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Amenability and Covariant Injectivity of
Locally Compact Quantum Groups II

Jason Crann

Abstract. Building on our previous work, we study the non-relative homology of quantum group
convolution algebras. Ourmain result establishes the equivalence of amenability of a locally compact
quantum groupG and 1-injectivity of L∞(Ĝ) as an operator L1

(Ĝ)-module. In particular, a locally
compact group G is amenable if and only if its group von Neumann algebra VN(G) is 1-injective
as an operator module over the Fourier algebra A(G). As an application, we provide a decompos-
ability result for completely bounded L1

(Ĝ)-module maps on L∞(Ĝ), and give a simpliûed proof
that amenable discrete quantum groups have co-amenable compact duals, which avoids the use of
modular theory and the Powers–Størmer inequality, suggesting that our homological techniques
may yield a new approach to the open problem of duality between amenability and co-amenability.

1 Introduction

_e connection between amenability of a locally compact group G and injectivity
of its group von Neumann algebra VN(G) has been a topic of interest in abstract
harmonic analysis for decades. Amenability of G entails injectivity of VN(G) [16].
However, the converse is not true, e.g., if G = SL(n,R) for n ≥ 2. Indeed, a result of
Connes [5, Corollary 7], attributed to Dixmier, states that VN(G) is injective for any
separable connected locally compact group.

In [7], we clariûed this connection by exploiting the T(L2(G))-module structure
of B(L2(G)), showing the equivalence of amenability of a locally compact group
G and covariant injectivity of VN(G), meaning the existence of a conditional ex-
pectation E∶B(L2(G)) → VN(G) commuting with the canonical T(L2(G))-action
[7, _eorem 4.2]. We also established a corresponding result at the level of locally
compact quantum groups G and studied the relationship between amenability of G
and relative 1-injectivity of its various operator modules over T(L2(G)).

In this paper we build on results from [7], focusing on the non-relative homology
of operator modules over L1(G) and T(L2(G)). Our main result states that a locally
compact quantum groupG is amenable if and only if L∞(Ĝ) is 1-injective as an oper-
ator L1(Ĝ)-module. _is new homological manifestation of quantum group duality
shows that in order to recover properties ofG, one should not only consider the von
Neumann algebraic structure of L∞(Ĝ), but rather its operator module structure.
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Ourmain result has already been used to establish a fundamental hereditary prop-
erty of amenability [6], providing the main tool in the proof that amenability passes
to closed quantum subgroups. As a further application, we provide a decomposability
result in the spirit of Haagerup [17] for completely bounded L1(G)-module maps on
L∞(G). Speciûcally, if Ĝ is amenable then

CBL1(G)(L∞(G)) = spanCPL1(G)(L∞(G)),
CBL1(G)(C0(G), L∞(G)) = spanCPL1(G)(C0(G), L∞(G)).

Using the latter equality, we show that amenability of Ĝ entails

Cu(G)∗ = Mr
cb(L1(G)),

set theoretically. Similar techniques also lead to a characterization of the predual
Q r
cb(L1(G)) of the completely bounded (right) multipliers Mr

cb(L1(G)) for an ar-
bitrary locally compact quantum group G as Q r

cb(L1(G)) ≅ C0(G) ⊗̂L1(G) L1(G),
which is new even in the group setting.
Arguably the biggest open problem in abstract harmonic analysis on locally com-

pact quantum groups is the duality between amenability and co-amenability. In the
group setting, this is Leptin’s theorem [30], which states that a locally compact group
G is amenable if and only if its Fourier algebraA(G) has a bounded approximate iden-
tity. In the quantum group setting, many partial results have been obtained over the
years. Ruan showed that a compact Kac algebraG is co-amenable if and only if its dis-
crete dual Ĝ is amenable [35,_eorem 4.5]. _is equivalence was later generalized by
Tomatsu (and, independently by Blanchard and Vaes) to arbitrary compact quantum
groups [40, _eorem 3.8]. Tomatsu’s argument relies on the speciûc modular theory
of discrete quantum groups in order to apply the Powers–Størmer inequality in a cru-
cial step. As another application of our main result, we give a considerably simpliûed
proof of Tomatsu’s theorem which avoids the use of modular theory and the Powers–
Størmer inequality, suggesting that our homological techniques may provide a new
approach to the general duality problem of amenability and co-amenability.
For regular quantum groupsG, we obtain a version of our main result at the pred-

ual level, showing the equivalence of discreteness ofG and 1-projectivity of L1(G) as
an operator module over itself.

