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Abstract
Reinforcement learning (RL) has been successfully applied to a wealth of robot manipulation tasks and continuous
control problems. However, it is still limited to industrial applications and suffers from three major challenges:
sample inefficiency, real data collection, and the gap between simulator and reality. In this paper, we focus on the
practical application of RL for robot assembly in the real world. We apply enlightenment learning to improve the
proximal policy optimization, an on-policy model-free actor-critic reinforcement learning algorithm, to train an
agent in Cartesian space using the proprioceptive information. We introduce enlightenment learning incorporated
via pretraining, which is beneficial to reduce the cost of policy training and improve the effectiveness of the policy.
A human-like assembly trajectory is generated through a two-step method with segmenting objects by locations and
iterative closest point for pretraining. We also design a sim-to-real controller to correct the error while transferring
to reality. We set up the environment in the MuJoCo simulator and demonstrated the proposed method on the
recently established The National Institute of Standards and Technology (NIST) gear assembly benchmark. The
paper introduces a unique framework that enables a robot to learn assembly tasks efficiently using limited real-
world samples by leveraging simulations and visual demonstrations. The comparative experiment results indicate
that our approach surpasses other baseline methods in terms of training speed, success rate, and efficiency.

1. Introduction
Assembly task is a common basic task in robot manufacturing industry, including axle assembly, printed-
circuit board assembly, and so on, which faces high density, high complexity, large scale, and flexible
production needs [1]. Applying reinforcement learning (RL) to robot assembly tasks can help to meet
the above requirements. In recent years, deep reinforcement learning (DRL) algorithms have fueled a
wealth of publicized achievements of artificial intelligence in robotics [2–5]. However, there are still
some limitations in terms of reliability and robustness. Indeed, some recent research shows that the
existing DRL methods are brittle, brutal to transfer, unreliable in reality and sometimes over-fitting. It
is still difficult to generate an ideal skill model for a robot manipulator [6]. Therefore, it is necessary to
find a way to realize the practical application of robot RL.

Path planning is a traditional method to solve the robot manipulation problem, but sometimes difficult
to meet with an unstructured environment and join the expert experience [7]. RL is a novel and effec-
tive method for path planning, which can help robots automatically learn about environmental changes
to optimize models in an unknown environment. However, the exploration-exploitation dilemma is a
motivating challenge for the performance of RL algorithms [8]. We introduce the enlightenment learn-
ing incorporated to balance exploitation and exploration, as excessive exploration leads to a decrease in
cumulative returns, while excessive development locks agents in local optima. Learning from demon-
stration (LfD) is a natural solution for joining the expert experience [9]. References [10, 11] adequately
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illustrate that human-inspired approaches can effectively improve the performance of robots. Imitation
learning can use demonstrations of successful behavior to train policies that imitate the expert [12].
However, how to obtain the motion closer and better to the human experience is still a challenge.
Reference [13] proposed a visual method to generate the demonstration data which is more human-
like and can quickly train the robot for different manipulation strategies without otherwise complicated
manual programs. However, vision-based demonstration introduces new problems. It needs to convert
the human hand motion into robot hand motion to command the robot, called motion retargeting. In this
paper, we adopt accurate camera calibration and coordinate transformation to solve that.

The pretraining process is pivotal in RL, offering advantages such as accelerated convergence, sta-
bility, and improved sample efficiency [14, 15]. It provides a beneficial starting point by initializing
the model with task-specific knowledge, helping mitigate issues like poor convergence, and facilitat-
ing the transfer of learning between related tasks. In the realm of DRL, pretraining is particularly
valuable for initializing neural network weights, overcoming challenges associated with deep network
training, and guiding more informed exploration strategies. Overall, pretraining enhances the overall
efficiency, robustness, and adaptability of RL algorithms, especially in complex environments with high-
dimensional state spaces [15]. The success of pretraining in RL relies on the quality and size of the
dataset used. A high-quality dataset should be representative, diverse and capture relevant aspects of the
target environment, providing the model with a comprehensive understanding of the task. The dataset’s
size is a critical factor, as larger datasets offer more diverse experiences, enabling better generalization.
However, the size should be balanced with computational considerations [16]. A dataset’s relevance to
the target task is paramount, ensuring that task-specific features contribute to the model’s adaptability.
Striking the right balance between dataset quality and size is essential for optimizing the pretraining
process and enhancing the model’s overall performance. In this paper, leveraging human visual demon-
strations in pretraining datasets for RL enhances the model’s adaptability, decision-making processes,
and overall performance, while providing a rich, diverse, and contextually relevant set of experiences.

