
1

Introduction

In this introductory chapter, we will formally introduce the main variants of
the traveling salesman problem – symmetric and asymmetric – explain a very
useful graph-theoretic view based on Euler’s theorem, and describe the classical
simple approximation algorithms. In this chapter, we will also introduce basic
notation, in particular from graph theory, and some fundamental combinatorial
optimization problems.

1.1 Problems and Algorithms

This book is about the traveling salesman problem (TSP), but this is actually
more than one problem. Although one could start with the most general variant
of the problem, let us begin with the most classical one.

Problem 1.1 (Symmetric TSP with Triangle Inequality).

Instance: A finite set 𝑉 and a distance function 𝑐 : 𝑉 ×𝑉 → R≥0 such that
𝑐(𝑢, 𝑣) = 𝑐(𝑣, 𝑢) for all 𝑢, 𝑣 ∈ 𝑉 and 𝑐(𝑢, 𝑤) ≤ 𝑐(𝑢, 𝑣) + 𝑐(𝑣, 𝑤)
for all 𝑢, 𝑣, 𝑤 ∈ 𝑉 .

Task: Compute a list 𝑣1, 𝑣2, . . . , 𝑣𝑛 that contains every element of 𝑉
exactly once and minimizes 𝑐(𝑣𝑛, 𝑣1) +

∑𝑛
𝑖=2 𝑐(𝑣𝑖−1, 𝑣𝑖).

The elements of 𝑉 are called cities, and the number of cities will always be
denoted by 𝑛 in this book. Of course, the distance function 𝑐 does not necessarily
describe geometric distances, but it could also represent driving times or cost.
An example with |𝑉 | = 20 is shown in Figure 1.1.

We will be interested in algorithms that accept any instance (𝑉, 𝑐) as input
and always terminate with a feasible solution (an order of the cities) as output.
If an algorithm always finds an optimum solution, we speak of an exact

1

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009445436.002
Downloaded from https://www.cambridge.org/core. IP address: 3.149.246.158, on 28 Jan 2025 at 21:24:14, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009445436.002
https://www.cambridge.org/core

2 Introduction

Figure 1.1 A tour visiting 20 locations in Bonn, Germany, by car. The map data is
taken from OpenStreetMap (openstreetmap.org/copyright).

algorithm. One such algorithm would simply enumerate all 𝑛! permutations
of the cities and output the best, but this is too slow already for 20 cities (note
that 20! = 2 432 902 008 176 640 000), and completely hopeless for the 49-city
instance that Dantzig, Fulkerson, and Johnson [1954] solved 70 years ago.

To measure the running time of an algorithm, one counts the maximum
number of elementary steps that it can take. To avoid technical details, one
ignores constant factors and uses the 𝑂-notation. For example, an algorithm
is said to run in 𝑂 (𝑛3) time if there is a constant 𝛾 such that the number of
elementary steps is never more than 𝛾 · 𝑛3. See, for example, Hougardy and
Vygen [2016] for a detailed explanation.

To distinguish algorithms that are, at least asymptotically, much faster than
naive enumeration, Edmonds [1965a] suggested the notion of a polynomial-time
algorithm. For every algorithm that we present in this book, there is a constant
𝑘 such that the algorithm runs in 𝑂 (𝑛𝑘) time.

Karp [1972] showed that the Symmetric TSP with Triangle Inequality is
NP-hard. This implies that there is no polynomial-time exact algorithm unless

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009445436.002
Downloaded from https://www.cambridge.org/core. IP address: 3.149.246.158, on 28 Jan 2025 at 21:24:14, subject to the Cambridge Core terms of

http://openstreetmap.org
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009445436.002
https://www.cambridge.org/core

1.1 Problems and Algorithms 3

P = NP. In fact, there is a polynomial-time exact algorithm if and only if P = NP.
We assume that the reader is familiar with the notions of P, NP, and NP-hard;
otherwise, it is sufficient to know that it is widely believed that P ≠ NP, which
would imply that there is no polynomial-time exact algorithm for any NP-hard
problem.

The fastest known exact algorithm is a simple dynamic programming algo-
rithm that computes an optimum solution in 𝑂 (𝑛22𝑛) time (Bellman [1962],
Held and Karp [1962]; see Exercise 1.1). This time bound has not been improved
on for more than 60 years. Since most researchers believe that P ≠ NP, there is
little hope to find a polynomial-time algorithm that always finds an optimum
solution. Hence we will study approximation algorithms:

Definition 1.2 (approximation algorithm). An 𝛼-approximation algorithm (for
a minimization problem with nonnegative cost function) is a polynomial-time
algorithm that always computes a feasible solution of cost at most 𝛼 times the
optimum.

In the context of the TSP, 𝛼 can be either a constant or a function of 𝑛 (the
number of cities). For a constant-factor approximation algorithm, we define its
approximation ratio to be the infimum of all 𝛼 for which it is an 𝛼-approximation
algorithm, or, equivalently, the supremum of 𝐴(𝐼)

OPT(𝐼) over all instances 𝐼, where
𝐴(𝐼) is the cost of the solution computed by the algorithm, OPT(𝐼) is the cost
of an optimum solution, and 0

0 := 1.
Probably the first proof of an approximation ratio for the TSP was due to

Rosenkrantz, Stearns, and Lewis [1977]. They proposed algorithms called “near-
est insertion” and “cheapest insertion” and showed that they are 2-approximation
algorithms for the Symmetric TSP with Triangle Inequality. We will see a
simpler 2-approximation algorithm in Proposition 1.22.

The triangle inequality 𝑐(𝑢, 𝑤) ≤ 𝑐(𝑢, 𝑣)+𝑐(𝑣, 𝑤) for all 𝑢, 𝑣, 𝑤 ∈ 𝑉 naturally
holds in many applications. If we have general nonnegative symmetric distances,
not obeying the triangle inequality, we should allow for visiting cities more than
once; we will get to this in the next section.

Distances are not always symmetric. Dropping the symmetry assumption
yields the following:

Problem 1.3 (Asymmetric TSP with Triangle Inequality).

Instance: A finite set 𝑉 and a distance function 𝑐 : 𝑉 ×𝑉 → R≥0 such that
𝑐(𝑢, 𝑤) ≤ 𝑐(𝑢, 𝑣) + 𝑐(𝑣, 𝑤) for all 𝑢, 𝑣, 𝑤 ∈ 𝑉 .

Task: Compute a list 𝑣1, 𝑣2, . . . , 𝑣𝑛 that contains every element of 𝑉
exactly once and minimizes 𝑐(𝑣𝑛, 𝑣1) +

∑𝑛
𝑖=2 𝑐(𝑣𝑖−1, 𝑣𝑖).

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009445436.002
Downloaded from https://www.cambridge.org/core. IP address: 3.149.246.158, on 28 Jan 2025 at 21:24:14, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009445436.002
https://www.cambridge.org/core

4 Introduction

This problem seems to be substantially harder; while it is easy to devise a
2-approximation algorithm for the symmetric special case (see Proposition 1.22),
no such algorithm is known for the asymmetric version, and no constant-factor
approximation algorithm was known at all until 2017.

1.2 Graphs and Euler’s Theorem

Often distances are given by a graph 𝐺 = (𝑉, 𝐸) (which can, for example,
represent a street network). All our graphs are finite; they can be undirected or
directed. In both cases, they consist of a finite set 𝑉 of vertices and a finite set 𝐸
of edges such that each edge is associated with a pair of distinct vertices. All edge
sets in this book can be multi-sets unless specified otherwise, so graphs can have
parallel edges (but no loops). Graphs without parallel edges are called simple.
Directed graphs are also called digraphs. For an edge 𝑒 ∈ 𝐸 that goes from
𝑣 to 𝑤, we write 𝑒 = {𝑣, 𝑤} in undirected graphs and 𝑒 = (𝑣, 𝑤) in digraphs,
and we use this notation even if there are several edges going from 𝑣 to 𝑤.
Edges in digraphs are also called arcs. If 𝐺 is a directed graph, the underlying
undirected graph results from replacing each arc (𝑣, 𝑤) with an undirected
edge {𝑣, 𝑤}. If 𝐻 is the underlying undirected graph of a digraph 𝐺, then 𝐺
is called an orientation of 𝐻. An edge 𝑒 = {𝑣, 𝑤} or 𝑒 = (𝑣, 𝑤) is incident to
𝑣 and 𝑤, and if such an edge exists, 𝑣 and 𝑤 are neighbors. A vertex without
neighbors is isolated. For a graph 𝐺 = (𝑉, 𝐸), we sometimes write 𝑉 (𝐺) := 𝑉
and 𝐸 (𝐺) := 𝐸 .

