreover, with this point of view the last point of Theorem 1.2 has a nice
interpretation. To explain it, let us first do a little computation.

Exercise 1.1 Let X,Y be graphs on N vertices and let σ ∈ SN . Numbering
the vertices from 1 to N , σ induces a bijection between the vertex sets of X
and Y . Prove this is a graph isomorphism if and only if

AXPσ = PσAY .

Solution Denoting byE(X) andE(Y ) the edge sets ofX and Y respectively,
the (i, j)-th coefficient of AXPσ is

N∑
k=1

(AX)ik(Pσ)kj =

N∑
k=1

δ(i,k)∈E(X)δσ(k)j

= δ(i,σ−1(j))∈E(X),

while the corresponding coefficient of PσAY is
N∑
k=1

(Pσ)ik(AX)kj =

N∑
k=1

δ(k,j)∈E(Y )δσ(i)k

= δ(σ(i),j)∈E(Y ).

These are equal if and only if

(i, σ−1(j)) ∈ E(X)⇔ (σ(i), j) ∈ E(Y ).

Setting k = σ−1(j), the condition is equivalent to

(i, k) ∈ E(X)⇔ (σ(i), σ(k)) ∈ E(Y ),

which precisely means that σ induces a graph automorphism.

In view of this, the last point of Theorem 1.2 can be interpreted as saying
that the quantum permutation respects the edges of the graphs, so that one says
that the graphs are quantum isomorphic.
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1.2 The Quantum Permutation Algebra 7

1.2 The Quantum Permutation Algebra

1.2.1 Universal Definition

The brief discussion of Section 1.1 suggests that quantum permutation matri-
ces are interesting objects which require further study. However, their def-
inition lacks several important features of classical permutation matrices. In
particular, there is no obvious way to ‘compose’ quantum permutation matri-
ces, especially if they do not act on the same Hilbert space, so that one could
recover an analogue of the group structure of permutations. To overcome this
problem, it is quite natural from an (operator) algebraic point of view to intro-
duce a universal object associated to quantum permutation matrices. Note that,
in order to translate the fact that the operators pij are orthogonal projections,
it is convenient to use the natural involution on B(H) given by taking adjoints.
For this purpose, we will consider ∗-algebras, that is to say, complex algebras
A endowed with an anti-linear and anti-multiplicative involution x 7→ x∗.

Definition 1.6 Let As(N) be the universal ∗-algebra5 generated by N2

elements (pij)16i,j6N such that

1. p2
ij = pij = p∗ij ;

2. For all 1 6 i, j 6 N ,
N∑
k=1

pik = 1 =

N∑
k=1

pkj ;

3. For all 1 6 i, j, k, ` 6 N , pijpik = δjkpij and pijp`j = δi`pij .

This will be called the quantum permutation algebra on N points.

Remark 1.7 The third condition in the definition may seem redundant since
it is automatically satisfied for projections in a Hilbert space. However, a
∗-algebra may not have a faithful representation on a Hilbert space, hence
Condition (3) does not necessarily follow from the two other ones.

Definition 1.6 refers to a so-called universal object and we will give a few
details about it for the sake of completeness. This roughly means that we want
the ‘largest possible’ algebra generated by elements that we call pij and such
that the relations in the statement are satisfied. Proving that such an object
exists and is well-behaved is not very difficult but requires a bit of abstraction.
The intuition is to start with a full algebra of non-commutative polynomials and

5 As the following relations show, we are in fact considering, here and throughout the text, uni-
versal unital algebras. For convenience we will drop the term ‘unital’ because we will never
consider non-unital algebras.
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8 Introducing Quantum Groups

then quotient by the desired relations. As for usual polynomials, it is easier to
use a definition based on sequences.

Definition 1.8 Given a set I , we denote by UI the complex vector space of all
finite linear combinations of finite sequences of elements of I . It is endowed
with the algebra structure induced by the concatenation of sequences, with the
empty sequence acting as a unit.

If we denote by Xi the sequence (i), then the elements (Xi)i∈I generate
UI and any element can therefore be written as a linear combination of prod-
ucts of these generators, the latter products being called monomials. Note that
this decomposition is unique up to the commutativity of addition. We there-
fore may, and should (and will) see UI as the algebra of all non-commutative
polynomials over the set I , and denote it by C〈Xi | i ∈ I〉. For our purpose,
we will turn this into a ∗-algebra by setting X∗i = Xi for all i ∈ I .

Assuming now that we have a subset R ⊂ C〈Xi | i ∈ I〉 called relations,
here is how we can build our universal object.

Definition 1.9 The universal ∗-algebra generated by (Xi)i∈I with the rela-
tions R is the quotient of C〈Xi | i ∈ I〉 by the intersection of all the ∗-ideals
containingR. We will again denote its generators by (Xi)i∈I .

That this is the correct definition is confirmed by the following universal
property.

Exercise 1.2 LetA be a ∗-algebra generated by elements (xi)i∈I and letR ⊂
C〈Xi | i ∈ I〉. Prove that if P (xi) = 0 for all P ∈ R, then there exists a
unique surjective ∗-homomorphism from the universal ∗-algebra generated by
(Xi)i∈I with the relationsR to A mapping Xi to xi.

Solution We first construct a ∗-homomorphism from C〈Xi | i ∈ I〉. The
requirements of the statements force π(Xi) = xi, and the fact that π is a ∗-
algebra homomorphism uniquely determines it on the whole of C〈Xi | i ∈ I〉,
that is,

π(Xi1 · · ·Xin) = xi1 · · ·xin .

Note that this makes sense because, by definition, the monomials are a basis
of C〈Xi | i ∈ I〉. Moreover, it is surjective because the xi’s are generators.
By assumption, ker(π) is a ∗-ideal containing R, hence it also contains the
intersection J of all the ∗-ideals containing it. As a consequence, π factors
through C〈Xi | i ∈ I〉/J , which is precisely the universal ∗-algebra.
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1.2 The Quantum Permutation Algebra 9

We now have a nice object to study, but the link to the classical permutation
group is somewhat blurred. To clear it up, let us consider the functions
cij : SN → C defined by

cij(σ) = δσ(i)j .