Owing to the limitation of gathering real-world data, that is, sample inefficiency and difficulty in data
collection, simulation environments are more convenient for training RL agents. Nonetheless, when we
prefer to transfer the agent trained by the simulation to the real world, the gap between reality and
simulation will reduce the performance of the policy. Multiple research efforts toward closing the sim-
to-real gap and solving the problem of sim-to-real transfer. As in survey [17], the main methods of
sim-to-real transfer in DRL being utilized at the moment include these aspects: domain randomization,
domain adaptation, imitation learning, meta-learning, and knowledge distillation. In order to complete
the learning task of robot assembly skills for general use in reality, in this paper, we propose a novel
framework that can transfer the policies trained in simulation to the real environment with a sim-to-real
controller as shown in Fig. 1. The problems addressed in this paper are as follows:

How to generate more human-like demonstration in reality: We introduce a two-step method to
develop manipulation trajectory from a single third-person-view visual demonstration. Our approach
uses a binocular camera mounted on the outside of the robot. Then we transfer the trajectory from
the camera coordinate system to the robot coordinate system through the calibration parameters of the
camera.

How to train the RL model more efficiently: There are three main ways to incorporate demonstra-
tion experience in RL: pretrain the RL model, add the imitation learning loss while training, and put the
demonstration data into a replay buffer. Since proximal policy optimization (PPO) is an on-policy RL
method, we pretrain the RL network to learn the expert experiment.

How to fill up the sim-to-real gap: By collecting visual information with the binocular camera in
reality, it is able to generate the demonstration trajectory and achieve automatic error correction to fill
up the reality gap. In addition to this, we also adopt the domain randomization method during training
to improve the robustness of the policy.

We carry out our experiments in the MuJoCo simulator. The primary contributions of this paper can
be summarized as follows:
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Figure 1. An overview of our method: 1) gather human demonstration data by visual method, 2) robot
executes the current policy in real world, 3) camera collect sim-to-real error, 4) simulation training of
a PPO agent with demonstration, 5) a controller for sim-to-real transfer.

1. We propose a vision-based method to extract demonstration trajectories in realistic industrial sce-
narios by SoLo and iterative closest point (ICP) to accurately extract realistic teaching trajectories
within 2 mm of accuracy. We improve the ICP and make it more accurate.

2. We develop an assembled RL training environment and successfully transferred real-world data
to simulation training. We assume the agent is in an unknown unstructured environment and
learns by exploration. We used enlightenment learning to improve PPO to learn from the demon-
stration experience. The success rate increased from 80% to 96%, and the generated policy can
achieve the target faster.

3. In order to apply the policies in realistic industrial application scenarios, we reduce the sim-to-
real gap by a visual error estimation and develop a sim-to-real controller. We discuss the proposed
approach on the recently established NIST gear assembly benchmark [18] to make a professional
comparison. We compare the proposed method with the demonstration and some other similar
approaches, such as original PPO and DDPGfD.

The rest of the paper is organized as follows. In the next section, we will introduce recent research
on the related work. Section 3 introduces the preparatory knowledge required for this paper. Section 4
presents the overall framework and introduce each part of our system framework in detail. This section
shows the contribution of the proposed approach. Section 5 shows the details of the experimental result.
Finally, we draw up our conclusions in Section 6. Our studies show great performance of the proposed
methods on efficiency.

2. Related work
Path planning is a key research issue in the field of robotic applications including local and global plan-
ning. For robot assembly, planning includes strategic planning and trajectory planning. Reference [19]
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used the analysis of contact states in insertion stage and the forces conditions to make a strategy plan-
ning and combined with impedance control. Reference [20] develop a planning strategy of path finding
and grasp planning. The trajectory planning methods include A∗ [21], D∗ [22], RRT [23], and etc. The
map-based motion planning methods are numerically demonstrated, but when encountering unknown
or unstructured environments, their effectiveness is not particularly good. Reference [24] summarizes
the representative and state-of-the-art works of the classical motion planning architecture and RL-based
approaches. As the complexity and randomness of the environment, the planning capability of the classi-
cal hierarchical motion planners is challenged. Reference [7] illustrated that most of the planning method
for robotic assembly are found to be sensing information based and not on the integration of the sens-
ing information and the environmental constraint. Human-inspired methods have not yet been applied
to assembly tasks either. Reference [25] illustrated that DRL shows a better fitting performance with a
tighter clearance and robustness against positional and angular errors for the peg-in-hole task. We estab-
lish the assembly problem in an unknown unstructured environment and try to obtain an effective and
robust strategy in the paper.

Recent research shows possibilities to learn manipulation skills with RL. The existing RL algorithms
applied in the field of robotics include TD3 [2], DDPG [3], PPO [4], SAC [5], and so on. It can be
divided into model-free and model-based methods or into on-policy and off-policy methods. In this
paper, we apply PPO, a model-free and on-policy RL algorithm, to realize the manipulation task of
the robot. Model-free RL methods are capable of training an agent to act directly on the environment.
The on-policy RL also helps the training converge faster. However, reference [24] introduced the chal-
lenge of RL-based motion planning methods, such as reality gap, reward sparsity problem, low sample
efficiency, and generalization problem. To settle these problem, we have conducted research and found
some effective methods.