For a vertex set 𝑈 ⊆ 𝑉 , we denote by 𝛿(𝑈) the (multi)set of edges with
exactly one endpoint in 𝑈. In directed graphs, 𝛿− (𝑈) and 𝛿+ (𝑈) contain the
entering and the leaving edges, respectively (so |𝛿(𝑈) | = |𝛿− (𝑈) | + |𝛿+ (𝑈) |).
For a single vertex 𝑣 ∈ 𝑉 , we write 𝛿(𝑣) := 𝛿({𝑣}), 𝛿− (𝑣) := 𝛿− ({𝑣}), and
𝛿+ (𝑣) := 𝛿+ ({𝑣}). We call |𝛿(𝑣) | (the number of edges incident to 𝑣) the degree
of 𝑣, and in digraphs, |𝛿− (𝑣) | and |𝛿+ (𝑣) | are the in-degree and out-degree of 𝑣,
respectively. We add a subscript and, for example, write 𝛿𝐺 (𝑈) or 𝛿𝐸 (𝑈) if the
graph 𝐺 = (𝑉, 𝐸) is not clear from the context.

Lemma 1.4 (handshake lemma). In any graph, the number of odd-degree
vertices is even.

Proof. For any graph (𝑉, 𝐸), we have
∑
𝑣∈𝑉 |𝛿(𝑣) | = 2|𝐸 |; hence there is an

even number of odd summands on the left-hand side. □

A walk (from 𝑣0 to 𝑣𝑘 of length 𝑘) in 𝐺 is a sequence 𝑣0, 𝑒1, 𝑣1, 𝑒2, . . . , 𝑣𝑘
such that 𝑒𝑖 is an edge from vertex 𝑣𝑖−1 to vertex 𝑣𝑖 for all 𝑖 = 1, . . . , 𝑘 . If

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009445436.002
Downloaded from https://www.cambridge.org/core. IP address: 3.149.246.158, on 28 Jan 2025 at 21:24:14, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009445436.002
https://www.cambridge.org/core

1.2 Graphs and Euler’s Theorem 5

𝑣0 = 𝑣𝑘 , we speak of a closed walk. Note that 𝑘 = 0 is possible. The footprint
of a walk in 𝐺 = (𝑉, 𝐸) is the multi-subset of 𝐸 that contains 𝑟 copies of
any edge that the walk traverses 𝑟 times. For a multi-subset 𝐹 of 𝐸 and a
cost function 𝑐 : 𝐸 → R, we define the cost of 𝐹 by 𝑐(𝐹) :=

∑
𝑒∈𝐹 𝑐(𝑒),

where the sum counts edges according to their multiplicity in 𝐹. Then the
cost of a walk 𝑣0, 𝑒1, 𝑣1, 𝑒2, . . . , 𝑣𝑘 with footprint 𝐹 can be expressed as
𝑐(𝐹) = ∑

𝑒∈𝐹 𝑐(𝑒) =
∑𝑘
𝑖=1 𝑐(𝑒𝑖). Sometimes we say weight instead of cost.

A walk cannot visit all vertices unless the graph is connected. An undirected
graph is connected if it contains a walk from 𝑣 to 𝑤 for all 𝑣, 𝑤 ∈ 𝑉 . A directed
graph is connected if the underlying undirected graph is connected. A directed
graph is strongly connected if it contains a walk from 𝑣 to 𝑤 for all 𝑣, 𝑤 ∈ 𝑉 .

A subgraph of a graph 𝐺 = (𝑉, 𝐸) is a graph 𝐺′ = (𝑉 ′, 𝐸 ′) with 𝑉 ′ ⊆ 𝑉
and 𝐸 ′ ⊆ 𝐸 . We also say that 𝐺 contains 𝐺′ or that 𝐺′ is in 𝐺. For a graph
𝐺 = (𝑉, 𝐸) and ∅ ≠ 𝑊 ⊆ 𝑉 , the graph with vertex set 𝑊 that contains all
edges of 𝐸 with both endpoints in 𝑊 is called the subgraph of 𝐺 induced by
𝑊 and is denoted by 𝐺 [𝑊]; its edge set is denoted by 𝐸 [𝑊]. The maximal
connected subgraphs of a graph 𝐺 are its connected components; they are
induced subgraphs. A multi-subgraph results from a subgraph by possibly
adding copies of edges. Sometimes we obtain subgraphs by deleting an edge 𝑒,
a vertex 𝑣 (and its incident edges), or a set of vertices 𝑋 and write 𝐺 − 𝑒, 𝐺 − 𝑣,
and 𝐺 − 𝑋 = 𝐺 [𝑉 (𝐺) \ 𝑋].

Contracting a vertex set 𝑊 in a graph 𝐺 means deleting all vertices and
edges in 𝐺 [𝑊], adding a new vertex 𝑣𝑊 , and for every edge in 𝛿(𝑊) replacing
the endpoint in𝑊 by 𝑣𝑊 . We call the result 𝐺/𝑊 . Contracting an edge means
contracting the (two-element) set of its endpoints.

Given a graph 𝐺 (directed or undirected), we will be looking for a closed
walk in 𝐺 that contains every vertex at least once. Euler [1736] observed that
the footprint of such a walk has a simple property:

Definition 1.5 (Eulerian). An undirected graph 𝐺 = (𝑉, 𝐸) (and its edge set 𝐸)
is called Eulerian if every vertex has even degree. A directed graph 𝐺 = (𝑉, 𝐸)
(and its edge set 𝐸) is called Eulerian if for every vertex the in-degree equals
the out-degree.

The following characterization is known as Euler’s theorem:

Theorem 1.6 (Euler [1736], Hierholzer [1873]). Let𝐺 = (𝑉, 𝐸) be a connected
graph (directed or undirected). Then 𝐺 is Eulerian if and only if it contains a
closed walk that traverses each edge exactly once. Such a walk can be computed
in 𝑂 (|𝐸 |) time.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009445436.002
Downloaded from https://www.cambridge.org/core. IP address: 3.149.246.158, on 28 Jan 2025 at 21:24:14, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009445436.002
https://www.cambridge.org/core

6 Introduction

1

25

6

7

8

9
10

11

12

3
4

𝑣1

𝑣2

𝑣3
𝑣4

𝑣5

𝑣6

𝑣7

𝑣8

𝑣9

𝑣1

𝑣2

𝑣3
𝑣4

𝑣5

𝑣6

𝑣7

𝑣8

𝑣9

Figure 1.2 The left picture shows a connected Eulerian graph. By Theorem 1.6,
this graph contains a closed walk that traverses every edge exactly once. The
numbers next to the edges show the order in which the edges appear in one such
Eulerian walk. The vertices 𝑣1, . . . , 𝑣𝑛 are numbered in the order of their first
appearance in this walk. The right picture shows the solution to the Symmetric
TSP with Triangle Inequality that results from taking shortcuts as in the proof
of Lemma 1.7.

Proof. Let 𝐺 = (𝑉, 𝐸). If 𝐺 contains a closed walk 𝑣0, 𝑒1, 𝑣1, . . . , 𝑒𝑘 , 𝑣𝑘 that
traverses each edge exactly once, then 𝐸 is the footprint of this walk. If this walk
visits a vertex 𝑟 times (where 𝑣0 and 𝑣𝑘 count as one visit), then it enters that
vertex 𝑟 times and leaves it 𝑟 times; so its degree is 2𝑟 . Hence 𝐺 is Eulerian.