This is nothing but the function sending the permutation matrix of σ to its
(i, j)-th coefficient. In particular, cij always takes the value 0 or 1, hence

c∗ij = cij = c2ij .

Similarly, it is straightforward to check that Conditions (2) and (3) of Defin-
ition 1.6 are satisfied. Hence, by the universal property of Exercise 1.2, there
is a unique ∗-homomorphism

πab :

{
As(N) → F (SN )

pij 7→ cij ,

where F (SN ) is the algebra of all functions from SN to C. Moreover, since
the functions cij obviously generate the whole algebra F (SN ), πab is onto.
The subscript ‘ab’ is meant to indicate that πab is, in fact, the abelianisation
map, that is to say, the quotient by the ideal generated by all commutators. In
other words, we are claiming that F (SN ) is the largest possible commutative
∗-algebra satisfying the defining relations of As(N). The proof of that fact is
an easy exercise that we leave to the curious reader.

Exercise 1.3 Let BN be the universal ∗-algebra generated by N2 elements
(pij)16i,j6N satisfying Conditions (1), (2) and (3) as well as the relations

pijpk` = pk`pij ,

for all 1 6 i, j, k, ` 6 N .

1. For a permutation σ ∈ SN , we set

pσ =

N∏
i=1

piσ(i).

Prove that (pσ)σ∈SN spans BN .
2. Deduce that there is a ∗-isomorphism BN → F (SN ) sending pij to cij .

Solution 1. Let us first observe that BN is by definition spanned by mono-
mials in the generators. Moreover, we claim that in such a monomial
p = pi1j1 . . . pikjk , we may assume that i` 6= i`′ and j` 6= j`′ for all
` 6= `′. Indeed, otherwise we can assume by commutativity that ` = ` + 1
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10 Introducing Quantum Groups

and, without loss of generality, that i` = i`+1. It then follows from the
defining relations that either j` = j`+1, in which case we can remove one
of these two terms since p2

i`j`
= pi`j` , or j` 6= j`+1, in which case p = 0.

A straightforward consequence of this is that, by the pigeonhole principle,
BN is spanned by monomials of length at most N .

Let us set denote by E the span of the elements in the statement. We
will prove by induction on k that any monomial of length N − k is in
E, for 0 6 k 6 N . The case k = 0 follows from the observations in
the previous paragraphs: since (i1, . . . , iN ) and (j1, . . . , jN ) are tuples of
pairwise distinct elements of {1, . . . , N}, there exists a permutation σ ∈
SN such that j` = σ(i`) for all 1 6 ` 6 N . Assume now that the result
holds for some k and consider a monomial

p = pi1j1 · · · piN−k−1jN−k−1
.

Let us choose an element iN−k ∈ {1, · · · , N} \ {i1 · · · iN−k−1}. Then,

p =

N∑
j=1

pi1j1 · · · piN−k−1jN−k−1
piN−kj

and the proof is complete.
2. By universality, there is a surjective ∗-homomorphism BN → F (SN )

sending pij to cij . But from the first question we know that

dim(BN ) 6 N ! = dim(F (SN )),

therefore the surjection must be injective.

We will now use this link to investigate a possible ‘group-like’ structure on
As(N). At the level of the coefficient functions, the group law of SN satisfies
the equation

cij(σ1σ2) =

N∑
k=1

cik(σ1)ckj(σ2).

The trouble here is that the right-hand side is an element of F (SN × SN ),
which has no analogue in terms of quantum permutations so far. It would be
more helpful to express the product solely in terms of F (SN ). It turns out that
there is an algebraic construction which exactly does this: the tensor product.

1.2.2 The Tensor Product

Our problem is to build the algebra of functions on SN × SN using only alge-
braic constructions on F (SN ). One may try to consider the direct product
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1.2 The Quantum Permutation Algebra 11

F (SN )×F (SN ), but it has dimension 2N ! while F (SN ×SN ) has dimension
(N !)2, so that we need something else. Let us nevertheless focus on the direct
product to get some insight. Given two functions P and Q on SN , we can see
PQ as a two-variable function. However, the set theoretic map

Φ: (P,Q) ∈ F (SN )× F (SN ) 7→ PQ ∈ F (SN × SN )

fails to be linear. Indeed, we have the two following issues: first,

Φ((P,Q) + (P ′, Q′)) = Φ(P + P ′, Q+Q′)

= (P + P ′)(Q+Q′)

6= PQ+ P ′Q′

= Φ(P,Q) + Φ(P ′, Q′)

and second

Φ(λ(P,Q)) = Φ(λP, λ,Q)

= λ2PQ

6= λΦ(P,Q).

In order to remedy this, we can use a universal construction, as we already
did to defineAs(N). In other words, we will start from the largest vector space
on which the map Φ can be defined as a linear map.

Definition 1.10 Given two vector spaces V and W , the free vector space on
V × W is the vector space F(V × W ) of all finite linear combinations of
elements of V ×W .

One must be careful that the elements of V ×W form a basis of F(V ×W ),
hence

(v, w) + (v′, w′) 6= (v + v′, w + w′)

in that space. The point of this construction is that the map Φ, defined on
F (SN ) × F (SN ) by Φ(P,Q) = PQ, has by definition a unique extension to
a linear map

Φ̃ : F(F (SN )× F (SN ))→ F (SN × SN ).

The problem is, of course, that this map is far from injective, and we have to
identify its kernel. Here are three obvious ways of building vectors on which
Φ̃ vanishes:
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12 Introducing Quantum Groups

• Φ̃((P,Q) + (P,Q′)) = PQ+ PQ′ = P (Q+Q′) = Φ̃(P,Q+Q′),
• Φ̃((P,Q) + (P ′, Q)) = PQ+ P ′Q = (P + P ′)Q = Φ̃(P + P ′, Q),
• Φ̃(λP,Q) = λPQ = Φ̃(P, λQ).