LfD can be used to combine RL with demonstrations, such as dynamic movement primitives (DMPs)
[26–29]. These methods use trajectory-centric policy representations that are well suited for imitation
but do not enable feedback on rich sensory inputs. In some recent work, demonstrations have been used
for pretraining the policy, such as DQfD [30]. Pretraining RL policies using trajectories from an expert
can help to accelerate training process. On the other hand, behavior cloning (BC) treats the problem of
imitation learning, i.e., using expert demonstrations, as a supervised learning problem [31], which is also
an effective imitation learning method. DDPGfD [15] successfully combines RL with demonstrations
by incorporating the demonstrations into the RL algorithm. It is suited for off-policy RL method by
adding them to the replay buffer. Besides, DAPG [14] bootstraps the policy using behavior cloning and
combines demonstrations with an on-policy policy gradient method. On-policy RL methods, on the
other hand, are more stable and scale well to high-dimensional spaces.

The traditional demonstrating method needs to drag the end of the robot to perform the manipulation
task or act with the teleoperation [32, 33]. Instead, by acquiring the demonstration data in a visual way,
the expert experience obtained is closer to human actions. Such as [13], the author proposes a closed-
loop, category-level manipulation framework based exclusively on visual feedback with a robot teaching
method from a single visual demonstration. For the visual demonstrating method, pose estimation is
an important part. In some recent research, there are also some end-to-end pose estimation methods
based on deep learning [34, 35], but the precision and accuracy of these methods are difficult to achieve
the desired results. With the development of computer vision, instance segmentation has been able to
recognize and segment targets effectively, such as Mask-RCNN [36] and SoLo [37]. For pose estimation,
leverage geometric estimators such as RANSAC/PnP [38] and feature matching such as PFH [39] and
FPFH [40] can be used to solve object poses, but the processing time is relatively long. In our work,
we proposed a two-step object pose estimation method using instance segmentation [36, 37] and ICP
[41] to extract the pose from the visual data and produce a demonstrative trajectory. Benefiting from
the geometric information contained in the point cloud, the pose estimation method of combining the
image and point cloud is more accurate.

In recent years, there have been some transfer methods for RL agents to act in the real world.
References [42] use a method similar to digital twins with force information for zero-shot sim-to-real
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Figure 2. The process to extract trajectory from the visual human demonstration.

transfer. It corrects the errors in real time through the force sensor and achieves a lower reality gap.
Reference [43] uses domain randomization for transfer and help raise in domain error, but substantially
reducing out of domain error. Domain randomization also plays an important role in error correction
in our work. Reference [44] uses the domain adaption, which crosses the sim-to-real gap by mapping
the simulation and reality into a latent space. On the other hand, using real-world data also benefits
transferring the model. In this paper, we use a visual demonstration approach that allows direct access
to human expert experience.

3. Preliminary
Figure 2 shows the visual demonstration trajectory extraction method proposed in this article. To gen-
eralize a trajectory from the visual demonstration, we need to first identify the object and estimate its
position. Thus, we proposed a two-step object pose estimation method using instance segmentation and
ICP. In this paper, we can achieve a fast identification and segmentation of the target by SoLo. Then
we can generate the point cloud of the object from the mask. We used improved ICP [41] algorithm of
the point cloud to achieve the estimation of the target pose. In the experiments of this paper, about 20
iterations of each point cloud are performed to obtain the accurate target position pose.

The RL problem can be defined as a policy search in a Markov decision process (MDP). RL can
be divided into two types: on-policy and off-policy RL. The PPO algorithm uses fixed-length trajectory
segments. In each iteration, we collect T timesteps of data and store each transition (s, a, r, s′) in memory
to calculate the advantages. (s, a, r, s′) represents the state, action, reward, and the next state. V (s) is the
value of s calculated by the critic. The advantage-function estimator is defined as follows:

Ât = δt + (γ λ)δt+1 + · · · + · · · + (γ λ)T−t+1δT−1

δt = rt + γ V (st+1) − V (st)
(1)

where Ât specifies the advantage at t in [0, T], within a given length-T trajectory segment. γ is the
discount factor of the reward, and λ is the discount factor of the steps. After calculating the advantages,
we should set a hyperparameter ε for the cipped surrogate objective. The clipped surrogate objective is
calculated as follow:

LCLIP(θ ) = Êt

[
min

(
rt(θ )Ât, clip (rt(θ ), 1 − ε, 1 + ε) Ât

)]
(2)

To update the neural network architecture that shares parameters between the policy and value func-
tion, the loss function consists of three terms: the policy surrogate, a value function error, and an entropy
bonus.
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Figure 3. Training pipeline: the single visual data is add into the demonstration pool to pretrain the
actor and critic of the policy net. And then the policy net is trained in the MuJoCo with PPO algorithm.

LCLIP+VF+S
t (θ ) = Êt

[
LCLIP

t (θ ) − c1L
VF
t (θ ) + c2S [πθ ] (st)

]
(3)

where c1, c2 are coefficients, S denotes an entropy bonus, and LVF
t is a squared-error loss

(
Vθ (st) − V targ

t

)2.
In reference [4], there are two approaches to complete the PPO algorithm, including the clipped

surrogate objective and the adaptive KL penalty coefficient. In this paper, we only used the former
approach because of the weak effect of the latter method on the results.

