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Abstract. In order to understand the progenitor of rotation powered pulsars, we compare them
with High-mass X-ray binary (HMXB) pulsars, (or X-ray pulsars), in the Small Magellanic
Cloud. The plot of period period vs. period derivative shows that isolated neutron stars could
be evolved from HMXBs. The pulsars with long spin period might spin up to 0.001-1 s. The
mechanism is a third-body interaction that detaches the donor, leaving an isolated, small period
neutron star behind.
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1. Introduction

When large stars end their lives in a supernova explosion, the remains of the core of
these stars could form neutron stars or even black holes (Timmes et al. 1995). Stellar
remnants with the mass between 1.35 and 2.1 M� are too heavy to exist as white dwarfs,
and too light (not dense enough) to become black holes, so they will form neutron stars
or possibly other strange stars or quark stars (Rosswog 2015). Kundt (2012) states that
spin rates of a neutron star at birth tend to be slow, much slower than expected by
conservation of angular momentum during core collapse.
A neutron star then is a type of stellar remnant that can result from the gravitational

collapse of a massive star after a supernova. Neutron stars are the densest and smallest
stars known to exist in the universe; with a radius of only about 12 - 13 km, they can
have a mass of up to 3 M�, with a surface temperature of 6× 105 Kelvin (Kiziltan 2011;
Haensel et al. 2007). Neutron stars have overall density of 3.7× 1017 to 5.9× 1017 kg/m3

(2.6× 1014 to 4.1× 1014 times the density of Sun) (Shapiro & Teukolsky 2008).
Pulsars send out beams of X-ray, radio and visible light. As they rotate, the beams

sweep over the earth, resulting in a periodic modulation of the received flux. Although
neutron stars are very hot at birth, they do not have a source of fuel for nuclear fusion.
We still detect a tremendous amount of energy from neutron stars, such as the X-ray
and radio beams. There are three broad classes of pulsars depending upon their principle
energy source. (1) Rotation-powered radio pulsars convert their rotational energy into
radiation (Becker & Trümper 1997). These pulsars slow down very slowly at a rate
attributable to magnetic dipole braking losses. (2) Accretion-powered X-ray pulsars: Most
X-ray pulsars are in binary systems, and they accrete materials from their companion
stars and form an accretion disc of material around them (Perna et al. 2006; Karino
et al. 2008). (3) Magnetars are neutron stars with exceptionally strong magnetic fields in
the range 1013 to 1016 G, compared to 1011 to 1013 G for most radio and X-ray pulsars
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Figure 1. This figure above shows the location of the known Small Magellanic Cloud pulsars.
The red numbers present their pulse periods in seconds. The background image is from the
NASA/Infrared Processing and Analysis Center infrared science archive.

(Beskin et al. 2015). The slow decay of the magnetic field powers the radiation emission
(Rees & Mészáros 2000; Heyl & Kulkarni 1998).
X-ray binaries have three distinct classes: High-mass X-ray binaries (HMXB), which

have companion stars with masses > 8 M�, low mass (companion masses < 1 M�),
and intermediate-mass X-ray binaries. A new class of HMXBs, Supergiant Fast X-ray
Transients (SFXTs), with the unusually short transient X-ray emission and the asso-
ciation with blue supergiant companions, was discovered by the INTEGRAL satellite
launched in October 2002 (Masetti et al. 2006; Negueruela et al. 2006; Nespoli et al. 2008).

2. Overview

The Small Magellanic Cloud (SMC) is a dwarf irregular galaxy near the Milky Way at
a distance of about 62 kpc (Graczyk et al. 2013; Scowcroft et al. 2016). It contains a large
and active population of X-ray binaries (e.g., Galache et al. 2008; Townsend et al. 2011;
Klus et al. 2013; Coe & Kirk 2015; Christodoulou et al. 2016; Haberl & Sturm 2016;
Yang et al. 2017a,b; Yang et al. 2018). The most numerous HMXB species in current
catalogs (e.g., Yang et al. 2017a) are Be-HMXBs, where the companion is a Be star
(Reig 2011). A Be star is a B type star (the second hottest temperature class with color
temperatures in the range 20,000-40,000 K) which has at some time exhibited emission
lines (signified by the letter e, suggesting a wind is present). The X-ray pulsars in the
SMC are shown in Figure 1. The spin periods of pulsars range from seconds to thousands
of seconds. The SMC provides a unique laboratory to study an important branch of
stellar evolution.
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Figure 2. The filled circles show spin period derivatives of SMC pulsars as a function of spin
period in seconds. Red mean this pulsar spins up and green indicates spinning down. Black
dashed line is the linear fit to all pulsars in log-log space. Cyan dashed lines map the age of the
pulsars. Red dashed lines are related to the mass accretion rate.

3. Implications

Bhattacharya & van den Heuvel (1991) suggest many millisecond pulsars are old,
rapidly rotating neutron stars which have spun up by accreting matter from a companion
star in a binary system. Massive X-ray binaries in the end might leave a single recycled
neutron star which has ‘evaporated’ or merged with its companion star.
After accretion ceases, neutron stars could become isolated if their companions have

subsequently disrupted the binary by their tidal break ups (Alpar et al. 1982).
Figure 2 shows the relation between spin period derivative and spin period of SMC

pulsars. Red dots indicate pulsars that spin up and green symbols indicate they spin
down. The error bars of the spin period derivatives are plotted in yellow. The black
dashed line is the linear fit to the two variables in log-log space. Cyan dashed lines show
the age map of the SMC pulsars. The majority of the sources are shown as 1 or 10 kyrs
old. Interestingly, the age map is parallel to the linear fit line of spin period derivative and
spin period. Within a standard deviation of 1.37, the fitting slope is consistent with 1,
which implies there is no exponential relationship between spin period derivative and
spin period.
Comparison of Figure 2 with the P-Pdot Diagram in Figure 3 shows that the two

variables have a similar trend. In order to estimate the evolution of SMC pulsars, we
consider a random source SXP 101 as and example, which spins up at the rate of 1.6 ×
10−4 s/s. This pulsar is located around the 1 kyrs old line of the age map. If we assume
the spin up rate is constant, after 626 kyrs later, the spin period of this pulsar will be
1s, which is located above the death line in Figure 3.
The mass accretion rate (Ṁ) is plotted in red lines in Figure 2. Ṁ is estimated by

assuming that the magnetic radius equals corotation radius, and the magnetic moment
of the pulsar equals 1030 G cm3. The deep explanation and verification about these mass
accretion maps still need further study.
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Figure 3. P-Pdot Diagram. This diagram shows the properties of the pulsars with short spin
periods. Its role is similar to the Hertzsprung-Russell diagram for ordinary stars. From the
spin period and spin period derivative of these pulsars, we can estimate their age, magnetic
filed strength, and spin-down power (See the Handbook of Pulsar Astronomy, by Lorimer and
Kramer).
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