
CLASS GROUPS AND AUTOMORPHISM
GROUPS OF GROUP RINGS

by KENNETH A. BROWN

(Received 13 February, 1985)

1. Introduction.

(1.1) This paper is a sequel to [2]. A polycyclic-by-finite group G was there called
dihedral free if G contains no subgroup isomorphic to (b, a:b" = b~\ a2 = 1) whose
normalizer has finite index in G. It was shown in [2, Theorem F] that, if R is a
commutative Noetherian domain, the group ring RG is a prime Noetherian maximal
order if and only if R is integrally closed, G is dihedral free, and G has no non-trivial
finite normal subgroups. Throughout, R and G will be assumed to satisfy these
hypotheses. The main aim of the paper is to study the class group of the maximal order
RG.

(1.2) Let 5 be a prime Noetherian maximal order with simple Artinian quotient ring
Q. By [8, Chapter II, Proposition 2.6], the set of reflexive 5-ideals in Q forms a group
G(S), which is free Abelian with the prime reflexive ideals of S affording a basis. The
central class group C\(S) of S is the factor of G(5) by the subgroup generated by ideals
with central principal generators (see 2.3(2)).

(1.3) Let R be a commutative Noetherian UFD with group of units R*, and let G be
as above, with FC-subgroup A. Write G0 = G/CG(A), a finite group, and denote the
centre of RG by C. Note that R* x A is a ZG0-module under conjugation. Our main
findings are as follows.

THEOREM, (i) C\(RG) = H^GQ, R* X A).
(ii) C1(C) embeds in Cl (RG). The cokernel is the direct sum of finitely many cyclic

groups, the class groups C\(RGP) for those reflexive primes P for which the Jacobson
radical of RGP is not centrally generated.

(1.4) These facts are proved in Theorem 3.1. Every reflexive ideal of the group rings
RG under consideration is principal, generated by an element of /?A (3.1(i)). Now RA is
a commutative Noetherian domain on which Go acts as ring automorphisms. So the above
results arise as special cases of some observations on "class groups under group actions".
In case they may have wider application, we have derived the relevant facts in a general
context in Section 2, before apply them to group rings in Section 3.

(1.5) The group of X-inner automorphisms X-Inn(S) of a prime Noetherian ring S
consists of those automorphisms induced by conjugation by a unit u of the simple
Artinian quotient ring Q of S. Note that u is then normal—that is, Su = uS—so, if 5 is a
maximal order, uS e G(S). If every reflexive 5-ideal is principal, it follows easily that
X-Inn(S)/Inn(S) = C1(S) (Lemma 4.2). Applying this to group rings in 4.4, we deduce
that

X-Inn(#G)/Inn(flG) = H\G0, R* x A),
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where the notation and hypotheses are those of 1.3. The link between this isomorphism
and earlier work of S. Montgomery and D. S. Passman [10, 11] is explored in 4.5.

If G is in addition Abelian-by-finite, the Skolem-Noether theorem implies that the
group Autc(RG) of C-algebra automorphisms of RG equals X-Inn(RG), so that

Autc(RG)/lnn(RG) = H\G0, R* x A).

2. Class groups under group actions.

(2.1) For basic facts about maximal orders, see [8]. Throughout Section 2, 5 will be a
prime Noetherian maximal order with Artinian quotient ring Q. Let / be a finitely
generated right (resp. left) S-submodule of Q. Call / a right (resp. left) S-ideal if
i n < € ( O y 0 . L e t I* = H o m s ( I , S ) = { q e Q : q I c S } ( r e s p . {q e Q :Iq c 5 ) } . I f / is an
5-5-bimodule this definition is unambiguous, since both sets equal {q eQ.Iql c / } [8,
Chapter I, Proposition 3.1]. The right or left 5-ideal / is reflexive if 1 = 1**. The operation
I • J = (//)** makes the set of reflexive 5-ideals in Q into a group, G(5), which is free
Abelian with basis the set SP of prime reflexive ideals of 5 [8, Chapter II, Prop. 2.6].

Let F be a group acting on 5, and put 5 r = {s e S: s Y = s for all y e F}. A subset X of
Q is T-invariant if XY = X for all y e F. If / is a F-invariant 5-ideal, so is /*. Hence G(S)
contains the subgroup of F-invariant reflexive 5-ideals, denoted Gr(S).