We prove the converse by induction on |𝐸 |, the case 𝐸 = ∅ being trivial. So let
𝐺 = (𝑉, 𝐸) be Eulerian, and let 𝐹 be the footprint of a walk 𝑣0, 𝑒1, 𝑣1 . . . , 𝑒𝑘 , 𝑣𝑘
in 𝐺 that contains every edge at most once and is as long as possible. Since
𝐸 is nonempty, so is 𝐹. Moreover, 𝑣𝑘 = 𝑣0, for otherwise there is an unused
edge leaving 𝑣𝑘 that we could append to the walk. So we have a closed walk,
and by the first part, its footprint 𝐹 is Eulerian. Hence also 𝐸 \ 𝐹 is Eulerian.
By induction, 𝐸 \ 𝐹 is the union of footprints of closed walks (one in each
connected component), and each of them must contain a vertex of 𝑣1, . . . , 𝑣𝑘
because 𝐺 is connected. So we can insert the other walks at these positions into
the first walk.

This proof easily implies a linear-time algorithm, by greedily extending a walk
as long as possible and recursively applying the algorithm to the remainder. □

We use Euler’s theorem as follows (cf. Figure 1.2):

Lemma 1.7. Let (𝑉, 𝑐) be an instance of Symmetric TSP with Triangle
Inequality, and let (𝑉, 𝐹) be a connected Eulerian undirected graph. Then
there exists a solution 𝑣1, . . . , 𝑣𝑛 of cost at most

∑
𝑒={𝑣,𝑤}∈𝐹 𝑐(𝑣, 𝑤), and such

a solution can be found in 𝑂 (|𝐹 |) time.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009445436.002
Downloaded from https://www.cambridge.org/core. IP address: 3.149.246.158, on 28 Jan 2025 at 21:24:14, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009445436.002
https://www.cambridge.org/core

1.2 Graphs and Euler’s Theorem 7

Proof. By Theorem 1.6, one can construct, in 𝑂 (|𝐹 |) time, a closed walk in
(𝑉, 𝐹) that traverses each edge exactly once. Let 𝑣1, . . . , 𝑣𝑛 be the elements
of 𝑉 in the order in which they appear in that walk for the first time. Then
𝑐(𝑣𝑛, 𝑣1) +

∑𝑛
𝑖=2 𝑐(𝑣𝑖−1, 𝑣𝑖) ≤

∑
𝑒={𝑣,𝑤}∈𝐹 𝑐(𝑣, 𝑤) because, by the triangle

inequality, 𝑐(𝑣𝑖−1, 𝑣𝑖) is at most the total cost of the edges in the subwalk from
the first appearance of 𝑣𝑖−1 to the first appearance of 𝑣𝑖 (for 𝑖 = 1, . . . , 𝑛, where
𝑣0 := 𝑣𝑛). □

The same proof works for the directed version:

Lemma 1.8. Let (𝑉, 𝑐) be an instance of Asymmetric TSP with Triangle
Inequality, and let (𝑉, 𝐹) be a connected Eulerian directed graph. Then there
exists a solution 𝑣1, . . . , 𝑣𝑛 of cost at most

∑
𝑒=(𝑣,𝑤) ∈𝐹 𝑐(𝑣, 𝑤), and such a

solution can be found in 𝑂 (|𝐹 |) time. □

This motivates the following definition, which plays a central role in this
book:

Definition 1.9 (tour). A tour in a graph 𝐺 = (𝑉, 𝐸) (directed or undirected) is
a multi-subset 𝐹 of 𝐸 such that (𝑉, 𝐹) is connected and Eulerian.

By Theorem 1.6, an edge set 𝐹 is a tour if and only if it is the footprint of
a closed walk in 𝐺 that visits every vertex at least once. Using this, we can
formulate the TSP in graph-theoretical terms:

Problem 1.10 (Symmetric TSP).

Instance: A simple connected undirected graph 𝐺 = (𝑉, 𝐸) and a cost
function 𝑐 : 𝐸 → R≥0.

Task: Compute a tour in 𝐺 with minimum cost.

This has sometimes been called the graphical TSP (see, e.g., Cornuéjols,
Fonlupt, and Naddef [1985]). In the asymmetric setting, we can use the same
terminology:

Problem 1.11 (Asymmetric TSP).

Instance: A simple strongly connected directed graph 𝐺 = (𝑉, 𝐸) and a
cost function 𝑐 : 𝐸 → R≥0.

Task: Compute a tour in 𝐺 with minimum cost.

Now we want to argue that these graph-theoretic versions of the TSP are
equivalent to the ones given in the previous section. We say that problem 𝑃1
reduces to 𝑃2 if there is a polynomial-time algorithm that computes, for any
given instance 𝐼1 of 𝑃1, an instance 𝐼2 of 𝑃2 with the same optimum cost, and

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009445436.002
Downloaded from https://www.cambridge.org/core. IP address: 3.149.246.158, on 28 Jan 2025 at 21:24:14, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009445436.002
https://www.cambridge.org/core

8 Introduction

for any feasible solution 𝑆2 of 𝐼2, a solution 𝑆1 of 𝐼1 with no larger cost. If 𝑃1
reduces to 𝑃2 and 𝑃2 reduces to 𝑃1, we say that 𝑃1 and 𝑃2 are equivalent.

If 𝑣0, 𝑒1, 𝑣1, 𝑒2, . . . , 𝑣𝑘 is a walk without any repetitions of vertices, then the
graph with vertex set {𝑣0, . . . , 𝑣𝑘} and edge set {𝑒1, . . . , 𝑒𝑘} is called a path. If
𝑣0 = 𝑣𝑘 but there are no other repetitions, this graph is called a circuit (or cycle).
(A path or circuit can be directed or undirected.) A path or circuit in a graph 𝐺
is called Hamiltonian if it contains all vertices of 𝐺. A solution to an instance of
the Symmetric TSP with Triangle Inequality with 𝑛 ≥ 3 can be interpreted
as a Hamiltonian circuit in the complete graph on vertex set 𝑉 (whose edge set
is

(𝑉
2
)
). We write 𝑐(𝑒) := 𝑐(𝑣, 𝑤) for an edge 𝑒 = {𝑣, 𝑤} of this graph. Similarly,

a solution to an instance of the Asymmetric TSP with Triangle Inequality
with 𝑛 ≥ 2 can be interpreted as a Hamiltonian circuit in the complete directed
graph on vertex set 𝑉 (whose edge set is {(𝑣, 𝑤) ∈ 𝑉 ×𝑉 : 𝑣 ≠ 𝑤}). Again we
write 𝑐(𝑒) := 𝑐(𝑣, 𝑤) for an edge 𝑒 = (𝑣, 𝑤) of this digraph.

For an instance (𝐺, 𝑐) of the Symmetric TSP or the Asymmetric TSP and
two vertices 𝑣 and 𝑤 of 𝐺, the distance from 𝑣 to 𝑤 is the minimum total cost
of the edges of a walk from 𝑣 to 𝑤. We often denote it by dist(𝐺,𝑐) (𝑣, 𝑤). By
Dĳkstra’s algorithm, such a walk can be computed in polynomial time (see
Theorem 1.14).

Proposition 1.12. Symmetric TSP with Triangle Inequality (Problem 1.1) and
Symmetric TSP (Problem 1.10) are equivalent. Asymmetric TSP with Triangle
Inequality (Problem 1.3) and Asymmetric TSP (Problem 1.11) are equivalent.

Proof. We first reduce Problem 1.10 to Problem 1.1. Let 𝐼1 = (𝐺, 𝑐) be
an instance of Problem 1.10 with 𝐺 = (𝑉, 𝐸). For 𝑣, 𝑤 ∈ 𝑉 , let 𝑐(𝑣, 𝑤)
be the distance from 𝑣 to 𝑤 in (𝐺, 𝑐), and 𝐼2 := (𝑉, 𝑐). By Lemma 1.7,
from any tour 𝐹 in 𝐺, we can construct a solution 𝑣1, . . . , 𝑣𝑛 to 𝐼2 with
𝑐(𝑣𝑛, 𝑣1) +

∑𝑛
𝑖=2 𝑐(𝑣𝑖−1, 𝑣𝑖) ≤ 𝑐(𝐹) ≤ 𝑐(𝐹).