The main result of this section is that this is enough to generate the kernel.
Before proving this, let us give a formal definition.

Definition 1.11 Given two vector spaces V and W , we denote by I(V,W )

the linear subspace of F(V ×W ) spanned by the vectors

• (v, w) + (v, w′)− (v, w + w′),
• (v, w) + (v′, w)− (v + v′, w),
• (λv,w)− (v, λw),

for all (v, w) ∈ V ×W . Then, the tensor product of V and W is the quotient
vector space

V ⊗W = F(V ×W )/I(V,W ).

The image of (v, w) in this quotient will be denoted by v ⊗ w.

This construction may seem weird at first sight, since we are quotienting a
‘huge’ vector space by a ‘huge’ vector subspace. However, it turns out that the
result is very tractable and perfectly fits our requirements. Before proving this,
let us elaborate a bit more on the general construction by identifying a basis.

Proposition 1.12 Let (ei)i∈I and (fj)j∈J be bases of V and W respectively.
Then,

(ei ⊗ fj)(i,j)∈I×J

is a basis of V ⊗W .

Proof Let v ∈ V and w ∈W . By assumption, they can be written as

v =
∑
i∈Iv

λiei and w =
∑
j∈Jw

µjfj

for some finite subsets Iv ⊂ I and Jw ⊂ J . Thus,

(v, w) −
∑

(i,j)∈Iv×Jw

λiµj(ei, fj) ∈ I(V,W )

by definition. In other words, we have in V ⊗W the equality

v ⊗ w =
∑

(i,j)∈Iv×Jw

λiµjei ⊗ fj ,

proving that the family is generating.
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1.2 The Quantum Permutation Algebra 13

To show linear independence, let us consider for some fixed (i, j) ∈ I × J
the unique linear map

ϕij : F(V ×W )→ C

sending (v, w) to e∗i (v)× e∗j (w) and all other basis vectors to 0. By construc-
tion, the kernel of ϕij contains I(V,W ), hence it factors through the quotient
map π : F(V ×W ) → V ⊗W to a linear map ψij : V ⊗W → C. It then
follows that

ψij(ei′ ⊗ fj′) = δii′δjj′ ,

and this clearly implies that the family is linearly independent, concluding the
proof.

As a consequence, we can elucidate the tensor product construction for
finite-dimensional vector spaces.

Corollary 1.13 Let V and W be vector spaces of dimension n and m

respectively. Then, V ⊗W has dimension n×m.

In particular, the dimension issue with the direct product disappears when
considering tensor products. Back to our problem now, we want to prove that
F (SN × SN ) is isomorphic to F (SN ) ⊗ F (SN ). We will do this in greater
generality, since we may need similar results later on in slightly diffferent con-
texts. We will consider algebras of the form O(X) = C[X1, · · · , XN ]/I for
some ideal I .6

Proposition 1.14 Let I ⊂ C[X1, · · · , Xn] and J ⊂ C[Y1, · · · , Ym] be ideals.
Then, the map

Φ: (a+ I, b+ J) 7→ ab+ (I + J)

factors through a linear isomorphism

C[X1, · · · , Xn]/I⊗C[Y1, · · · , Ym]/J ' C[X1, · · · , Xn, Y1, · · · , Ym]/(I+J).

Proof To lighten notations, let us denote by An the complex polynomial
algebra on n indeterminates. If a ∈ An, b ∈ Am, x ∈ I and y ∈ J , then

(a+ x)(b+ y) = ab+ ay + xb+ xy

and ay + xb+ xy ∈ I + J so that there is a well-defined linear map

Φ̃ : F(An/I ×Am/J)→ An+m/(I + J).

6 The notation here is the standard one from commutative algebra, since we are now considering
algebras of commutative polynomials.
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14 Introducing Quantum Groups

One easily checks that I(An/I,Am/J) ⊂ ker(Φ̃), hence there is a well-
defined induced map

Φ: (An/I)⊗ (Am/J)→ An+m/(I + J).

Conversely, let us set for 1 6 i 6 n and 1 6 j 6 m

X̃i = Xi ⊗ 1 ∈ (An/I)⊗ (Am/J) ,

Ỹj = 1⊗ Y j ∈ (An/I)⊗ (Am/J) ,

where the bar denotes the image in the quotient. Because these elements
commute, there exists by universality a unique ∗-homomorphism

Ψ̃ : An+m → (An/I)⊗ (Am/J)

such that Ψ̃(Xi) = X̃i and Ψ̃(Yj) = Ỹj for all 1 6 i 6 n and 1 6 j 6 m.
Obviously, Ψ̃ vanishes on I and J , hence on I + J , allowing us to factor it
through a map

Ψ: An+m/(I + J)→ (An/I)⊗ (Am/J) .

Now, applying Φ ◦ Ψ and Ψ ◦ Φ to the basis vectors X
k

i Y
`

j and X
k

i ⊗ Y
`

j

respectively shows that both compositions are the identity, concluding the
proof.

The result is quite satisfying, except that we do not want to deal with vector
spaces but with algebras. The construction is, however, easy to generalise. First
note that, if A and B are algebras, then there is an algebra structure on A⊗B
defined by

(a⊗ b)(a′ ⊗ b′) = aa′ ⊗ bb′.

The fact that this corresponds to a well-defined bilinear map can be checked,
for instance on a basis using Proposition 1.12. If, moreover, A and B are ∗-
algebras, then there is a ∗-algebra structure on A⊗B given by

(a⊗ b)∗ = a∗ ⊗ b∗.

We can now state and prove our main result:

Theorem 1.15 Let I ⊂ An and J ⊂ Am be ∗-ideals. Then, the map

(a+ I, b+ J) 7→ ab+ (I + J)

factors through an algebra ∗-isomorphism

(An/I)⊗ (Am/J) ' An+m/(I + J).
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1.2 The Quantum Permutation Algebra 15

Proof One simply has to check that the linear isomorphisms Φ and Ψ from
Proposition 1.14 are algebra ∗-homomorphisms, which is straightforward.