Let / be a reflexive 5-ideal, so that / = Pf' • Pf2 • . . . • Pe/, where P, is a reflexive
prime and e, = ±1 for all i. If Ir = 1, then F permutes the P,'s, so that each has a finite
F-orbit; and if the Pj's form / such orbits, I = A^ • A2- • . . • A,, where, for each i,
A/ — PeM • Pfp • . . . • Pf*j>> = f~l Pfji, the intersection being over the primes in a single orbit.

1 ' i "1
Thus Gr(5) is free Abelian with basis \D PY:P e $>, P F-orbital .

(2.2) Let Prinr(5) be the subgroup of Gr(S) generated by the principal ideals 5c = cS
of 5, with ceSr. We define the T-normalised class group of 5 to be the factor
Gr(5)/Prinr(5), denoted Clr(5).

(2.3) EXAMPLES. (1) Let 5 be commutative and F = l. Then Clr(5) = C1(5), the
usual divisor class group [1, Ch. VII. §1, no. 10], [4, Chapter II, §6].

(2) Let F= Q*, the group of units of the quotient ring Q of 5 (or, more generally,
let F be any subgroup of Q* which generates Q as an algebra over the centre C of 5).
Then 5 r = C, Prinr(5) is generated by the central principal ideals, and Clr(5) is the
central class group, studied in [7], for example. In this paper, the central class group will
always be denoted by Cl(5).

(3) If 5 r is in the centre C of 5, and 5 is a finite C-module (or, more generally,
Q = SC~l), then Pic5r(5) c Clr(5), in Frolich's notation: see [13, §37].

(4) If 5 r c C, and every reflexive F-invariant ideal of 5 is invertible, then
Clr(5)cPicsr(5).

(5) Suppose that F = l. Then Clr(5) is the normalising class group defined by
Chamarie: see [7].

(2.4) Let Cr(5) = {yeF:s y = .yforallse5}, and set Fo = F/Cr(5).
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PROPOSITION. Suppose that S is commutative, that every Y-invariant reflexive ideal of S
is principal, and that \T:Cr{s)\ < °° for all seS. Then C\r(S) c H \T0, S*). If To is finite,
this inclusion is an equality.

Proof. Let K be the quotient field of Sr. Since each element of S has only finitely
many F-conjugates, K = Qr. There is an exact sequence

1 -* S* -* Q* -* Prin(S) -* 1.

Applying the fixed point functor to this sequence yields

1 -* (S*)r -* (Q*)r A Prin(5)r -> W(T0, S*) -* Hl(T0, Q*),

[6, §2.1]. Here, (Q*)r = K*, and (S*f = (Sr)*. Since the F-invariant reflexive ideals of S
are principal, Gr(S) = Prin(5)r, so that

Clr(5) = Prin(S)r/Prinr(S) = Prin(5)r/im T.

This gives the stated inclusion. If To is finite, / / ](r0, Q*) = 0 by Hilbert's Theorem 90 [14,
Theorem 3.7.2], and so

(2.5) Let Co be an integrally closed Noetherian domain contained in the centre of 5,
with S a finitely generated C0-module. An 5-ideal / is reflexive (as an 5-ideal) if and only
if it is reflexive as a C0-lattice in Q [5, Theorem 2.3]. Let ?f be the set of height one
primes of Co. Since / is C0-reflexive if and only if / = Pi Ip [1, Ch. VII, §4, no. 2,

peST

Theorem 2], we deduce the well-known first part of Lemma 2.5. The second statement
follows from the first by a routine global-local argument.

LEMMA. An S-ideal I is reflexive if and only if I = H /,,• Let K be the quotient field of
Co. / / L is a reflexive Co-ideal, (LS)** n K = L. "e3r

(2.6) PROPOSITION. Let C be the centre of S, and suppose that Sr c C, with S a finitely
generated Sr-module.

(a) Sr is an integrally closed Noetherian domain.
(b) The map io:G(Sr)^>Gr(S): / ^ ( / 5 ) * # induces a monomorphism (':Cl(Sr)-->

Proof, (a) Since 5 is a maximal order, C is integrally closed. Let L and K be the
quotient fields of C and Sr respectively. Since K C\ C = Sr, Sr is integrally closed.
Moreover, Sr is Noetherian by [3].