Conversely, for every solution 𝑣1, . . . , 𝑣𝑛 to 𝐼2, we can compute a minimum-
cost walk in (𝐺, 𝑐) from 𝑣𝑛 to 𝑣1 and from 𝑣𝑖−1 to 𝑣𝑖 for 𝑖 = 2, . . . , 𝑛 and append
all these walks to obtain a closed walk visiting all vertices. Its footprint is a
tour with cost 𝑐(𝑣𝑛, 𝑣1) +

∑𝑛
𝑖=2 𝑐(𝑣𝑖−1, 𝑣𝑖). In particular, 𝐼1 and 𝐼2 have the same

optimum cost.
The reduction from Problem 1.11 to Problem 1.3 is identical.
To reduce Problem 1.1 to Problem 1.10, let 𝐼1 = (𝑉, 𝑐) be an instance

of Problem 1.1 and define 𝐼2 = (𝐺, 𝑐), where 𝐺 = (𝑉, 𝐸), 𝐸 =
(𝑉

2
)
, and

𝑐(𝑒) = 𝑐(𝑣, 𝑤) for all 𝑒 = {𝑣, 𝑤} ∈ 𝐸 . Every solution to 𝐼1 corresponds to a
Hamiltonian circuit in 𝐺 with the same cost and vice versa. For every tour
𝐹 in 𝐺, we can construct a Hamiltonian circuit of at most the same cost by
Lemma 1.7.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009445436.002
Downloaded from https://www.cambridge.org/core. IP address: 3.149.246.158, on 28 Jan 2025 at 21:24:14, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009445436.002
https://www.cambridge.org/core

1.3 Some Basic Combinatorial Optimization Problems 9

To reduce Problem 1.3 to Problem 1.11, let 𝐼1 = (𝑉, 𝑐) be an instance
of Problem 1.3 and define 𝐼2 = (𝐺, 𝑐), where 𝐺 = (𝑉, 𝐸) has edge set
𝐸 = {(𝑣, 𝑤) : 𝑣, 𝑤 ∈ 𝑉, 𝑣 ≠ 𝑤}, and 𝑐(𝑒) = 𝑐(𝑣, 𝑤) for all 𝑒 = (𝑣, 𝑤) ∈ 𝐸 , and
proceed the same way. □

If problem 𝑃1 reduces to problem 𝑃2 and 𝑃2 has an 𝛼-approximation
algorithm, then so has 𝑃1. We will often work with the graph versions of the
TSP (Symmetric TSP and Asymmetric TSP), but sometimes the versions with
the triangle inequality are more useful. Proposition 1.12 allows us to switch
between the versions and use whichever is more convenient.

If we do not require the triangle inequality but still want to visit every
city exactly once, the problem is hopeless, as Sahni and Gonzalez [1976]
observed: Any approximation algorithm would imply P = NP. This is because
any 𝛼-approximation algorithm, for any function 𝛼, would allow us to decide
in polynomial time whether a given graph contains a Hamiltonian circuit (see
Problem 1.20): Just define the distance of two cities to be 0 if they are joined
by an edge in the graph and 1 otherwise; then any 𝛼-approximation algorithm
outputs a solution of cost 0 if and only if the given graph contains a Hamiltonian
circuit.

1.3 Some Basic Combinatorial Optimization Problems

In this section, we cite three classical combinatorial optimization results without
proofs. Proofs can be found in every book on combinatorial optimization, such
as Schrĳver [2003] or Korte and Vygen [2018].

We already used the fact that a walk from 𝑠 to 𝑡 whose footprint has minimum
cost can be computed in polynomial time. We may assume that such a walk
does not visit any vertex more than once, for otherwise we can omit cycles and
obtain a walk with fewer edges that does not cost more. For an instance (𝐺, 𝑐)
of the Symmetric TSP or the Asymmetric TSP and a subgraph 𝐻 of 𝐺 with
edge set 𝐹, we call 𝑐(𝐹) the cost of 𝐻. So we can formulate the problem of
finding a walk from 𝑠 to 𝑡 whose footprint has minimum cost as follows:

Problem 1.13 (Shortest Path).

Instance: A simple graph 𝐺 = (𝑉, 𝐸) (directed or undirected), a cost
function 𝑐 : 𝐸 → R≥0, and two vertices 𝑠, 𝑡 ∈ 𝑉 .

Task: Compute a path 𝑃 from 𝑠 to 𝑡 in 𝐺 with minimum cost, or decide
that there is no such path.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009445436.002
Downloaded from https://www.cambridge.org/core. IP address: 3.149.246.158, on 28 Jan 2025 at 21:24:14, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009445436.002
https://www.cambridge.org/core

10 Introduction

The classical algorithm of Dĳkstra [1959] (see Exercise 1.4) solves this
problem efficiently. As before, 𝑛 denotes the number of vertices in the given
graph.

Theorem 1.14 (Dĳkstra [1959]). There is an𝑂 (𝑛2)-time algorithm for Shortest
Path.

A faster running time can be obtained for sparse graphs (with 𝑜(𝑛2) edges),
but this is not important for the purpose of this book. Note that it is essential
that the cost function is nonnegative: The shortest path problem with general
weights is NP-hard. Using Dĳkstra’s algorithm, we can compute the distance
from 𝑠 to 𝑡 for all vertices 𝑠, 𝑡 ∈ 𝑉 . Since the algorithm in fact computes shortest
paths from one vertex 𝑠 to all vertices 𝑡 ∈ 𝑉 , only 𝑛 applications of Dĳkstra’s
algorithm suffice. The metric closure of a pair (𝐺, 𝑐), where 𝐺 = (𝑉, 𝐸) is a
directed or undirected graph and 𝑐 : 𝐸 → R≥0, is the pair (�̄�, 𝑐) where �̄� has
the same vertex set and contains an edge 𝑒 = (𝑣, 𝑤) or 𝑒 = {𝑣, 𝑤}, respectively,
whenever 𝐺 contains a path from 𝑣 to 𝑤, and 𝑐(𝑒) is the distance from 𝑣 to 𝑤.

Theorem 1.15. There is an 𝑂 (𝑛3)-algorithm that, given a simple graph 𝐺 =

(𝑉, 𝐸) and a cost function 𝑐 : 𝐸 → R≥0, computes the metric closure of (𝐺, 𝑐).

Another basic problem asks to connect all vertices at minimum cost. A tree
is a minimal connected graph – that is, the deletion of any edge would destroy
connectivity. A subgraph of a graph 𝐺 is called spanning if it contains all
vertices of 𝐺.

Problem 1.16 (Minimum Spanning Tree).

Instance: A simple undirected graph 𝐺 = (𝑉, 𝐸) and a cost function
𝑐 : 𝐸 → R≥0.

Task: Compute a spanning tree (𝑉, 𝑆) in 𝐺 with minimum cost, or
decide that 𝐺 is not connected.

This problem was solved quite early by Borůvka [1926]:

Theorem 1.17 (Borůvka [1926], Jarník [1930], Prim [1957]). There is an
𝑂 (𝑛2)-time algorithm for Minimum Spanning Tree.

In fact, it is well known that the Minimum Spanning Tree problem can
be solved by a simple greedy algorithm (see Exercise 1.5 or the proof of
Theorem 2.14).

The third problem we cite here is much more difficult to solve. A perfect
matching in 𝐺 is a set 𝑀 of edges such that every vertex of 𝐺 is incident to
exactly one of these edges.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009445436.002
Downloaded from https://www.cambridge.org/core. IP address: 3.149.246.158, on 28 Jan 2025 at 21:24:14, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009445436.002
https://www.cambridge.org/core

1.4 Christofides’ Algorithm 11

Problem 1.18 (Weighted Matching).

Instance: A simple undirected graph 𝐺 = (𝑉, 𝐸) with |𝑉 | even and a cost
function 𝑐 : 𝐸 → R≥0.

Task: Compute a perfect matching in 𝐺 with minimum cost, or decide
that no perfect matching exists.

This problem was solved by Edmonds [1965b]:

Theorem 1.19 (Edmonds [1965b], Gabow [1973]). There is an 𝑂 (𝑛3)-time
algorithm for Weighted Matching.

For Minimum Spanning Tree and Weighted Matching, one could also
allow edges with negative cost. Since all spanning trees have 𝑛 − 1 edges and
all perfect matchings have 𝑛

2 edges, adding a constant to all edges costs does
not change the set of optimum solutions. This trick does not work for Shortest
Path. One can still solve Shortest Path in polynomial time for conservative
weights (i.e., when there is no circuit of negative total weight), but this is more
complicated (see Exercise 1.11).