_e paper is structured as follows. We begin in Section 2 with some preliminaries
on the homology of operator modules, and include some new results on the rela-
tionship between relative and non-relative homology. Section 3 is devoted to a brief
overview of the relevant machinery from locally compact quantum groups, their as-
sociated operator modules, and completely bounded multipliers. Section 4 outlines
the operator module structure ofB(L2(G)) over T(L2(G)) and contains new results
which are used in the proof of the main theorem. Section 5 contains the main result
of the paper along with its aforementioned applications.

2 Preliminaries

Let A be a completely contractive Banach algebra. We say that an operator space X
is a right operator A-module if it is a right Banach A-module such that the module
map mX ∶X ⊗̂A → X is completely contractive, where ⊗̂ denotes the operator space
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projective tensor product. We say that X is faithful if for every non-zero x ∈ X, there is
a ∈ A such that x ⋅a /= 0, andwe say that X is essential if ⟨X ⋅A⟩ = X, where ⟨ ⋅ ⟩ denotes
the closed linear span. Note that our deûnition of faithfulness, the standard notion
in operator modules, is opposite in nature to the usual deûnition in algebra. We de-
note bymod-A the category of right operator A-modules with morphisms given by
completely bounded module homomorphisms. Le� operator A-modules and oper-
ator A-bimodules are deûned similarly, and we denote the respective categories by
A-mod andA-mod-A.

Remark 2.1 Regarding terminology, in what follows we will o�en omit the term
“operator” when discussing homological properties of operator modules as we will be
working exclusively in the operator space category.

Let A be a completely contractive Banach algebra, X ∈ mod-A and Y ∈ A-mod.
_e A-module tensor product of X and Y is the quotient space X ⊗̂A Y ∶= X ⊗̂ Y/N ,
where N = ⟨x ⋅ a ⊗ y − x ⊗ a ⋅ y ∣ x ∈ X , y ∈ Y , a ∈ A⟩, and, again, ⟨ ⋅ ⟩ denotes
the closed linear span. It follows that (see [3, Corollary 3.5.10]) CBA(X ,Y∗) ≅ N⊥ ≅
(X ⊗̂A Y)∗, where CBA(X ,Y∗) is the space of completely bounded rightA-module
maps Φ∶X → Y∗. If Y = A, then clearly N ⊆ Ker(mX) where mX ∶X ⊗̂ A → X is
the module map. If the induced mapping m̃X ∶X ⊗̂AA→ X is a completely isometric
isomorphism, we say that X is an induced A-module. A similar deûnition applies for
le�modules. In particular, we say thatA is self-induced if m̃A∶A⊗̂AA ≅ A completely
isometrically.

Let A be a completely contractive Banach algebra and X ∈ mod-A. _e identiû-
cation A+ = A ⊕1 C turns the unitization of A into a unital completely contractive
Banach algebra, and it follows that X becomes a right operator A+-module via the
extended action x ⋅ (a + λe) = x ⋅ a + λx, for a ∈ A+ , λ ∈ C, x ∈ X. Let C ≥ 1. _en
X is relatively C-projective if there exists a morphism Φ+∶X → X ⊗̂A+ that is a right
inverse to the extended module map m+

X ∶X ⊗̂A+ → X such that ∥Φ+∥cb ≤ C. When
X is essential, then X is relatively C-projective if and only if there exists a morphism
Φ∶X → X ⊗̂A satisfying ∥Φ∥cb ≤ C and mX ○ Φ = idX by the operator analogue of
[9, Proposition 1.2]. We say that X is C-projective if for every Y , Z ∈ mod-A, every
complete quotient morphism Ψ∶Y ↠ Z, every morphism Φ∶X → Z, and every ε > 0,
there exists a morphism Φ̃ε ∶X → Y such that ∥Φ̃ε∥cb < C∥Φ∥cb + ε and Ψ ○ Φ̃ε = Φ,
i.e., the following diagram commutes:

Y

X Z

Ψ
Φ̃ε

Φ

When A = C, the deûnition of C-projectivity coincides with that of a C-projective
operator space [2, Deûnition 3.3]. In general, it is not immediately clear whether
C-projectivity implies relative C-projectivity, as one might expect. To give a sense
of the potential distinction, the Fourier algebra A(G) of a locally compact group G
is relatively 1-projective in mod-A(G) if and only if G is an IN group [8, Proposition
3.8], while it is 1-projective inmod-A(G) if and only ifG is compact by_eorem 5.15.
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_e following relationship between relative projectivity and projectivity appears to
be new, and will be used to characterize the 1-projectivity of quantum group convo-
lution algebras.