(b) Let / be a reflexive 5r-ideal. By Lemma 2.5, (IS)** C\K = 1. So i0 is an injection.
For reflexive ideals / and / of S, (US)** = (ISJS)** = in(I) • io(J). So i0 is a homomorph-
ism. Let J e G(Sr) with io(J) e (Prinr(S)). We claim that J e <Prin(Sr)). Let (JS)** =
cd~lS, where c,deSr. Therefore io(Jd) = cS. Since (JdS)** DSr = Jd, we must have
ceJd. Hence, cS = (cS)** c (JdS)* * = cS. Thus, Jd = (JdS)* *DSr = cSr. It follows that
/ = cd~lSr, proving our claim. Therefore t0 induces an injection on class groups.
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(2.7) We shall say that a group F acts locally finitely on a set A if for each a eA the
set {aY:y e F} is finite.

THEOREM. Suppose that Sr is in the centre of S, and S is a finitely generated
Sf -module. Let ST be the set of height one primes of ST.

(i) There is an exact sequence

0 -> Cl(5r) 4 Clr(5) A 2mC\r(Sp) -* 0.
peer

(ii) Suppose there is a unique T-orbit of height one primes of S lying over each p eST.
Then Clr(5p) is finite cyclic, of order ep, where ep is the index of nilpotency of the radical of

sp/Psp.
Suppose now that S is commutative, that every Y-invariant reflexive ideal is principal,

and that F acts locally finitely on S.
(iii) There is a unique T-orbit of height one primes of S lying over each p e ST.
(iv) Let rn = r/Cr(5). Suppose that Hl(T0, £*) is finite. Then for all but finitely many

peST, C\r{Sp) is trivial.
Proof. (i)(a) Proposition 2.6 shows that i is a monomorphism.
(b) The map T is induced from the map which sends the reflexive F-invariant ideal /

of S to E® ISP e S® Gr{Sp). (Since ISP = Sp for all but finitely many p , this makes sense.)

(c) im i c ker x. Let / be a reflexive 5r-ideal. Let p eST. Then Ip is S^-reflexive, and
so Ip = dSp~ for some del. Thus ISP = dSp =IS**. Therefore, if [/] denotes the coset of /
inCl(Sr)> «([/]) = 0.

(d) ker T c im i. Suppose that / is a F-invariant reflexive 5-ideal with [/,,]= 0 in
Clr(5p) for all p e ST. We have to show that I = (LS)** for some reflexive 5r-ideal L.
Multiplying / if necessary by a suitable x e 5 r , we can assume that / is an ideal of 5. Thus,
for all p e ST, Ip = Spcp for some cp e Sp; and for all but finitely many p , cp-\. Define
L = P | S^Cp c 0 S£ = Sr, the last equality by Proposition 2.6. Then L is a reflexive ideal

of 5 r , and for all p in ?T, lp = LSP, by [1, Ch. VII, §4, no. 3], That is, / = (~) Ip = f| LSP =
(LS)** by Lemma 2.5. " "

(e) T is onto. In the light of Lemma 2.5, this follows from [1, Ch. VII, §4, no. 3].
(ii) Let p e ST. Let Pu P2,. . . , Pn be the T-orbit of prime ideals of S which lie over p .

By 2.1, Gr(Sp) = {[C\Pj]) is free Abelian of rank 1, and there exists m ss 1 with
pSp = [(P| Pi)"1]**. Thus Clr(Sp) is cyclic of order m, since every ideal of the DVR S£ is a
power of pSp.

(iii) Let p e ST and let {Px, . . . , Pm) be a T-orbit of primes of S lying over p . Put
I = QPh so that by hypothesis / = /W for some 0 e /. If y e T then F = I, and so /3Y = /3u
for some unit ueS. Let /3 = fiu0, /3uu . . . , fiu, be the distinct T-conjugates of fi, finite in
number by hypothesis. Put 0 ' = II |3«,; thus j 3 ' e S r and /3' generates /'+1. Therefore
l'+lcpS<=I. It follows that {Px',...,Pm} is the only F-orbit of height one primes
containing p .

(iv) This follows from (i) and Proposition 2.4.
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3. Group rings.