In contrast to the above three problems, many others have a polynomial-time
algorithm only if P = NP. We mention one famous example of such an NP-hard
problem:

Problem 1.20 (Hamiltonian Circuit).

Instance: A undirected graph 𝐺 = (𝑉, 𝐸).

Task: Decide whether 𝐺 has a Hamiltonian circuit.

Theorem 1.21 (Karp [1972]). Hamiltonian Circuit has a polynomial-time
algorithm if and only if P = NP.

A graph with a Hamiltonian circuit is called Hamiltonian. Theorem 1.21
easily implies that the shortest path problem with general weights has no
polynomial-time algorithm unless P = NP (cf. Exercise 1.7).

1.4 Christofides’ Algorithm

Given an instance 𝐼 of one of our TSP variants, we will denote by OPT(𝐼) the
cost of an optimum solution. For two edge sets 𝐴 and 𝐵, we denote by 𝐴

.
∪ 𝐵

(the disjoint union of 𝐴 and 𝐵) the multi-set that contains two copies of each
edge in 𝐴 ∩ 𝐵 and one copy of each edge in (𝐴 ∪ 𝐵) \ (𝐴 ∩ 𝐵). Our very first
approximation algorithm is now almost trivial:

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009445436.002
Downloaded from https://www.cambridge.org/core. IP address: 3.149.246.158, on 28 Jan 2025 at 21:24:14, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009445436.002
https://www.cambridge.org/core

12 Introduction

Figure 1.3 Illustrating the double tree algorithm (left) and Christofides’ algorithm
(right). Both start with a minimum-cost spanning tree. The former then doubles
all edges, while the latter adds a minimum-cost perfect matching (green, dashed)
among the odd-degree vertices (red squares).

Proposition 1.22 (Rosenkrantz, Stearns, and Lewis [1977]). There is a 2-
approximation algorithm for Symmetric TSP.

Proof. Given an instance (𝐺, 𝑐) with 𝐺 = (𝑉, 𝐸), compute a minimum-cost
spanning tree (𝑉, 𝑆) in (𝐺, 𝑐) (cf. Theorem 1.17) and output the tour 𝑆

.
∪ 𝑆,

which results from 𝑆 by doubling all edges. Since any tour is connected and thus
contains a spanning tree, we have 𝑐(𝑆) ≤ OPT(𝐺, 𝑐), so the tour 𝑆

.
∪ 𝑆 that we

compute costs at most 2 OPT(𝐺, 𝑐). □

Rosenkrantz, Stearns, and Lewis [1977] actually proved (already in 1974)
that two different algorithms (“nearest insertion” and “cheapest insertion”) are
2-approximation algorithms, but the above folklore proof is much simpler. The
algorithm in the proof of Proposition 1.22 has often been called the double tree
algorithm.

Christofides [1976], and independently Serdyukov [1978], showed how to
improve on this. (See van Bevern and Slugina [2020] for a historical note.)
Christofides’ algorithm also begins by computing a minimum-cost spanning tree
(𝑉, 𝑆). Then, instead of doubling all edges, it finds a potentially cheaper way to
make 𝑆 Eulerian. For a graph (𝑉, 𝐹), let odd(𝐹) = {𝑣 ∈ 𝑉 : |𝐹 ∩ 𝛿(𝑣) | odd}
denote the set of odd-degree vertices. We formulate Christofides’ algorithm first
for the Symmetric TSP with Triangle Inequality. See Algorithm 1.23, and
see Figure 1.3 for an illustration.

Theorem 1.24 (Christofides [1976], Serdyukov [1978]). Christofides’ algorithm
(Algorithm 1.23) is a 3

2 -approximation algorithm for Symmetric TSP with
Triangle Inequality.

Proof. An optimum solution corresponds to a Hamiltonian circuit 𝐻 in 𝐺
of cost OPT(𝑉, 𝑐). We have 𝑐(𝑆) ≤ 𝑐(𝐻) because deleting one edge from
𝐻 results in a spanning tree. Let 𝑤1, . . . , 𝑤𝑘 be the vertices of 𝑊 in the
order in which they appear in a traversal of 𝐻, and let 𝑤0 := 𝑤𝑘 . Note that

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009445436.002
Downloaded from https://www.cambridge.org/core. IP address: 3.149.246.158, on 28 Jan 2025 at 21:24:14, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009445436.002
https://www.cambridge.org/core

1.4 Christofides’ Algorithm 13

Algorithm 1.23: Christofides’ Algorithm
Input: an instance (𝑉, 𝑐) of Symmetric TSP with Triangle

Inequality
Output: a solution 𝑣1, . . . , 𝑣𝑛

(1) Let 𝐺 =
(
𝑉,

(𝑉
2
))

be the complete graph on 𝑉 , and for 𝑒 = {𝑣, 𝑤} ∈
(𝑉

2
)
,

let 𝑐(𝑒) = 𝑐(𝑣, 𝑤).
(2) Compute a minimum-cost spanning tree (𝑉, 𝑆) in (𝐺, 𝑐).
(3) Let𝑊 = odd(𝑆).
(4) Compute a minimum-cost perfect matching 𝑀 in (𝐺 [𝑊], 𝑐).
(5) Apply Lemma 1.7 to the tour (𝑉, 𝑆

.
∪ 𝑀) and output the resulting solution.

𝑘 = |𝑊 | is even by the handshake lemma (Lemma 1.4). Then by the triangle
inequality,

∑𝑘
𝑖=1 𝑐(𝑤𝑖−1, 𝑤𝑖) ≤ 𝑐(𝐻). Hence we have two perfect matchings

𝑀1 = {{𝑤𝑖−1, 𝑤𝑖} : 𝑖 even} and 𝑀2 = {{𝑤𝑖−1, 𝑤𝑖} : 𝑖 odd} in 𝐺 [𝑊] with total
cost at most 𝑐(𝐻). So

𝑐(𝑀) ≤ min
{
𝑐(𝑀1), 𝑐(𝑀2)

}
≤ 1

2
(
𝑐(𝑀1) + 𝑐(𝑀2)

)
≤ 1

2
𝑐(𝐻).

By Lemma 1.7, our output has cost 𝑐(𝑆
.
∪ 𝑀) = 𝑐(𝑆) + 𝑐(𝑀) ≤ 3

2𝑐(𝐻) =
3
2 OPT(𝑉, 𝑐). The algorithm can be implemented to run in polynomial time by
Theorems 1.17 and 1.19. □

We will now reformulate Christofides’ algorithm for the Symmetric TSP.
The following notion will be used very often in this book:

Definition 1.25 (𝑇-join). Let𝑉 be a finite set and 𝑇 ⊆ 𝑉 with |𝑇 | even. A 𝑇-join
is a multi-subset 𝐽 of

(𝑉
2
)

with 𝑇 = odd(𝐽). If 𝐺 = (𝑉, 𝐸) is a graph and 𝐽 ⊆ 𝐸 ,
then we say that 𝐽 is a 𝑇-join in 𝐺.

We start with a few basic properties. For two sets 𝐴 and 𝐵, their symmetric
difference 𝐴 △ 𝐵 = (𝐴 \ 𝐵) ∪ (𝐵 \ 𝐴) contains all elements that are in the union
of 𝐴 and 𝐵, but not in their intersection.

Proposition 1.26. Let 𝐺 = (𝑉, 𝐸) be an undirected graph and 𝑇,𝑇 ′ ⊆ 𝑉 with
|𝑇 |, |𝑇 ′ | even. Let 𝐽 be a 𝑇-join and 𝐽′ a 𝑇 ′-join. Then 𝐽 △ 𝐽′ is a (𝑇 △ 𝑇 ′)-join.

Proof. A vertex 𝑣 has odd degree in (𝑉, 𝐽 △ 𝐽′) if and only if it has odd degree
in (𝑉, 𝐽

.
∪ 𝐽′), and this is the case if and only if it has odd degree in exactly one

of (𝑉, 𝐽) and (𝑉, 𝐽′). □

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009445436.002
Downloaded from https://www.cambridge.org/core. IP address: 3.149.246.158, on 28 Jan 2025 at 21:24:14, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009445436.002
https://www.cambridge.org/core

14 Introduction

Proposition 1.27. Let 𝐺 = (𝑉, 𝐸) be an undirected graph and 𝑇 ⊆ 𝑉 with |𝑇 |
even. Then 𝐺 contains a 𝑇-join if and only if every connected component of 𝐺
contains an even number of elements of 𝑇 .