Applying this to the case of the algebra of functions on SN is a good way to
understand what precisely is going on.

Corollary 1.16 The map ı : F (SN )⊗F (SN )→ F (SN ×SN ) sending f ⊗ g
to the map

(σ, τ) 7→ f(σ)g(τ)

extends to a ∗-algebra isomorphism.

Proof Let I be the ideal of A = C[Xij | 1 6 i, j 6 N ] generated by the
polynomials giving the relations of Definition 1.6, so that A/I = F (SN ) by
Exercise 1.3. Theorem 1.15 yields an isomorphism

F (SN )⊗ F (SN )→ C[Xij , Yij | 1 6 i, j 6 N ]/Ĩ,

where Ĩ is generated by the two copies of I and the image of P ⊗Q is P ×Q.
Any element of the right-hand side can be written as a linear combination of
products P ×Q and therefore defines a function on SN × SN so that the map
induces a surjection onto F (SN × SN ). By equality of the dimensions, such a
surjection must be an isomorphism, concluding the proof.

As a conclusion, we can identify canonically F (SN × SN ) with F (SN ) ⊗
F (SN ), so that we have an analogue of the algebra of functions on pairs of
quantum permutation matrices, which is simply As(N)⊗As(N).

Now that we are talking about tensor products, let us take the occasion to
define the corresponding construction on linear maps, so that it is ready for use
in the next chapters.

Exercise 1.4 Let Vi,Wi be vector spaces for i ∈ {1, 2} and let Ti : Vi → Wi

be linear maps. Prove that there exists a unique linear map

T1 ⊗ T2 : V1 ⊗ V2 →W1 ⊗W2

such that for any (v1, v2) ∈ V1 ⊗ V2,

(T1 ⊗ T2)(v1 ⊗ v2) = T1(v1)⊗ T2(v2).

Solution We can define a map

T1 � T2 : F(V1 × V2)→ F(W1 ×W2)→W1 ⊗W2
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16 Introducing Quantum Groups

by the formula

(T1 � T2)(v1, v2) = T1(v1)⊗ T2(v2).

Then, the linearity of T1 and T2 implies that T1 � T2 vanishes on I(V1, V2),
hence it factors through V1 ⊗ V2, yielding the result.

1.2.3 Coproduct

Back to our formula for the product, we can now write, making the isomorph-
ism implicit,

cij(σ1σ2) =

N∑
k=1

(cik ⊗ ckj)(σ1, σ2).

Considering the elements pij as ‘coefficient functions’, this suggests to encode
a kind of ‘group law’ through the map

∆: pij →
N∑
k=1

pik ⊗ pkj . (1.1)

But for this to work, one must first prove that such a map ∆ exists.

Proposition 1.17 There exists a unique ∗-homomorphism

∆: As(N)→ As(N)⊗As(N)

satisfying formula (1.1).

Proof Let us set, for 1 6 i, j 6 N ,

qij =

N∑
k=1

pik ⊗ pkj .

We claim that the qij’s satisfy Conditions (1) to (3) of Definition 1.6. The
existence of ∆ then follows from the universal property.

Exercise 1.5 Prove the claim in the preceding proof.

Solution It is clear that q∗ij = qij . Let us now compute the square

q2
ij =

N∑
k,`=1

pikpi` ⊗ pkjp`j

=

N∑
k,`=1

δk`pik ⊗ pkj

= qij .
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1.2 The Quantum Permutation Algebra 17

We have therefore checked Condition (1). Moreover,

N∑
i=1

qij =
N∑

k,i=1

pik ⊗ pkj

=

N∑
k=1

(
N∑
i=1

pik

)
⊗ pkj

=

N∑
k=1

1⊗ pkj

= 1⊗ 1,

hence Condition (2) also is satisfied. Eventually, for j 6= j′,

qijqij′ =

N∑
k,`=1

pikpi` ⊗ pkjp`j′ .

The first tensor in the sum vanishes unless k = `, but in that case the second
one vanishes and Condition (3) follows. The argument for i 6= i′ is similar.

The map ∆ is called the coproduct and is a reasonable substitute for matrix
multiplication (i.e. the group law of a matrix group). In particular, it satisfies an
analogue of the associativity property of the group law, called coassociativity,
which reads

(∆⊗ id) ◦∆ = (id⊗∆) ◦∆. (1.2)

Exercise 1.6 Prove that the coproduct on As(N) is indeed coassociative.
Check also that the corresponding equation on the coefficient functions in SN
is equivalent to the associativity of the composition of permutations.

Solution Because ∆ is a ∗-algebra homomorphism, it is enough to check
coassociativity on the generators,

(∆⊗ id) ◦∆(pij) =

N∑
k=1

∆(pik)⊗ pkj

=

N∑
k,`=1

pi` ⊗ p`k ⊗ pkj

=

N∑
`=1

pi` ⊗∆(p`j)

= (id⊗∆) ◦∆(pij).
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18 Introducing Quantum Groups

As for the second assertion, we have already seen that

∆(cij)(σ1, σ2) = cij(σ1σ2).

Thus,

(∆⊗ id) ◦∆(cij)(σ1, σ2, σ3) = ∆(cij)(σ1σ2, σ3) = cij((σ1σ2)σ3)

while

(id⊗∆) ◦∆(cij)(σ1, σ2, σ3) = ∆(cij)(σ1, σ2σ3) = cij(σ1(σ2σ3))

so that coassociativity is equivalent to f((σ1σ2)σ3) = f(σ1(σ2σ3)) for all f ∈
F(SN ) and σ1, σ2, σ3 ∈ SN , which is, in turn, equivalent to the associativity
of the group law.