(3.1) THEOREM. Let R be a commutative Noetherian UFD, and let G be a dihedral free
polycyclic-by-finite group with no non-trivial finite normal subgroups. Let A be the
FC-subgroup of G, let S = RG, and denote the centre of S by C.

(i) S is a prime Noetherian maximal order in which every reflexive ideal is principal,
generated by a G-normal element of RA.

(ii) Let G0=G/CG(A). Then

Cl(5) = H\G0, R*xA) = Hom(G0/G'0, R*)x H\G0, A).

(iii) Let 3~ denote the set of height one primes of C. Let 9 be the set of reflexive prime
ideals of S. There is a bijection from <3> to ST given by P—» P flC, for P e@.

(iv) For each Pe@, define eP by (P D C)SP = (PSp)
ep, where p = PDC. Then eP = 1

for all but finitely many primes P, and the sequence

o -* ci(C) -> ci(5) -> 2 e Q , _» o

is exact {where Cm denotes the cyclic group of order m).

Proof, (i) By [2, Theorem F] S is a prime Noetherian maximal order. The reflexive
prime ideals of S have the form Sa, for a G-normal element a of RA, by [2, Theorem F,
Proposition 5.3 and Theorem B]. Thus every reflexive ideal of 5 has this form, by [8, Ch.
II, Proposition 2.6].

(ii) In view of (i), Cl(5) is the group C\a(RA), in the notation of 2.2. Now A is
finitely generated, so that Go is finite. Since A is torsion free Abelian [12, Lemma 4.1.6],
Proposition 2.4 applies, yielding (ii).

(iii) Let P = aS be a reflexive prime, with a e RA. Then aRA = P DRA is a finite
intersection of height one primes of RA. Since RA is a finitely generated C-module,
P n C = (P n RA) n C is a height one prime of C [1, Ch. V, §2, no. 4, Theorem 3]. Since
C is integrally closed by Proposition 2.6(a), P n C i s reflexive. If p is a height one prime
of C, the prime(s) of S minimal overpS are reflexive by [2, Theorem B], so that the map
!?-» 3": P-* PC\ C is onto. Injectivity of this map follows from Theorem 2.7(iii), noting
that RA is a finitely generated C-module by [12, proof of Lemma 4.1.10].

(iv) This follows from (iii) and Theorem 2.7.

(3.2) NOTE. I don't know whether the exact sequence in 3.1(iv) is always split. It
would be very useful, for example with a view to determining C1(C), to have a description
of the right hand term of the sequence which made the latter easy to calculate.

4. X-inner and central automorphisms.

(4.1) An automorphism a of a prime ring S is X-inner if there is a unit u of the
Martindale quotient ring Q0(S) with o(s) = u~1su for all s eS. The set X-Inn(S) of these
automorphisms is a normal subgroup of Aut(S). For details, see [9, §2]. In this section 5

https://doi.org/10.1017/S0017089500006376 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500006376


84 KENNETH A. BROWN

will always be Noetherian with simple Artinian quotient ring Q and so Q0(S) =
{q e Q :Iq c 5, 0^/<15}, and an automorphism of 5 is X-inner if and only if it is induced
by an S-normal element of Q.

(4.2) LEMMA. Let S be a prime Noetherian maximal order whose reflexive ideals are
principal. Then

X-Inn(5)/Inn(5)sCl(S).

Proof. Define a map 6 from the group G(S) of reflexive 5-ideals of the quotient ring
Q of S to X-Inn(S)/Inn(S), by 0(aS) = oa Inn(S), where aS = Sa and oa denotes
conjugation by a. If Sa = Sf5, then /? = ocu for some unit u of 5 and so op =
aaou = <7Q.(modInn(5)). Thus 6 is a well-defined homomorphism of groups. Clearly,
ker 6 = {aS: a central}. By definition of X-Inn(S), 6 is an epimorphism.

(4.3) Continue the notation of 4.1. Let C denote the centre of the ring 5. Let
Autc(5) = {oe Aut(S):a{c) = c for all c in C}, and put Outc(5) = Autc(5)/Inn(5).
Clearly, Autc(S) =>X-Inn(S). Let N(S) = {q e Q :q'xSq = S}. Let AT be the quotient field
of C, and U(S) the group of units of 5. The following result is a special case of [13,
Theorem 37.25], Only (iii) is not immediately obvious: it follows from the Skolem-
Noether theorem [13, Corollary 7.2.3].