4. Methods
In this paper, we propose a training pipeline as shown in Fig. 3 for robots to learn assembly skills. The
system framework consists of three major parts: demonstration pretraining, PPO training, and sim-to-
real transferring. To work in the real world, we estimate the sim-to-real error through the vision and
design a sim-to-real controller to fill up the sim-to-real gap. For transferring the training model from
sim to real, we also adopt domain randomization while training which plays an important role in error
correction. In our framework, all the demonstration steps are completed in reality.

4.1. Visual demonstration
For the high-precision manipulation task with rich contact proposed in this article, the agent needs to
perform ordered fine-grained motion to achieve success. Adding demonstration is an intuitive way to
display possible solutions to tasks to agents and can guide reasonable initial strategies. Due to the lack of
clear modeling potential factors, expert demonstrations provided by humans typically exhibit significant
variability [45]. We proposed a novel method for extracting high-precision visual teaching trajectories.
For the demonstration video frame, the object state is extracted via a two-step pose estimation method,
which allows to represent of task demonstration with an extracted trajectory. Some end-to-end pose
estimation methods [34, 35] are able to do so but with unacceptable accuracy. We improve the accuracy
of visual demonstration trajectory through point cloud processing and optimization methods. First, we
collect a set of artificial teaching data of the image and depth information by a binocular camera with
structured light. We train a SoLo model for object recognition and segmentation, which can achieve
fast instance segmentation. We get deep information about the mask of the target object. By joining
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Figure 4. The improved ICP method. The green and red point cloud is the original point cloud of the
gear. The second image is the original ICP registration result. The third image is the improved ICP point
cloud registration result. The white point cloud is the input point cloud, and the red point cloud is the
expected point cloud position.

the depth information, we can use the internal parameters of the camera to obtain the real point cloud.
We preprocess the point cloud, including downsampling, radius filtering, and Euclidean clustering to
improve the ICP as shown in Fig. 4. Compared to the end-to-end method, the 6D pose obtained by this
method is closer to the actual state and easier for error analysis. The error of the position estimation
method we use is about 2 mm.

In this work, we have used the OpenCV and PCL libraries to process the image and point cloud data.
After generating the teaching trajectory, we need to convert the teaching trajectory from the image coor-
dinate system to the world coordinate system by hand-eye calibration. We convert the pixel coordinates
of the target to the world coordinate system through the internal and external parameters of the camera.
The equation for the transformation is as follows:⎡

⎢⎣
xc

yc

zc

⎤
⎥⎦ =

⎡
⎢⎣

f 0 0

0 f 0

0 0 1
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⎤
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1
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R T
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0 1

]−1

⎡
⎢⎢⎢⎢⎣
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yc

zc

1

⎤
⎥⎥⎥⎥⎦ (5)

where u, v is the pixel position in the image. (u0, v0) is the pixel position in the center of the image. dx and
dy denote how long each column and row represents. f is the focal length of the camera, which we often
refer to as the internal parameter. (xc, yc, zc) represents the position in the camera framework. (xw, yw, zw)
is the real position in the world. R is the rotation matrix, and T is the transfer vector between the camera
coordinate system and the world coordinate system, which we often refer to as the external parameter. In
the real world, we can extract the internal and external parameters of the camera by hand-eye calibration.

4.2. Reinforcement learning
There are a number of simulators developed in response to the rapid development of RL in robotics, such
as Pybullet [46], MuJoCo [47], and Isaac. We consider the requirements to meet the demands of our
experiment. MuJoCo is chosen according to the comparison of different simulators [48]. We also develop
RL algorithms by using OpenAI Gym, which is utilized as a convenient toolkit for RL algorithms.
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PPO has been illustrated to work in the field of continuous spatial control of robots, which is one
of the commonly used on-policy RL methods for robot skill learning. Compared with the off-policy
method such as DDPG, PPO has better stability and adaptability. We improve the PPO algorithm, and
there are three modifications that significantly increase performance of the original PPO algorithm: 1)
The experience data retains the demonstration and exploration data, and actions from the human are
regarded as the agent’s own. 2) We have designed a simple and efficient training environment and a new
shaped-reward function for the robot gear assembly task. 3) We added noise to the parameters and the
actor’s output – thus we have a robust policy.

4.2.1. Architecture
We use an Actor-Critic style PPO algorithm with a policy network and a value network. Both of the
neural networks have three linear hidden layers with 256, 128, and 64 units, respectively. The ReLU acti-
vation function is used in all hidden layers. The input state is three dimensional, the output action is three
dimensional, and the output value is one dimensional. With a constraint of the clipped surrogate objec-
tive in the PPO algorithm, there would not be an excessively large policy update while training which
helps to reduce policy forgetting. Due to this advantage of the PPO algorithm, the retrained network can
better retain the experience from the pretraining model and generate a more general policy.