The coproduct certainly indicates that we are on the right track to produce
a group-like structure on the quantum permutation algebra. However, we still
need a neutral element and an inverse. But instead of trying to translate each
of them, we will take advantage of the fact that we are considering a matrix
group. Indeed, for any permutation σ, the corresponding matrix is orthogonal,
hence

N∑
k=1

cik(σ)cjk(σ) = δij =

N∑
k=1

cki(σ)ckj(σ). (1.3)

Since this holds for any σ, it can be written as an equality of functions in
F (SN ), and it turns out that the same equality holds in As(N).

Proposition 1.18 For any 1 6 i, j 6 N ,

N∑
k=1

pikpjk = δij =

N∑
k=1

pkipkj . (1.4)

Proof This is a direct consequence of Conditions (1) to (3).

This means that the quantum permutation algebra is somehow ‘made of
orthogonal quantum matrices’ (see the beginning of Subsection 1.3.3 for a
more precise statement), and this property should contain all information
about the unit and the inverse. Another way to state this is that the matrix
P = (pij)16i,j6N ∈ MN (As(N)) is orthogonal in the sense that its inverse
equals its transpose. As a conclusion, the algebra As(N) with its generators
(pij)16i,j6N seem to have all the properties one can expect for a group-like
object. It therefore deserves the name of quantum group that we will define in
the next section.
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1.2 The Quantum Permutation Algebra 19

The fact that Condition (1.4) yields a full group-like structure can be
encoded in the two following maps, whose existence follows from the universal
property of As(N).

• The antipode S : As(N)→As(N), which is the unique ∗-antihomomorphism
induced by

pij 7→ pji.

Since the transpose of P is its inverse, this plays the role of the inverse map.
• The counit ε : As(N)→ C, which is the unique ∗-homomorphism induced

by

pij 7→ δij .

Since the matrix (δij)16i,j6N is the identity, this plays the role of the neutral
element.

Exercise 1.7 Prove the existence of the maps S and ε.

Solution 1. We start with the antipode S. The uniqueness is clear, and we
have to prove existence. Let us denote byA the opposite algebra ofAs(N),
that is to say, the algebra with the same underlying vector space but such
that a×Ab = ba. Let us also consider the elements qij = pji inA. Then, the
matrix (qij)16i,j6N is a quantum permutation matrix and its coefficients
generate A, hence there is a surjective ∗-homomorphism

S̃ : As(N)→ A

such that S̃(pij) = qij . Composing with the identity map seen as a linear
isomorphism I : A → As(N) yields a map S = I ◦ S̃ : As(N)→ As(N).
By construction, S(pij) = pji and, moreover,

S(pijpk`) = I ◦ S̃(pijpk`)

= I(qij ×A qk`)
= I(qk`qij)

= p`kpji

= S(pk`)S(pij)

so that S is anti-multiplicative.
2. We now turn to the counit ε. Noticing that the identity matrix is a quan-

tum permutation matrix, the universal property of As(N) directly yields a
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20 Introducing Quantum Groups

∗-homomorphism ε : As(N) → C sending pij to the corresponding coef-
ficient of the identity matrix, which is δij .

It is worth working out the analogues of these maps for the classical
permutation group to be convinced that they encode the complete group
structure.

Exercise 1.8 Write down the explicit form of the analogues of the counit ε
and antipode S for F (SN ) in terms of permutations.

Solution The functions corresponding to the pij’s are the functions cij : σ 7→
δσ(i)j . Thus,

S(cij)(σ) = cji(σ) = δσ(j)i = δσ−1(i)j = cij(σ
−1)

so that S is induced by the inverse map on SN . Similarly,

ε(cij) = δij = cij(id)

so that ε corresponds to the identity permutation.

With these maps, Equation (1.4) becomes

m ◦ (id⊗S) ◦∆ = ε = m ◦ (S ⊗ id) ◦∆,

where m : As(N) ⊗ As(N) → As(N) is the multiplication map. Our focus
in this text is on the matricial aspect of quantum groups, and we will therefore
never use these maps.7 Note, however, that (As(N),∆, ε, S) is what is called a
Hopf algebra. The theory of Hopf algebras is vast and has many connections to
other fields. The reader may, for instance, read [62] for a detailed introduction
or [48] for more categorical aspects and important applications.

1.3 Compact Matrix Quantum Groups

Our study of the quantum permutation algebra has given us enough motivation
to introduce a notion of compact quantum group. There is a nice and complete
theory of these objects, which was developed by S. L Woronowicz in [77].
There are two published books explaining this theory in detail, [69] and [60]
to which the reader may refer for alternative expositions emphasising other
aspects.

7 This is a lie. We will use them at some point to get a computationally tractable description of
representations, but in a way which has no consequence for the remainder of the development
of the theory.
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1.3 Compact Matrix Quantum Groups 21

1.3.1 A First Definition

The purpose of this text is to give some examples of the interaction between
the combinatorics of partitions and the theory of compact quantum groups.
The most striking examples involve compact quantum groups which belong
to a specific class which is, in a sense, simpler to define and handle. It was
introduced by S. L Woronowicz in [75] as a generalisation of compact groups
of matrices and as a first attempt at a definition of compact quantum groups.
We will therefore focus on this class, even though our definition differs from
[75, definition 1.1] and is closer to [70, definition 2.1’].

Before giving the definition, we have to give an important warning. We will
use throughout this text a specific assumption on all compact quantum groups
which is somehow hidden in the definition. In plain terms, all the objects that
we will consider will be of so-called Kac type. However, for simplicity and
because this is a consequence of our axioms, we will never mention that spe-
cificity again. But the reader should be aware that our terminology does not
exactly match the literature, because one should, any time the words ‘compact
quantum group’ are written hereafter, add the words ‘of Kac type’ (for more
comments on this, see the end of Appendix C).

Definition 1.19 An orthogonal compact matrix quantum group of size N is
given by a ∗-algebra A generated by N2 elements (uij)16i,j6N such that

1. uij = u∗ij for all 1 6 i, j 6 N ;
2. For all 1 6 i, j 6 N ,

N∑
k=1

uikujk = δij =
N∑
k=1

ukiukj ;

3. There exists a ∗-homomorphism ∆: A → A ⊗ A such that for all 1 6
i, j 6 N ,

∆(uij) =

N∑
k=1

uik ⊗ ukj .