Proof. Necessity follows from Lemma 1.4. For sufficiency, let𝑇 = {𝑡1, . . . , 𝑡𝑘}
such that 𝑡𝑖−1 and 𝑡𝑖 are in the same connected component of𝐺 for 𝑖 = 2, 4, . . . , 𝑘 .
Then take any path 𝑃𝑖 from 𝑡𝑖−1 to 𝑡𝑖 for 𝑖 = 2, 4, . . . , 𝑘 . The symmetric difference
of the edge sets of these paths is a 𝑇-join by Proposition 1.26. □

Lemma 1.28. Let 𝐺 = (𝑉, 𝐸) be an undirected graph and 𝑇 ⊆ 𝑉 with |𝑇 |
even. Let 𝐽 be a 𝑇-join in 𝐺. Then there exists a numbering 𝑇 = {𝑡1, . . . , 𝑡𝑘}
and a path from 𝑡𝑖−1 to 𝑡𝑖 in (𝑉, 𝐽) for 𝑖 = 2, 4, . . . , 𝑘 such that these paths are
pairwise edge-disjoint.

Proof. We use induction on 𝑘 = |𝑇 |, the case 𝑘 = 0 being trivial. By Proposi-
tion 1.27, there are two vertices 𝑡𝑘−1, 𝑡𝑘 ∈ 𝑇 in the same connected component
of (𝑉, 𝐽), so let 𝑃 be the edge set of a path from 𝑡𝑘−1 to 𝑡𝑘 in (𝑉, 𝐽), and apply
the induction hypothesis to 𝑇 ′ = 𝑇 \ {𝑡𝑘−1, 𝑡𝑘} and the 𝑇 ′-join 𝐽 \ 𝑃. □

Using an algorithm for Weighted Matching, we can compute minimum-cost
𝑇-joins in polynomial time:

Theorem 1.29 (Edmonds and Johnson [1973]). Given a simple undirected
graph 𝐺 = (𝑉, 𝐸), 𝑐 : 𝐸 → R≥0, and 𝑇 ⊆ 𝑉 with |𝑇 | even, one can compute a
minimum-cost 𝑇-join in (𝐺, 𝑐) or decide that none exists in 𝑂 (𝑛3) time.

Proof. The existence of a 𝑇-join can be decided with Proposition 1.27.
Let 𝐻 =

(
𝑇,

(𝑇
2
))

be the complete undirected graph on 𝑇 , and for 𝑣, 𝑤 ∈ 𝑇 , let
𝑐({𝑣, 𝑤}) be the distance from 𝑣 to 𝑤 in (𝐺, 𝑐). Note that 𝑐 can be computed in
𝑂 (𝑛3) time by Theorem 1.15.

Now compute a minimum-cost perfect matching 𝑀 in (𝐻, 𝑐), using Theorem
1.19. For {𝑣, 𝑤} ∈ 𝑀 , compute a shortest path from 𝑣 to 𝑤 in (𝐺, 𝑐), and let 𝐽 be
the symmetric difference of these |𝑀 | paths. We prove that 𝐽 is a minimum-cost
𝑇-join in (𝐺, 𝑐).

Proposition 1.26 implies that 𝐽 is indeed a𝑇-join. To show that 𝐽 has minimum
cost, let 𝐽∗ be a minimum-cost 𝑇-join. By Lemma 1.28, there exists a numbering
𝑇 = {𝑡1, . . . , 𝑡𝑘} and a path 𝑃𝑖 from 𝑡𝑖−1 to 𝑡𝑖 in (𝑉, 𝐽∗) for 𝑖 = 2, 4, . . . , 𝑘 such
that these paths are pairwise edge-disjoint. We conclude

𝑐(𝐽) ≤ 𝑐(𝑀) ≤
∑︁

𝑖=2,4,...,𝑘
𝑐({𝑡𝑖−1, 𝑡𝑖}) ≤

∑︁
𝑖=2,4,...,𝑘

𝑐(𝑃𝑖) ≤ 𝑐(𝐽∗). □

The problem can actually be solved for general weights too. We do not need
this for now but note it for later use (in Chapter 12):

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009445436.002
Downloaded from https://www.cambridge.org/core. IP address: 3.149.246.158, on 28 Jan 2025 at 21:24:14, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009445436.002
https://www.cambridge.org/core

1.4 Christofides’ Algorithm 15

(a) (b) (c) (d)

Figure 1.4 Christofides’ algorithm illustrated for an unweighted graph instance.
(a) An unweighted graph 𝐺 (i.e., 𝑐 (𝑒) = 1 for all edges 𝑒), (b) a spanning tree
(𝑉, 𝑆) whose odd-degree vertices (elements of odd(𝑆)) are shown as red squares,
(c) a minimum odd(𝑆)-join 𝐽 , and (d) the resulting tour 𝑆

.

∪ 𝐽 .

Corollary 1.30. Given a simple undirected graph 𝐺 = (𝑉, 𝐸), 𝑐 : 𝐸 → R,
and 𝑇 ⊆ 𝑉 with |𝑇 | even, one can compute a minimum-cost 𝑇-join in (𝐺, 𝑐) or
decide that none exists in 𝑂 (𝑛3) time.

Proof. Let 𝐸− = {𝑒 ∈ 𝐸 : 𝑐(𝑒) < 0} and 𝑐′ (𝑒) := |𝑐(𝑒) | for all 𝑒 ∈ 𝐸 . Then
𝑐′ (𝐾 △ 𝐸−) = 𝑐(𝐾) − 𝑐(𝐸−) for all 𝐾 ⊆ 𝐸 . Let 𝑇 ′ := 𝑇 △ odd(𝐸−). Then 𝐽′ is
a minimum 𝑐′-cost 𝑇 ′-join if and only if 𝐽′ △ 𝐸− is a minimum 𝑐-cost 𝑇-join.
Hence the problem reduces to Theorem 1.29. □

With the notion of 𝑇-joins, we have an elegant reformulation of Christofides’
algorithm: see Algorithm 1.31. Figure 1.4 provides an example.

Algorithm 1.31: Christofides’ Algorithm
Input: an instance (𝐺, 𝑐) of Symmetric TSP
Output: a tour 𝐹

(1) Compute a minimum-cost spanning tree (𝑉, 𝑆) in (𝐺, 𝑐).
(2) Let𝑊 = odd(𝑆), and let 𝐽 be a minimum-cost𝑊-join in (𝐺, 𝑐).
(3) Output the tour 𝑆

.
∪ 𝐽.

The running time of Christofides’ algorithm is also 𝑂 (𝑛3), dominated by the
subroutine to find a minimum-cost odd(𝑆)-join (cf. Theorem 1.29). Let us now
prove the approximation guarantee again for this version:

Theorem 1.32 (Christofides [1976], Serdyukov [1978]). Christofides’ algorithm
(Algorithm 1.31) is a 3

2 -approximation algorithm for Symmetric TSP.

Proof. We have 𝑐(𝑆) ≤ OPT(𝐺, 𝑐), like in the proof of Proposition 1.22. Any
optimum tour 𝐹∗ contains a𝑊-join 𝐽1 by Proposition 1.27. Let 𝐽2 := 𝐹∗ \ 𝐽1. By
Proposition 1.26, odd(𝐽2) = odd(𝐹∗) △ odd(𝐽1) = ∅ △𝑊 = 𝑊 . After deleting

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009445436.002
Downloaded from https://www.cambridge.org/core. IP address: 3.149.246.158, on 28 Jan 2025 at 21:24:14, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009445436.002
https://www.cambridge.org/core

16 Introduction

Table 1.1 Approximation ratios for Symmetric TSP in the order of their
discovery. (R) means randomized; this algorithm computes a random tour, and
the approximation ratio compares its expected cost to OPT.