Proposition 2.2 Let A be a completely contractive Banach algebra and X ∈ mod-A.
If X is C1-projective in mod-C and is relatively C2-projective in mod-A, then X is
C1C2-projective in mod-A.

Proof Let Y , Z ∈ mod-A, let Ψ∶Y ↠ Z be a complete quotient morphism and
let Φ∶X → Z be a morphism. By relative C2-projectivity, there exists a morphism
α+∶X → X ⊗̂A+ satisfying m+

X ○α+ = idX and ∥α+∥cb ≤ C2. Since X is aC1-projective
operator space, for every ε > 0, there exists a li�ing Φε ∶X → Y satisfying Ψ ○Φε = Φ
and ∥Φε∥cb < C1∥Φ∥cb + ε/C2. _e morphism (Φε ⊗ id)∶X ⊗̂ A+ → Y ⊗̂ A+ then
satisûes ∥Φε ⊗ id∥cb < C1∥Φ∥cb + ε/C2, and composing with α+ together with the
multiplicationm+

Y ∶Y ⊗̂A+ → Y , we obtain amorphism Φ̃ε ∶= m+

Y ○(Φε⊗id)○α+∶X →
Y satisfying ∥Φ̃ε∥cb < C1C2∥Φ∥cb + ε. Moreover, using the module properties of the
relevant morphisms we have

Ψ ○ Φ̃ε = Ψ ○m+

Y ○ (Φε ⊗ id) ○ α+ = m+

Z ○ (Ψ ⊗ id) ○ (Φε ⊗ id) ○ α+

= m+

Z ○ (Φ⊗ id) ○ α+ = Φ ○m+

X ○ α+ = Φ.

Hence, X is C1C2-projective.

Note that the converse of Proposition 2.2 (when C1 = C2 = 1) is not true in general,
as A is both 1-projective and relatively 1-projective inmod-A for any unital C∗-alge-
bra. However, the only C∗-algebra which is a 1-projective operator space is C by [2,
_eorem 3.4].

Given a completely contractive Banach algebra A and X ∈ mod-A, there is a
canonical completely contractive morphism ∆+∶X → CB(A+ , X) given by

∆+(x)(a) = x ⋅ a, x ∈ X , a ∈ A+ ,

where the right A-module structure on CB(A+ , X) is deûned by

(Ψ ⋅ a)(b) = Ψ(ab), a ∈ A, Ψ ∈ CB(A+ , X), b ∈ A+ .

An analogous construction exists for objects inA-mod. LetC ≥ 1. _en X is relatively
C-injective if there exists a morphism Φ+∶CB(A+ , X) → X such that Φ+ ○ ∆+ = idX
and ∥Φ+∥cb ≤ C. When X is faithful, then X is relatively C-injective if and only if
there exists a morphism Φ∶CB(A, X) → X such that Φ ○ ∆ = idX and ∥Φ∥cb ≤ C
by the operator analogue of [9, Proposition 1.7], where ∆(x)(a) ∶= ∆+(x)(a) for
x ∈ X and a ∈ A. We say that X is C-injective if for every Y , Z ∈ mod-A, every
completely isometric morphism Ψ∶Y ↪ Z, and every morphism Φ∶Y → X, there
exists a morphism Φ̃∶ Z → X such that ∥Φ̃∥cb ≤ C∥Φ∥cb and Φ̃ ○ Ψ = Φ, that is, the
following diagram commutes:

Z

Y X

Φ̃Ψ

Φ

https://doi.org/10.4153/CJM-2016-031-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-031-5


1068 J. Crann

Clearly, whenA = C, the deûnition ofC-injectivity coincideswith that of aC-injec-
tive operator space [33, §24]. For general A, the dual X∗ of any X ∈ mod-A has a
canonical le� A-module structure, and it follows that X∗ is C-injective in A-mod
whenever X is C-projective inmod-A by an operator module version of [2,_eorem
3.5]. _e next proposition also appears to be new and will be used in the proof of our
main result.