Denoting by u ∈ MN (A) the matrix with coefficients (uij)16i,j6N , we will
denote the orthogonal compact matrix quantum group by (A, u).

By analogy with our reasoning on SN , A will be thought of as the alge-
bra of functions on a non-existent ‘quantum space’. However, if we consider
general ‘compact quantum spaces’, we cannot use all the functions like for
SN . Here our crucial intuition will be that compact groups of matrices are
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22 Introducing Quantum Groups

completely determined by their algebra of regular functions, that is to say,
functions which are polynomial in the matrix coefficients (see the beginning
of Section 5.1 for some details on this). The usual notation for this is O(G),
whence the notationA = O(G) ifG = (A, u) denotes the orthogonal compact
matrix quantum group. We can now formalise the properties of the quantum
permutation algebras established in Section 1.2.

Definition 1.20 For any integerN , the pair (As(N), P ) is an orthogonal com-
pact matrix quantum group, where P = (pij)16i,j6N . It is called the quantum
permutation group on N points and is usually referred to using the notation
S+
N .

Consequently, we may from now on write O(S+
N ) instead of As(N). This

quantum group was first defined by S. Wang in [72]. It is natural (and crucial
for our purpose) to wonder whether this is really different from SN .

Exercise 1.9 Prove that for N = 1, 2, 3, S+
N = SN in the sense that πab is

injective. Prove moreover that for any N > 4, O(S+
N ) is non-commutative,

hence not isomorphic to F (SN ).

Solution For N = 1,As(1) is generated by one self-adjoint projection, hence
is isomorphic to C = F (S1). For N = 2, observe that the relations force

P =

(
p11 1− p11

1− p11 p11

)
making As(2) abelian, hence equal to F (S2).

For N = 3, we must again prove that As(3) is abelian. Here is a sim-
ple argument from [53]. It is enough to prove that p11 commutes with p22,
since any independent permutation of the rows and columns of P yields an
automorphism of As(N) by the universal property. We start by observing
that

p11p22 = p11p22 (p11 + p12 + p13)

= p11p22p11 + p11p22p13.

But

p11p22p13 = p11 (1− p21 − p23) p13

= p11p13 − p11p21p13 − p11p23p13

= 0,
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hence

p11p22 = p11p22p11

= (p11p22p11)
∗

= (p11p22)∗

= p∗22p
∗
11

= p22p11.

For N > 4, let p and q be the orthogonal projections onto the lines spanned
by the vectors (0, 1) and (1, 1) respectively in C2, so that pq 6= qp. Then,
consider the matrix 

p 1− p 0 0

1− p p 0 0

0 0 q 1− q
0 0 1− q q


and complete it to anN×N matrix by putting it in the upper left corner, setting
the other diagonal coefficients to 1 and all the other coefficients to 0. This
yields a quantum permutation matrix, hence a ∗-homomorphism π : O(S+

N )→
B(H). Because π(u11) = p and π(u33) = q do not commute, we infer that
O(S+

N ) is not commutative.

To get a better understanding of Definition 1.19, it is worth working out the
link with the classical case. This requires the identification of the kernel of a
tensor product of linear maps, that we give here as a lemma.

Lemma 1.21 Let T1 : V1 →W1 and T2 : V2 →W2 be linear maps. Then,

ker(T1 ⊗ T2) = ker(T1)⊗ V2 + V1 ⊗ ker(T2).

Proof We may assume without loss of generality that the maps are surjective.
Moreover, we have decompositions

Vi = ker(Ti)⊕ V ′i
such that the maps restrict to isomorphisms on V ′i . Let us denote by T̃i
the projection onto V ′i parallel to ker(Ti). It is easy to see that we have a
decomposition

V1⊗V2 = (ker(T1)⊗ ker(T2))⊕(ker(T1)⊗ V ′2)⊕(V ′1 ⊕ ker(T2))⊕(V ′1 ⊗ V ′2) .

By definition, T̃1 ⊗ T̃2 vanishes on the first three summands and is the identity
on the last one so that its kernel is

(ker(T1)⊗ ker(T2))⊕ (ker(T1)⊗ V ′2)⊕ (V ′1 ⊕ ker(T2)) = ker(T1)⊗ V2

+ V1 ⊗ ker(T2).
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The result now follows from the fact that

T1 ⊗ T2 = (id⊕T1|V ′1 )⊗ (id⊕T2|V ′2 ) ◦ (T̃1 ⊗ T̃2)

has the same kernel as T̃1 ⊗ T̃2.

We would like now to describe all orthogonal compact matrix quantum
groups (A, u) where A is a commutative ∗-algebra, and to prove that they
come from compact groups of orthogonal matrices. However, there is a rather
non-trivial step in such a proof: one needs to prove that for a given ∗-ideal
I ⊂ C[Xij | 1 6 i, j 6 N ], any polynomial vanishing on the intersection
of all the zeros if elements of I is again in I . This is reminiscent of the fam-
ous Nüllstelensatz from algebraic geometry, and taking this path would lead
us to showing that some ∗-algebra does not contain nilpotent elements, which
is difficult. There is, nevertheless, another way around, using operator alge-
bras. But this will only be possible once the connection between our algebraic
framework and functional analysis is made in Chapter 5 (see, more precisely,
Corollary 5.18). We will therefore restrict ourselves to partial results here-
after, hoping that they nontheless give enough motivation to the reader to keep
reading this text.

Exercise 1.10 Let (A, u) be an orthogonal compact matrix quantum group
such that A is commutative. We set

O(MN (C)) = C[Xij | 1 6 i, j 6 N ].

1. Show that there exists a surjective ∗-homomorphism π : O(MN (C))→ A.
We set I = ker(π).

2. Let us set

G = {M ∈MN (C) | P (M) = 0 for all P ∈ I}.

Prove that G is a closed subgroup of ON . Hint: a compact bisimplifiable
semigroup is a group (see, for instance, [60, example 1.1.2] for a proof).