Approximation Ratio Year Reference Chapter

2 1974 Rosenkrantz, Stearns, and Lewis [1977] –
3
2 1976 Christofides [1976] 1.4
3
2 1976 Serdyukov [1978] 1.4
3
2 − 10−36 (R) 2020 Karlin, Klein, and Oveis Gharan [2021] 10–11
3
2 − 10−36 2022 Karlin, Klein, and Oveis Gharan [2023] 11.6

pairs of parallel edges in 𝐽1 and 𝐽2, we get two 𝑊-joins 𝐽′1 and 𝐽′2 in 𝐺 with
𝑐(𝐽′1) + 𝑐(𝐽

′
2) ≤ 𝑐(𝐽1) + 𝑐(𝐽2) = 𝑐(𝐹∗) = OPT(𝐺, 𝑐). Hence

𝑐(𝐽) ≤ min
{
𝑐(𝐽′1), 𝑐(𝐽

′
2)

}
≤ 1

2
(
𝑐(𝐽′1) + 𝑐(𝐽

′
2)

)
≤ 1

2 OPT(𝐺, 𝑐).

We conclude 𝑐(𝑆
.
∪ 𝐽) = 𝑐(𝑆) + 𝑐(𝐽) ≤ 3

2 OPT(𝐺, 𝑐). □

Adding a matching 𝑀 in Algorithm 1.23 or a𝑊-join 𝐽 in Algorithm 1.31 is
called parity correction because it corrects the parity of every vertex degree
(renders it even). Bounding the cost of parity correction will be a central topic
in several chapters of this book.

Of course, Theorems 1.24 and 1.32 are equivalent. This bound on the
approximation ratio of Christofides’ algorithm is tight even for unweighted
graph instances: For a complete graph with an even number of vertices, take a
spanning tree whose vertices all have odd degree, then we end up with 3

2𝑛 − 1
edges. The special case of Symmetric TSP where 𝑐(𝑒) = 1 for all 𝑒 ∈ 𝐸 is
known as Graph TSP. Today we know a slightly better approximation algorithm
for Symmetric TSP (see Table 1.1 and Chapters 10 and 11) and much better
approximation algorithms for Graph TSP (see Chapters 12 and 13). However,
the following question is still open:

Open Problem 1.33. Find an 𝛼-approximation algorithm for Symmetric TSP
for some 𝛼 ≪ 3

2 (say 𝛼 ≤ 1.49).

Chekuri and Quanrud [2018] found a (3
2 + 𝜀)-approximation algorithm that

is faster than Christofides’ algorithm, for any 𝜀 > 0.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009445436.002
Downloaded from https://www.cambridge.org/core. IP address: 3.149.246.158, on 28 Jan 2025 at 21:24:14, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009445436.002
https://www.cambridge.org/core

1.5 Cycle Cover Algorithm 17

1.5 Cycle Cover Algorithm

For Asymmetric TSP, a constant-factor approximation algorithm is much more
difficult to obtain, and indeed such an algorithm was not known until 2017.
It is trivial to give an 𝑛-approximation algorithm: Given an instance (𝐺, 𝑐)
with 𝐺 = (𝑉, 𝐸), order the cities arbitrarily (say 𝑉 = {𝑣1, . . . , 𝑣𝑛}), and take a
shortest 𝑣𝑛-𝑣1-path and a shortest 𝑣𝑖−1-𝑣𝑖-path for 𝑖 = 2, . . . , 𝑛 in (𝐺, 𝑐); output
the disjoint union of all these paths. Since every tour contains a path from 𝑣𝑖−1
to 𝑣𝑖 for any two cities 𝑣𝑖−1 and 𝑣𝑖 , this algorithm produces a tour at most 𝑛
times longer than optimal (and this bound is essentially tight; see Exercise 1.12).

The first nontrivial approximation algorithm was found by Frieze, Galbiati,
and Maffioli [1982]. It is based on the following concept: A cycle cover of a
graph 𝐺 = (𝑉, 𝐸) (directed or undirected) is a subset 𝐹 ⊆ 𝐸 of edges such that
every vertex has degree 2 in (𝑉, 𝐹), and in-degree 1 and out-degree 1 in the
directed case. In particular, the edge set of a Hamiltonian circuit is a cycle cover,
and every cycle cover is Eulerian, but a cycle cover is not necessarily connected.

Lemma 1.34. Given a simple directed graph 𝐺 = (𝑉, 𝐸) and 𝑐 : 𝐸 → R≥0,
one can compute a minimum-cost cycle cover in (𝐺, 𝑐) or decide that none
exists in 𝑂 (𝑛3) time.

Proof. Let 𝐺12 be the undirected graph that contains two vertices 𝑣1 and 𝑣2

for each 𝑣 ∈ 𝑉 and an edge {𝑣1, 𝑤2} for each (𝑣, 𝑤) ∈ 𝐸 (with the same cost).
There is a one-to-one correspondence between the cycle covers in 𝐺 and the
perfect matchings in𝐺12. Hence the problem reduces to finding a minimum-cost
perfect matching in𝐺12, which can be done in𝑂 (𝑛3) time by Theorem 1.19. □

We remark that the graph 𝐺12 constructed in this proof is bipartite (every
edge has exactly one endpoint in {𝑣1 : 𝑣 ∈ 𝑉}), and Weighted Matching is
easier in bipartite graphs, but this is not important here.

The cycle cover algorithm by Frieze, Galbiati, and Maffioli [1982] is best
described for the Asymmetric TSP with Triangle Inequality (see Algo-
rithm 1.35 and Figure 1.5).

Theorem 1.36 (Frieze, Galbiati, and Maffioli [1982]). The cycle cover algorithm
(Algorithm 1.35) is a (log2 𝑛)-approximation algorithm for Asymmetric TSP
with Triangle Inequality.

Proof. At any stage, 𝐹 is Eulerian, and the algorithm leaves the while-loop
only when 𝐹 is a tour. The number of connected components decreases by at
least a factor of 2 in each iteration of the while-loop. Hence there are at most
⌊log2 𝑛⌋ iterations, and thus by Lemma 1.34, the algorithm runs in 𝑂 (𝑛3 log 𝑛)
time.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009445436.002
Downloaded from https://www.cambridge.org/core. IP address: 3.149.246.158, on 28 Jan 2025 at 21:24:14, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009445436.002
https://www.cambridge.org/core

18 Introduction

Algorithm 1.35: Cycle Cover Algorithm
Input: an instance (𝑉, 𝑐) of Asymmetric TSP with Triangle

Inequality
Output: a solution 𝑣1, . . . , 𝑣𝑛

(1) Let 𝐺 = (𝑉, {(𝑣, 𝑤) ∈ 𝑉 ×𝑉 : 𝑣 ≠ 𝑤}) be the complete directed graph
on 𝑉 . Let 𝐹 := ∅.

(2) while (𝑉, 𝐹) is not connected do
(3) Choose one vertex from each connected component of (𝑉, 𝐹); let𝑊

be the set of these vertices.
(4) Let 𝐹𝑊 be a minimum-cost cycle cover in (𝐺 [𝑊], 𝑐). Set

𝐹 := 𝐹
.
∪ 𝐹𝑊 .

(5) Apply Lemma 1.8 to the tour 𝐹 and output the resulting solution.

Figure 1.5 Illustrating the cycle cover algorithm. The first iteration chooses a
minimum-cost cycle cover (black, solid). The second iteration chooses a represen-
tative vertex of each connected component and adds a minimum-cost cycle cover
on these (blue, dotted). After two more edges are added in the third iteration (red,
dashed), the digraph is connected, and the algorithm terminates.

For any set 𝑊 ⊆ 𝑉 , the minimum cost of a cycle cover in 𝐺 [𝑊] is at most
OPT(𝑉, 𝑐) because, due to the triangle inequality, we can take shortcuts in
any Hamiltonian circuit in 𝐺 to obtain a Hamiltonian circuit in 𝐺 [𝑊] without
increasing the cost. We conclude that 𝑐(𝐹𝑊) ≤ OPT(𝑉, 𝑐) in each iteration,
and hence our output has cost at most ⌊log2 𝑛⌋OPT(𝑉, 𝑐). □

This bound for the cycle cover algorithm is tight (see Exercise 1.14).
More than 20 years later, the upper bound on the approximation ratio for

Asymmetric TSP was improved by a constant factor by Bläser [2008] to
0.99 log2 𝑛, by Kaplan et al. [2005] to 0.842 log2 𝑛, and by Feige and Singh
[2007] to 2

3 log2 𝑛. We will not present these algorithms here; they are refinements

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009445436.002
Downloaded from https://www.cambridge.org/core. IP address: 3.149.246.158, on 28 Jan 2025 at 21:24:14, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009445436.002
https://www.cambridge.org/core

Exercises 19

Table 1.2 Approximation ratios for Asymmetric TSP in the order of their
discovery. (R) means randomized; this algorithm computes a random tour, and
the approximation ratio compares its expected cost to OPT. Moreover, 𝜀 stands
for an arbitrarily small positive constant.