However, the shortcomings of traditional robot RL methods make it difficult for us to obtain a
good assembly policy through RL directly, which affects its effectiveness and practicality in real-
world applications. We introduce enlightenment learning incorporated via pretraining to overcome these
shortcomings, which involves a combination of algorithmic advancements, improving data efficiency,
balancing exploration and exploitation, accelerating training, and engineering rewards. Due to the fact
that RL is a random exploration process, without pretraining the model, the trajectories and policy gen-
erated are unpredictable. The proposed training strategy can enable RL to obtain basic policy units in
advance.

After transforming the demonstration data to the robot base coordinate system in the simulator, we
can pretrain the policy network and the value network. First, all the demonstration data are transfered
into (s, a, r, s′) and put into the experience pool. While training, 64 groups of data are randomly extracted
from the experience pool in each training epoch. After training for 2000 epochs, we can obtain a pre-
trained policy network and value network. The pretrained policy network and value network are the
same as the networks for RL, including an actor and a critic. In this way, we can initialize the RL model
for further training. After pretrain the RL model, PPO will control the rest of the training.

4.2.2. Environment
There is a gap in applying RL to real-world robot tasks. For example, in real-world scenarios, unexpected
actions may lead to potential safety issues for robots, and low sampling efficiency in the real world may
lead to convergence difficulties in the training process. It is necessary to create a training environment
that can achieve the transfer of simulation and reality. We build a new simulation environment that
can maintain transfer-ability between domains and train the agent in the Cartesian space. Simulation
results illustrate that it speeds up learning process and reduces training time greatly. We train an agent
in Cartesian space using proprioceptive information. The training of Cartesian space skills can greatly
simplify the model and reduce the amount of data required for training, which is beneficial to transfer
to the real world. The state space and the action space are defined as follows:

St = [xt, yt, zt]

At = [δx, δy, δz]
(6)

where (xt, yt, zt) is the position of the end effector at t. (δx, δy, δz) is the displacement of the end effector.
We also normalize the state space and action space. In this paper, we trained an assembly policy with
PPO to obtain the action of the end effector based on the current state of the environment. The actions
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Table I. Environmental constraint.

Parameters (unit) Threshold
Joints limit ji (rad) [−3.14, 3.14]
The X-axis coordinates of the end effector xt (m) [0, 0.6]
The Y-axis coordinates of the end effector yt (m) [−0.5, 0.5]
The Z-axis coordinates of the end effector zt (m) [0, 0.5]
Steps limit 64

generated by the policy are in the Cartesian space. Therefore, we need to transform the actions from
Cartesian space into joint space. We design a solver to settle the inverse kinematics problem of robots
with PyKDL library and control the robot in joint space.

Considering the safety during robot assembly and also for more convenient training, we also define a
mechanism for environment reset. The environment is reset when: 1) The robot joint angles out of limit;
2) the end effector is out of the safe workspace; and 3) the number of steps exceeds the set threshold.
The threshold is as shown in Table I.

4.2.3. Shaped reward
The RL method is guided by reward signals. Instead of using a sparse reward, we well design a shaped
reward function, which is beneficial for improving sample validity and faster convergence. We use sparse
rewards to guide exploration while using dense rewards to provide more timely feedback. The sparse
reward is defined as follows: ⎧⎨

⎩
rdone = 0 done = true

rdone = 1 done = false
(7)

Sparse rewards make gradient propagation difficult, so it is necessary to design a dense reward
function. Using a shaped reward function requires a large amount of engineering effort to extract the nec-
essary state information. We compared different reward functions, including linear function, exponential
function, gaussian function, and so on. These functions are simple but difficult to adapt to assembly tasks.
We find that using a logarithmic function allows the environment to generate larger rewards when the
target is closer. The reward function of the distance is defined as follows:

rt = dt − log(d2
t + ε) + υ

dt = −√
(xg − xs)2 + (yg − ys)2 + (zg − zs)2

(8)

where (xg, yg, zg) is the position of the gear and (xs, ys, zs) is the position of the shaft. dt represents the
distance between the current position and the target position at t. rt is the reward at t. ε is a constant used
to prevent the case where the logarithmic function of the reward fails to take a value for a distance of
zeros, ε is set to 0.005. υ is a bias constant of the reward, υ is set to 5.0. The environment is reset when
dt > 0.5 or when the joint angle of the robot is greater than the joint limit.

Besides, we define a successful attempt as the robot completes the assemble task at least 0.02 m. When
the task is completed, the environment generates a reward rdone = 1. In conclusion, the total reward is as
follows: ⎧⎨

⎩
rtotal = rt dt > 0.02

rtotal = rt + rdone dt <= 0.02, rdone = 1
(9)

We collect a set of demonstration data mentioned in Section 4.1 and store each transition (s, a, r, s′)
to pretrain the RL model. In our framework, all the demonstration steps are completed in reality. After
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Table II. Domain randomization configuration.

Parameters (unit) μ ρ Noise distribution
Initial joint angles ji (rad) 0 0.1 Uniform
Actions at (m) 0 0.01 Gaussian

pretraining the RL model, PPO will control the rest of the training. Finally, we obtain a usable model to
complete the assemble task.