3. We now set

J = {P ∈ O(MN (C)) | P (M) = 0 for all M ∈ G},

so that O(G) = O(MN (C))/J . Check that I ⊂ J .
4. We now assume that A is finite-dimensional.

(a) Show that G is then finite.
(b) Conclude that A = O(G).

5. We assume instead that for any x ∈ A\{0}, there exists a ∗-homomorphism
f : A → C such that f(x) 6= 0. Conclude again that A = O(G).
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Solution 1. This follows from the fact that O(MN (C)) is the universal
∗-algebra generated by N2 self-adjoint pairwise commuting variables, so
that setting π(Xij) = uij works.

2. We first note thatG is closed by definition and consists of orthogonal matri-
ces because u is orthogonal. Let us therefore prove that G is stable under
product, which is enough according to the hint. Let us start by observing
that the elements

Yij =

N∑
k=1

Xik ⊗Xkj

are self-adjoint and pairwise commute, hence there exists a unique
∗-homomorphism ∆: O(MN (C))→ O(MN (C))⊗O(MN (C)) such that
∆(Xij) = Yij . If now P ∈ I , we have

(π ⊗ π) ◦∆(P ) = ∆ ◦ π(P ) = 0,

so that by Lemma 1.21 we can write

∆(P ) =
∑
i

Pi ⊗Qi ∈ O(MN (C))⊗O(MN (C))

such that, for all i, either Pi or Qi belongs to I . Thus, for any M1,M2 ∈ G,

P (M1M2) = ∆(P )(M1,M2)

=
∑
i

Pi(M1)Qi(M2)

= 0

and M1M2 ∈ G.
3. By definition of G, P (M) = 0 for any M ∈G if P ∈ I , hence the inclusion.
4. (a) Because O(G) is a quotient of A, it is also finite-dimensional and our

strategy will be to prove that if G is infinite, then O(G) is infinite-
dimensional. To do this, let us first define, for M ∈ ON ,

PM (Xij) =
∑

16i,j6N

(Xij −Mij)
∗(Xij −Mij).

This is a polynomial and PM (M ′) = 0 if and only if M ′=M . There-
fore, if F ⊂ G is a finite set, we can define the polynomial

PM,F (Xij) =
1∏

M ′∈F\{M}

PM ′(M)

∏
M ′∈F\{M}

PM ′(Xij)
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for any M ∈ F . That polynomial evaluates to 1 on M and 0 on all
other elements of F . As a consequence, the family (π(PM,F ))M∈F is
linearly independent in O(G), proving that

dim(O(G)) > |F |.

If now G is infinite, it contains arbitrary large finite subsets, hence
dim(O(G)) = +∞.

(b) We have to prove that I = J . Observe that by the previous question
the polynomials (PM,G)M∈G span a complement of J in O(MN (C)).
Therefore, any P ∈ I can be written as

P = Q+
∑
M∈G

λMPM

for some Q ∈ J and λM ∈ C for all M ∈ G. Then, for any M ∈ G
evaluating the previous expression at M yields∑

N∈G\{M}

λN = 0

and the only solution to this linear system is λM = 0 for all M ∈ G.
Therefore, I = J and the proof is complete.

5. If f : A → C is a ∗-homomorphism, then we claim that the matrix f̂ =

(f(uij))16i,j6N is in G. Indeed, if P ∈ I , then

P (f̂) = (f(P (uij))16i,j6N = 0.

As a consequence, f is nothing but the evaluation map at f̂ . Therefore, if

π′ : A → A/π(J) = O(G)

is the canonical surjection and x ∈ ker(π′), then

f(x) = π′(x)(f̂) = 0

and the condition in the question ensures that ker(π′) = 0, hence
A = O(G).

1.3.2 The Quantum Orthogonal Group

Before delving into the general theory of compact quantum groups, let us give
another fundamental example which is also due to S. Wang, but earlier in [70].
After a look at Definition 1.19, it is natural to wonder about the largest pos-
sible orthogonal compact matrix quantum group. Its definition relies on the
following simple fact.

https://doi.org/10.1017/9781009345705.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009345705.002


1.3 Compact Matrix Quantum Groups 27

Exercise 1.11 Let N be an integer and let Ao(N) be the universal ∗-algebra
generated by N2 elements (Uij)16i,j6N such that

• U∗ij = Uij for all 1 6 i, j 6 N ;

•
N∑
k=1

UikUjk = δij =

N∑
k=1

UkiUkj .

Then, there exists a unique ∗-homomorphism

∆: Ao(N)→ Ao(N)⊗Ao(N)

such that for all 1 6 i, j 6 N ,

∆(Uij) =

N∑
k=1

Uik ⊗ Ukj .

Solution The proof is similar to that of Proposition 1.17. We set

Vij =

N∑
k=1

Uik ⊗ Ukj

and have to check that the corresponding matrix V is orthogonal. Indeed,
N∑
k=1

VikVjk =

N∑
k,`,m=1

Ui`Ujm ⊗ U`kUmk

=

N∑
`,m=1

Ui`Ujm ⊗

(
N∑
k=1

U`kUmk

)

=

N∑
`,m=1

Ui`Ujm ⊗ δ`m

=

N∑
`=1

Ui`Uj` ⊗ 1

= δij1⊗ 1.

The other equality is proved similarly, and it then follows from universality
that there exists a ∗-homomorphism sending Uij to Vij .

Denoting by U the matrix (Uij)16i,j6N ∈MN (Ao(N)), this motivates the
following definition.

Definition 1.22 The pair (Ao(N), U) is an orthogonal compact matrix quan-
tum group called the quantum orthogonal group. It is usually referred to using
the notation O+

N .
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As the name suggests, O+
N is linked to the orthogonal group. Indeed, if

cij : ON → C are the matrix coefficient functions, then there is a surjective
∗-homomorphism

πab : O(O+
N )→ O(ON )

sending Uij to cij . Thus, O+
N is a quantum version of ON just in the same way

as S+
N is a quantum version of SN .