Approximation Ratio Year Reference Chapter

log2 𝑛 1980 Frieze, Galbiati, and Maffioli [1982] 1.5
0.99 log2 𝑛 2002 Bläser [2008] –
0.842 log2 𝑛 2003 Kaplan et al. [2005] –
2
3 log2 𝑛 2006 Feige and Singh [2007] –
𝑂 (log 𝑛

log log 𝑛) (R) 2009 Asadpour et al. [2017] 5
506 2017 Svensson, Tarnawski, and Végh [2020] 6–8
22 + 𝜀 2019 Traub and Vygen [2022] 6–8
17 + 𝜀 2021 this book 6–8

of the cycle cover algorithm. The first sublogarithmic approximation factor
was obtained by Asadpour et al. [2017] and will be presented in Chapter 5.
Finally, a constant-factor approximation algorithm was discovered by Svensson,
Tarnawski, and Végh [2020]. In Chapters 6–8, we will present an improved
version of this algorithm. Table 1.2 summarizes the history.

Exercises

1.1 Show that Asymmetric TSP with Triangle Inequality can be solved
exactly in 𝑂 (𝑛22𝑛) time.
Hint: Choose an arbitrary vertex 𝑠. For every set 𝑋 with {𝑠} ⊊ 𝑋 ⊆ 𝑉
and every vertex 𝑡 ∈ 𝑋 \ {𝑠}, compute a list 𝑠 = 𝑣1, 𝑣2, . . . , 𝑣𝑘 = 𝑡 that
contains every element of 𝑋 exactly once and minimizes

∑𝑘
𝑖=2 𝑐(𝑣𝑖−1, 𝑣𝑖).

Note: This technique is called dynamic programming. No faster algorithm
is known, even for Symmetric TSP with Triangle Inequality.
(Bellman [1962], Held and Karp [1962])

1.2 Prove that a connected undirected graph contains a walk that traverses
each edge exactly once if and only if it has at most two odd-degree vertices.

1.3 Call a tour in a graph minimal if no proper subset is a tour in that graph.
Prove that a minimal tour in an undirected graph does not contain three
parallel edges, and prove that a minimal tour in a directed graph does not

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009445436.002
Downloaded from https://www.cambridge.org/core. IP address: 3.149.246.158, on 28 Jan 2025 at 21:24:14, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009445436.002
https://www.cambridge.org/core

20 Introduction

contain 𝑛 − 1 parallel edges. Show that these bounds are tight: 2 or 𝑛 − 2
parallel edges are possible.

1.4 Consider Dĳkstra’s algorithm to compute the distance from a vertex 𝑠
to all other vertices in a digraph 𝐺 = (𝑉, 𝐸) with nonnegative weights
𝑐 : 𝐸 → R≥0: Initialize 𝑅 := ∅, 𝑑 (𝑠) := 0, and 𝑑 (𝑣) := ∞ for all
𝑣 ∈ 𝑉 \ {𝑠}. Then, while 𝑅 ≠ 𝑉 , select 𝑣 ∈ 𝑉 \𝑅 with 𝑑 (𝑣) minimum, add
𝑣 to 𝑅, and set 𝑑 (𝑤) := min{𝑑 (𝑤), 𝑑 (𝑣) +𝑐(𝑒)} for all 𝑒 = (𝑣, 𝑤) ∈ 𝛿+ (𝑣).
Prove that this algorithm is correct.
(Dĳkstra [1959])

1.5 Consider the following algorithm. Given a connected undirected graph
𝐺 = (𝑉, 𝐸) and edge costs 𝑐 : 𝐸 → R, initialize 𝐹 := ∅. As long as there
exists an edge 𝑒 ∈ 𝐸 \𝐹 such that (𝑉, 𝐹 ∪ {𝑒}) contains no circuit, choose
such an edge with minimum cost and add it to 𝐹.
Prove that this algorithm computes an optimum solution to the Minimum
Spanning Tree problem.
Hint: Among all optimum spanning trees, consider one that has as many
edges as possible in common with the output of the algorithm.
(Kruskal [1956])

1.6 Let 𝐺 = (𝑉, 𝐸) be a graph and 𝑋 ⊊ 𝑉 such that 𝐺 [𝑉 \ 𝑋] has more than
|𝑋 | connected components with an odd number of vertices. Show that
then 𝐺 has no perfect matching. (The converse also holds and is known
as Tutte’s theorem.)

1.7 Deduce from Theorem 1.21 that the shortest path problem with general
weights has no polynomial-time algorithm unless P = NP.

1.8 Show that for every even 𝑛 ≥ 4, there is a Hamiltonian graph 𝐺 on 𝑛
vertices in which every vertex has degree 3 and Christofides’ algorithm –
run on 𝐺 with unit weights – may compute a tour with 3

2𝑛 − 1 edges.
1.9 The Euclidean TSP is a special case of the Symmetric TSP with

Triangle Inequality: Here 𝑉 ⊊ R2, and 𝑐 is given by the Euclidean
distance. Prove that even for Euclidean TSP, Christofides’ algorithm is
not an 𝛼-approximation algorithm for any 𝛼 < 3

2 .
1.10 In the Rural Postman Problem, we are given a connected undirected

graph 𝐺 = (𝑉, 𝐸) with weights 𝑐 : 𝐸 → R≥0 and a subset �̄� of edges. We
ask for a connected (not necessarily spanning) Eulerian multi-subgraph
of 𝐺 that contains at least one copy of every element of �̄� . Devise a
3
2 -approximation algorithm for the Rural Postman Problem.
(This was first mentioned by Frederickson [1979].)

1.11 Conclude from Corollary 1.30 that there is a polynomial-time algorithm
for the Shortest Path problem when the graph 𝐺 is undirected and

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009445436.002
Downloaded from https://www.cambridge.org/core. IP address: 3.149.246.158, on 28 Jan 2025 at 21:24:14, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009445436.002
https://www.cambridge.org/core

Exercises 21

the weights 𝑐 are conservative (i.e., there is no circuit of negative total
weight).

1.12 Prove that the trivial algorithm mentioned at the beginning of Section 1.5
is an (𝑛 − 1)-approximation algorithm for Asymmetric TSP, and prove
that this bound is tight.

1.13 Show that a minimum-cost cycle cover in an undirected graph can be
computed in polynomial time. Note that it is not allowed to take any edge
twice.
Hint: Find a reduction to Weighted Matching by first replacing every
edge by a path of three edges and then duplicating every original vertex.

1.14 Show that whenever 𝑛 is a power of 2, there are instances with 𝑛 cities for
which the cycle cover algorithm (Algorithm 1.35) can produce a solution
that is no better than log2 𝑛 times the optimum.

1.15 Consider the variant of the cycle cover algorithm (Algorithm 1.35) in
which 𝐹𝑊 in Step (4) is chosen as the edge set of a cycle 𝐶 in 𝐺 [𝑊] with
minimum mean weight 𝑐 (𝐸 (𝐶))|𝐸 (𝐶) | . Karp [1978] showed that a minimum-
mean-weight cycle can be computed in 𝑂 (𝑛3) time. Prove (by induction
on 𝑛) that this variant is a 2(1 + 1

2 + · · · +
1
𝑛
)-approximation algorithm.

(Bläser [2008] attributed this to Kleinberg and Williamson; see also
Williamson and Shmoys [2011].)

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009445436.002
Downloaded from https://www.cambridge.org/core. IP address: 3.149.246.158, on 28 Jan 2025 at 21:24:14, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009445436.002
https://www.cambridge.org/core