4.3. Sim-to-real transfer
In order not to overly adapt to any specific absolute coordinate position, we introduced a mechanism
that allows agents to extend to new positions and fill up the sim-to-real gap. Directly using policy in the
real world will consistently hurt performance. In our regime, we have found that domain randomization
and sim-to-real error correction improved performance of transference. We performed experiments in
reality to demonstrate the ability of our training model to transfer from simulation to reality. We use
two methods to do this: training in a randomized environment and filling up the sim-to-real gap with a
sim-to-real controller. The results show the trained model robust enough to work in different domains.

4.3.1. Domain randomization
While training, we added noise to the parameters and the ground truth position. In our framework,
domain randomization works well in error correction. We used two types of randomization: observation
randomization and dynamic randomization. The observation randomization represents the uncertainty
of the target and the initial state. Dynamic randomization represents the model’s inaccuracy while inter-
acting with the environment. We used two types of noise distribution: Gaussian distribution Ng (μ, ρ)
(where μ is the mean and ρ is the covariance) and Uniform distribution Nu (μ, ρ) (where μ is the mean
and ρ is the absolute value of the upper and lower limits). The domain randomization configuration of
the experiment is given in Table II.

4.3.2. Sim-to-real controller
It is necessary to create a control method that can achieve the transfer of simulation and reality. In
this article, we successfully addressed this issue by designing an error estimator. The grasp planning
algorithm used in this paper is the one proposed in reference [49]. Due to the error of the grasping
position and object differences, there are differences between reality and simulation. In this paper, we
assume that in the assemble task, the reality gap is caused by the different positions of the gear and shaft
in the real world and simulation. So we design a sim-to-real controller to fill up the sim-to-real gap.
We start by moving the robot in reality and simulation to the same initial state and then identify and
calculate the state of the target in reality to calculate the error between reality and simulation. Before
the policy starts, we have an initial estimate of the positions of the gears and shaft both in the real world
and simulator. When the policy is executed in reality, we superimpose the acquired error on the policy
output to control the robot in reality. The error is calculated as follows:

�p = preal − psim (10)

where preal, psim is the position of the assembly target in the initial state generated by the approach to
estimate the 6D pose of the target mentioned in Section 4.1. �p represents the sim-to-real error. While
performing tasks, the policy is running in the simulation, and the real robot is controlled by the state of
the robot in the simulation combined with error.
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Figure 5. The assemble setup with a UR3 robot in the real world and simulation.

�q = J(q) ∗ �p

q′ = q + �q
(11)

where q is the joint angles and J(q) is the Jacobian matrix of the robot at the current moment in the
simulator. q′ is the real joint angles to control the real robot.

5. Experiments
There are two different sizes of gears used in the experiments in the NIST gear assembly benchmark.
The proposed method is utilized to perform manipulation of different gear objects with no additional
programing. In the experiments presented in this paper, the following questions are explored: 1) What is
the effect of the expert experience added through the visual demonstration? 2) How robust are the skills
to different scenes and uncertainty due to dynamics? 3) Does our framework work well in real-world
tasks and robots?

5.1. Simulator environment
We set up the environment in the MuJoCo simulator, which can effectively reduce the reality gap and
demonstrate the proposed method in the gear shaft assembly task. The experimental environment con-
sists of three main parts: simulator, robot, and assembled objects. Figure 5 shows the entire system in
the real world.

5.1.1. Simulator
MuJoCo is a general-purpose physics engine that has achieved good results and applications in robotics.
It is able to quickly and accurately simulate the interaction between articulated structures and the envi-
ronment. Multiple cameras are set in the simulation environment to obtain the grasping position and
teaching trajectory, including the camera on the robot hand and the camera fixed to the rear of the
robot.
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Figure 6. The gears and shafts of the assembly task. The left picture shows the CAD model, and the
right picture is the real object.

5.1.2. Robot
We use UR3, a 6-DOF robot with a two-fingered gripper. In the simulator, we implement the joint control
of the robot with the designed PD controller. Besides, controllers transform the high-level actions into
low-level virtual motor commands that actuate the robots with the inverse kinematics of the robot. The
URDF file of the robot is used to import the joint information of the robot, and the required robot end
position is obtained to calculate the IK solution of the robot.

5.1.3. Assemble objects
As shown in Fig. 6, the gear assembly task consists of two main parts: the gear and the shaft. In this
paper, two different gears are used, each mounted on a different shaft. The outer diameters of the gears
are 40 and 30 mm, respectively, and both inner diameters are 10 mm. The diameters of the shafts are
8 mm.