Remark 1.23 The preceding comments, as well as the notation πab, suggest
that O(ON ) is the largest abelian quotient of O(O+

N ). This would be easy to
prove if we knew that any orthogonal compact matrix quantum group with
commutative ∗-algebra comes from a group. It will therefore be a consequence
of Corollary 5.18.

Note that it follows from the universal property that there is a surjective
∗-homomorphism

O(O+
N )→ O(S+

N ),

so that O(O+
N ) is not commutative as soon as N > 4. However, more is true

in that case.

Proposition 1.24 The ∗-algebra O(O+
N ) is non-commutative as soon as

N > 2.

Proof Let r1, r2 ∈ B(C2) be two reflections with axis generated by the vec-
tors (1, 0) and (1, 1) respectively, so that they do not commute. Then, the
diagonal matrix with first coefficient r1 and all other coefficients equal to r2 is
orthogonal, hence there exists a ∗-homomorphism

π : O(O+
N )→ B(C2)

sending Uij to 0 if i 6= j, to r1 if i = 1 = j and to r2 otherwise. In particular,
π(U11) and π(U22) do not commute, so that O(O+

N ) is not commutative.

1.3.3 The Unitary Case

The intuition that orthogonal compact matrix quantum groups generalise sub-
groups of ON can be made rigorous in the following way: by universality, for
any orthogonal compact matrix quantum group G = (O(G), u), there is a
surjective ∗-homomorphism

π : O(O+
N )→ O(G)

sending Uij to uij and therefore satisfying
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∆ ◦ π(x) = (π ⊗ π) ◦∆(x)

for all x ∈ O(G). Thus, orthogonal compact matrix quantum groups are
‘quantum subgroups’ of O+

N .
One may wonder whether it is possible to consider analogues of closed sub-

groups of the unitary group UN instead of the orthogonal one. This is possible,
but we will not need it until the last part of this text. Moreover, this more gen-
eral setting involves subtleties which make some arguments tricky. This can
already be seen in the following definition.

Definition 1.25 A unitary compact matrix quantum group of size N is given
by a ∗-algebra A generated by N2 elements (uij)16i,j6N such that

1. There exist a ∗-homomorphism ∆: A → A ⊗ A such that for all 1 6 i,

j 6 N ,

∆(uij) =

N∑
k=1

uik ⊗ ukj ;

2. For all 1 6 i, j 6 N ,

N∑
k=1

uiku
∗
jk = δij =

N∑
k=1

u∗kiukj

and
N∑
k=1

ukiu
∗
kj = δij =

N∑
k=1

u∗ikujk.

Remark 1.26 The relations in the previous definition mean that both the
matrix u and its conjugate u (the matrix where each coefficient is replaced
with its adjoint) are unitary. The second one does not follow from the first one
in general (see [70, section 4.1] for a counter-example), so that both need to be
included in the definition.

Once again, there is an obvious example obtained by considering the largest
possible such quantum group at a fixed size N .

Definition 1.27 Let Au(N) be the universal ∗-algebra generated by N2

elements (Vij)16i,j6N such that

N∑
k=1

VikV
∗
jk = δij =

N∑
k=1

V ∗kiVkj
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and
N∑
k=1

V ∗ikVjk = δij =

N∑
k=1

VkiV
∗
kj .

One can construct as before a compact quantum group structure on this, and
by now the reader should be able to do this alone.

Exercise 1.12 1. Prove that there exists a unique ∗-homomorphism

∆: Au(N)→ Au(N)⊗Au(N)

such that

∆(Vij) =

N∑
k=1

Vik ⊗ Vkj .

2. Prove that Au(N) is non-commutative for N > 2.
3. What is Au(1) ?

Solution 1. Let us set

Wij =
N∑
k=1

Vik ⊗ Vkj .

Then,

N∑
k=1

WikW
∗
jk =

N∑
k=1

N∑
`,`′=1

Vi`V
∗
j`′ ⊗ V`kV ∗`′k

=

N∑
`,`′=1

Vi`V
∗
j`′ ⊗

(
N∑
k=1

V`kV
∗
`′k

)

=

N∑
`,`′=1

Vi`V
∗
j`′ ⊗ (δ`,`′)

=
N∑
`=1

Vi`V
∗
j`′

= δij .

The other relations are proven in a similar way.
2. Note that there is a quotient map π : Au(N) → Ao(N) given by the quo-

tient by the relations Vij = V ∗ij for all 1 6 i, j 6 N . The result therefore
follows from the fact that Ao(N) is non-commutative for N > 2.
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3. Observe that Au(1) is the quotient of C〈X〉 by the relations

XX∗ = 1 = X∗X.

In particular, the relations makeAu(1) commutative, and we will show that
it corresponds to the circle group

T = {z ∈ C | |z| = 1} .

Indeed, denoting by ek the function z 7→ zk for k ∈ Z, we know
that (ek)k∈Z is a basis of O(T). Therefore, there exists a linear map
Φ: O(T) → Au(1) sending ek to Xk, and it is surjective by defin-
ition. Moreover, because eke` = ek+` and e∗k = e−k, Φ is in fact a
∗-homomorphism. To conclude, simply observe that O(T) is generated by
e1, which satisfies e∗1e1 = 1 = e1e

∗
1, so that by universality there is a sur-

jective ∗-homomorphism Ψ: Au(1) → O(T) sending X to e1. It is clear
that Ψ is inverse to Φ, thence Au(1) = O(T).

The pair U+
N = (Au(N), U) is called a quantum unitary group. Once again,

abelianisation provides a link with the classical unitary group, with the same
caveat as in Remark 1.23. Even though concrete examples of unitary compact
quantum groups are more difficult to deal with than orthogonal ones, most of
the general theory is exactly the same (see Chapter 6). As a consequence, we
will state and prove general results in the setting of unitary compact matrix
quantum groups as soon as this does not entail any additional technicality in
the proof. As for the other statements which require some adaptation, we will
treat them in Chapter 6.
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