THEOREM (i) There is a monomorphism of groups

p:N(S)/U(S)K* -> Outc(S).

(ii) If S is a prime Noetherian maximal order whose reflexive ideals are principal,

N(S)!U(S)K* = Cl(S).

(iii) / / S is a finitely generated C-module, then p is an isomorphism.

(4.4) THEOREM. Let R be a commutative Noetherian UFD. Let G be a dihedral free
polycyclic-by-finite group with no non-trivial finite normal subgroups. Let A = A(G) and
GO = G/CC(A).

(i) X-Inn(/?G)/Inn(KG) = H\G0, fi'xA).
(ii) Let C denote the centre of RG. Suppose that G is Abelian-by-finite, so that

A = CC(A) is the maximal Abelian normal subgroup of G. Then

= Hi(G0,R*x A).

Proof, (i) By Theorem 3.1(i), the hypothesies of Lemma 4.2 are satisfied with
S = RG. So the result follows from Lemma 4.2 and Theorem 3.1(ii).

(ii) By [12, proof of Lemma 4.1.10], RA is a finitely generated C-module, so that
RG is a finitely generated C-module. Theorems 3.1(ii) and 4.3 yield the desired
conclusion.

(4.5) In [10] and [11], S. Montgomery and D. S. Passman obtained a description of
the group W of all those X-inner automorphisms of the prime group algebra KG which
normalise the trivial units of KG (for an arbitrary group G and field K). Here we relate
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their result to 4.4. In doing so, we make explicit the isomorphisms of 4.4(i) and (ii). We
follow the notation of [10, 11], letting / denote the group of inner automorphisms of G
viewed as automorphisms of KG, so that I = W (~) inn(KG) by [10, Proposition 1]. In this
paragraph only, C denotes {o e Aut(G):cr centralises a subgroup of finite index in G} ,
and S the automorphisms of KG of scalar type. That is, oeS if and only if there is a
linear character X:G—>K with Cc(x)ckerX for some xeA = A(G), and CT(E rgg) =
E rgX(g)g.

Then C, / and 5 are normal subgroups of W, W = CI fl 5, with C fl / equal to the
group of inner automorphisms induced by A, and W/I = (C/C fl/) x S is periodic
Abelian [11, Theorem 3].

Suppose that A is finitely generated, so that B = CC(A) has finite index in G. The
proof of [11, Lemma 2] shows that B = Cc(y) for some y e A. It follows that
S = Hom(G/B, K*) = H\GIB, K*).

We turn now to C, again assuming that A is finitely generated and continuing to
write B = CC(A). It is not hard to show that C — {a e Aut(G): a centralises B and G/A},
using arguments similar to those in [11, proof of Lemma 1]. Let Co = {a e Aut(G): a
centralises A and G/A}. Then C c Co, and Co is torsion free Abelian, as in [11, proof of
Lemma l(iii)]. Moreover, CICfM is the torsion subgroup of Q/CD/—this is an easy
consequence of [11, Lemma l(ii)]. But C 0 /Cn/ =// ' (G/A, A), by [6, §3.5, Proposition
5].

We have an exact sequence of Abelian groups

0 -* H\G/B, A) '4. // '(G/A, A) ^ H\B/A, A),

where inf and res denote the inflation and restriction maps [6, page 93]. Since
//'(B/A, A) = Hom(fi/A, A) is torsion free [6, page 45], H\GIB,A) is the torsion
subgroup of // '(G/A, A). Therefore,

Summarising then, we state the following, for comparison with 4.4.

THEOREM (Montgomery and Passman). Let G be a group with A(G) finitely generated
and torsion free. Put Go = G/CG(A). Let K be a field, and let W and I be as above. Then

W lnn(KG)/lnn{KG) = W/I = Hl(G0, K* X A).

Suppose that G is polycyclic-by-finite. By Theorem 3.1(i), every normal element of
KG has the form aft, where B is a unit of KG and a is a G-normal element of KA(G). It
follows easily that

X-lnn(KG) = W inn(KG).

So in this case the above theorem follows from 4.4.
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