5.2. Visual human demonstration
In this experiment, the COMATRIX camera was used to generate grayscale images, depth images, and
pointclouds of the assemble target at the camera’s acquisition rate (1–2 Hz). We have collected 120
grayscale images and depth images. The data we collect from the camera of the human demonstration
are as follows:

1) Grayscale image: 2448∗2048 pixels (as shown in Fig. 7, the first row)
2) Depth image: 2448∗2048 pixels (as shown in Fig. 7, the second row)
3) Pointcloud: 1,628,584 points (as shown in Fig. 7, the third row)

After processing the raw data of teaching, we can obtain the trajectory of teaching actions in the
camera coordinate system. With hand-eye calibration, the transformation matrix and translation vectors
from the camera to the robot base coordinate frame can be obtained so that we can map the trajectory
to the robot base coordinate system. The trajectory extraction method proposed in this paper has high
accuracy and can obtain trajectories with human experience. It is with an error of 2 mm, which meets
the requirements of the gear assembly task. Then we control the robot to perform the extracted trajectory
and compare with the trajectory in the video. As shown in Fig. 8, the robot can accurately reproduce
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Figure 7. The visual demonstration data. The first row is the gray scale images, the second row is the
pseudo-color depth images, and the third row is the generated point clouds.

Figure 8. The snapshots of the trained agent performed during the assembly task in both the simulator
and the real world. (a) The first row is in the simulator, and the second row is in the real world. (b) The
close-up of the gear assembly process.

the action trajectory and successfully complete assembly tasks taught by humans, which proves that our
method can accurately extract trajectories with human experience. The demonstration trajectory also
has a good average reward result.

5.3. Performance of reinforcement learning
Trajectory planning for robots using RL involves training a policy that guides the robot’s actions over
time. In this context, the trajectory represents a sequence of states and actions that the robot takes to
accomplish a task. The policy maps states to actions, effectively determining the robot’s behavior.
During the execution phase, the learned policy is applied to generate trajectories in real-world sce-
narios. The robot leverages its acquired knowledge to navigate and adapt to the environment, making
decisions at each step based on the learned policy. This approach allows the robot to plan and execute
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Figure 9. The assemble task training reward curve under different training policies of PPO. The red
curve is without the use of demonstration. The blue curve is obtained by adding the pretraining of
the demonstration. If the policy can achieve the assembly target, the average reward will converge to
around 0.

trajectories that align with its learned understanding of optimal actions in different states, showcasing
the adaptability and intelligence achieved through RL.

5.3.1. Training results
We test the generalization ability of our framework under different conditions and show the smoothed
episodic reward with the smooth function is rt+1

′ = 0.4rt
′ + 0.6rt+1. The training mean reward curve

results of the PPO agent are shown in Fig. 9. We trained the policy with 700 episodes and each lasting
64 steps under different conditions. It is clear that the agent converges to a policy that allows it to suc-
cessfully complete the task after nearly 600 episodes without demonstration and domain randomization.
The mean reward per episode of the pretrained policy is about −1.3 at the start, and after re-training, the
mean reward will reach the top after nearly 200 episodes. The reward and average reward in both modes
start at a lower value and rise to a stable value. This indicates that the robot has acquired environmental
knowledge through training and is able to adapt to the environment.

To test the generalization capability of the learned policies, we ask the agent to perform gear assembly
tasks at new locations using the previously trained policies without any fine-tuning. The result shows that
the model obtained by training again can well retain the experience obtained by pretraining and optimize
the policy obtained by pretraining. As shown in Fig. 10, the policy after pretraining outperforms the
policy without demonstration or trained with demonstration only. The policy with demonstration allows
for stable execution of assembly actions along the shaft. Without the demonstration, the trained policy
may go closer to the target position from the side of the shaft, which will lead to the failure of the
assembly task.

5.3.2. Comparison experiment
We conducted contrast experiments comparing our method with the original methods. As shown in
Table III, the proposed method has the least training time, the highest success rate, and the least number
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Table III. Table of the results of different trained policies.

Policy Training time Average reward Success rate Average steps
Demo – −0.27 – 120
Pretrain – −0.66 96/100 134
PPO w/o Pretrain 600 −0.76 80/100 158
PPO w Pretrain 200 −0.12 97/100 90
DDPGfD 1300 −0.58 47/100 140

Figure 10. The assembly trajectories result under different training policies of PPO. The red trajecto-
ries are without the use of demonstration data. The green trajectories are obtained directly by pretraining
with the demonstration. The blue trajectories are obtained by adding the pretraining of the demonstra-
tion and retrained in simulator. The failure cases in the first figure are caused by the singular position
of the robot.

of execution steps. We selected three models trained by different methods: the model trained by the origi-
nal PPO algorithm, the pretrained skill model, and the model obtained by training again after pretraining.
In the simulation, one hundred assembly tasks are carried out for each model in the same environment.
The initial state of each assembly task is randomized. If the assembly strategy can be completed within
200 steps, the assembly is judged to be successful. The success rate of assembly and the average num-
ber of steps are calculated and repeated ten times. The result is shown in Fig. 11. The average success
rate and average number of step knots for the three models tested are, respectively, 80% and 158 steps,
96% and 134 steps, and 97% and 90 steps. Policy trained using the proposed method has a significantly
higher success rate and can use fewer steps to complete the assembly task.

We tested the policies obtained from different PPO training strategies and extracted 10 different tra-
jectories for each strategy. We randomized the initial position of the assembly and set the target position
to be the same (0.25 m, 0.0 m, and 0.06 m). The assembly trajectories are shown in Fig. 10, and the
position changes in three directions results are shown in Fig. 12. The assembly policy trained using the
method proposed in this paper generates shorter and smoother motion trajectories. As shown in Fig. 12,
the original PPO training method is unable to successfully complete assembly tasks at some random
initial positions. Two out of the 10 samples were unable to successfully reach the target position to
complete the assembly action. After adding pretraining with demonstration data, the success rate and
assembly speed of the training policy are significantly improved.

In addition to comparing with the original PPO algorithm, we also compared with another similar
RL method, DDPGfD which is an off-policy method. The trajectory generated by PPO production is
smoother than that generated by DDPG due to the design method of PPO algorithm loss function. The
trajectory generated by DDPGfD may experience some jitter. As shown in Fig. 13, we compare and
discuss the generated trajectory of the proposed method with the demonstration and DDPGfD in three
directions: x-axis, y-axis, and z-axis. All generated policies perform the same task. The starting position
of the assembly is approximately (0.3, 0.12, 0.3), and the target position is (0.25 m, 0.0 m, 0.06 m). The
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Figure 11. The assembly trajectory, the average success rate and the average number of steps of
different methods.

Figure 12. Position changes in three direction of the original PPO algorithm without pretraining, the
pretrained policy and the improved PPO algorithm with pretraining.

results showed that the strategy obtained through PPO and pretraining reached the target position the
fastest.

We also compared the changes in rewards during the assembly process in Fig. 14. Obviously, our
method enables faster assembly. It outperforms vendor solutions by large margins in terms of pertur-
bation ranges while keeping high success rates. In total, we have performed 100 trials on each method
with a random initial position. This strongly implies our method is robust and reliable. Most failures
occur due to active hard contact can cause changing dynamics. In the future, we plan to look at ways to
encourage a more gentle insertion policy.
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Table IV. Table of the results of different
sim-to-real transfer methods.

Transfer methods Success rate
w/o error estimator 15/20
w error estimator 18/20

Figure 13. Comparison of the demonstration trajectory, DDPGfD, and the experimental trajectory of
different training policies.

Figure 14. The experimental reward comparison chart of different training methods, DDPGfD, and
demonstration during the assembly process. When the assembly task is completed, the reward is close
to 0.

5.4. Sim-to-real transfer
In gear assembly tasks, the main sim-to-real gap comes from the position error of the assembly target
and the motion error of the robot. In this paper, we develop an error estimator to settle the sim-to-real
gap. Five groups of 20 repeated experiments with and without error estimation were done. The results
are shown in Table IV. With the error estimator, the success rate of sim-to-real transfer increased from
75% to 90% as shown in Fig. 15. As shown in Fig. 16, we compare and discuss the generated trajectory
with and without the error estimator. There is a clear gap between reality and simulation. The real target
position is (0.25 m, 0.0 m, 0.06 m). Through error estimation, we can effectively correct the assembly
trajectory in reality to improve the success rate of real assembly.

Our experiment snapshot is shown in Fig. 8. We can see that our control method can well transfer the
policy from the simulation to reality. The robot moves more slowly as it gets closer to the target. This is
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Figure 15. The assembly trajectories and the average success rate of the sim-to-real transfer method.

Figure 16. Position changes of the sim-to-real transfer method.

due to the setting of our reward function when the closer to the target is the smaller the variation of the
reward, which helps to improve the safety of the assembly process.

6. Conclusion
In this paper, we proved that our framework is a novel approach to solving the assemble task both
in simulated and real-world environments. We improved the PPO algorithm and compared it with the
original method and other similar RL methods. The comparison results show that the proposed method
can faster access to the assembly target with a higher success rate. With the visual demonstration, the
PPO algorithm can generalize a more reliable and human-like policy and faster access to an optimal
policy. Since there is a difference between reality and simulation, PPO modifies the domain parameters
in the MuJoCo simulator while training. We also developed a general error monitoring method based
on visual information to fill up the sim-to-real gap and increase the generalization of our framework. In
this paper, PPO with visual demonstration and sim-to-real controller performs the gear assemble tasks
well using UR3 robots with a higher success rate and fewer steps.

The approach contributes to overcoming the common limitations of data scarcity and high costs
associated with real-world robot training. By combining the strengths of simulation-based learning,
one-shot transfer policies, and the informative nature of visual demonstrations, the paper presents a
pioneering solution to enhance the adaptability, efficiency, and performance of robotic assembly tasks.
This research significantly advances the field by providing a comprehensive methodology that bridges
the sim-to-real gap in robotic assembly through the incorporation of visual demonstrations and RL.

For future work, we will try to develop a more reliant and robust framework by joining the force
information due to the significance of the force information in the assembly task. We will consider more
assembly tasks and develop a more generalized framework for different assembly targets.
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