Proposition 2.3 LetA be a completely contractive Banach algebra and X ∈mod-A. If
X is C1-injective inmod-C and is relatively C2-injective inmod-A, then X is C1C2-in-
jective in mod-A.

Proof We ûrst show that CB(A+ , X) is C1-injective in mod-A using the standard
argument. To this end, let Y , Z ∈ mod-A, let κ∶Y ↪ Z be a completely isometric
morphism, and let α∶Y → CB(A+ , X) be a morphism. Deûne β∶Y → X by β(y) =
α(y)(e), y ∈ Y , where e is the identity in A+. _en ∥β∥cb ≤ ∥α∥cb , and by C1-injec-
tivity of X in mod-C, there exists an extension β̃∶ Z → X satisfying β = β̃ ○ κ and
∥β̃∥cb ≤ C1∥β∥cb ≤ C1∥α∥cb . Deûne α̃∶ Z → CB(A+ , X) by α̃(z)(a) = β̃(z ⋅ a), for
z ∈ Z, a ∈ A+. _en (α̃(z) ⋅ a)(b) = α̃(z)(ab) = β̃(z ⋅ ab) = α̃(z ⋅ a)(b) for all z ∈ Z
and a, b ∈ A. _us, α̃ is a module map extending α such that ∥α̃∥cb ≤ C1∥α∥cb .
By relativeC2-injectivity of X inmod-A there is amorphismΦ+∶CB(A+ , X) → X

satisfying Φ+ ○ ∆+ = idX and ∥Φ+∥cb ≤ C2. _us, if Y , Z ∈ mod-A with κ∶Y ↪ Z a
completely isometric morphism, and α∶Y → X is a morphism, then we may extend
the morphism ∆+ ○ α∶Y → CB(A+ , X) to a morphism α̃∶ Z → CB(A+ , X) with
∥α̃∥cb ≤ C1∥∆+○α∥cb ≤ C1∥α∥cb . _emorphismΦ+○ α̃∶ Z → X satisûes Φ+○ α̃○κ = α
and ∥Φ ○ α̃∥cb ≤ C1C2∥α∥cb , and is therefore the desired extension.

_e converse of Proposition 2.3 is not true in general (when C1 = C2 = 1). Indeed,
for any unital completely contractive Banach algebra A and any 1-injective operator
space X, it follows from the proof of Proposition 2.3 that CB(A, X) is 1-injective in
mod-A. _is clearly implies relative 1-injectivity in mod-A. However, consider A =
B(G) and X = C, where B(G) is the Fourier–Stieltjes algebra of a non-amenable
discrete groupG. Since B(G) is the operator dual of the full groupC∗-algebraC∗(G),
we have CB(A, X) = B(G)∗ = C∗(G)∗∗. If this were a 1-injective operator space, the
groupC∗-algebraC∗(G)would be nuclear [4], forcingG to be amenable by [29,_eo-
rem 4.2].

Remark 2.4 Our notions of projectivity and injectivity are closer in spirit to the ap-
proach taken in operator space theory [2] and the recent approach of Helemskii [19]
rather than Banach algebra homology, where the related notions are usually studied
solely from the relative perspective. In particular, we caution the reader that “injectiv-
ity”, as deûned in our previous work [7], coincides with relative 1-injectivity as deûned
above.
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3 Locally Compact Quantum Groups

A locally compact quantum group is a quadrupleG = (L∞(G), Γ, φ,ψ), where L∞(G)
is a Hopf–von Neumann algebra with co-multiplication

Γ∶ L∞(G) → L∞(G) ⊗ L∞(G),
and φ and ψ are ûxed le� and right Haar weights on L∞(G), respectively [28, 41].
For every locally compact quantum group G, there exists a le� fundamental unitary
operator W on L2(G, φ) ⊗ L2(G, φ) and a right fundamental unitary operator V on
L2(G,ψ) ⊗ L2(G,ψ) implementing the co-multiplication Γ via

Γ(x) =W∗(1⊗ x)W = V(x ⊗ 1)V∗ , x ∈ L∞(G).
Both unitaries satisfy the pentagonal relation, that is,

W12W13W23 =W23W12 and V12V13V23 = V23V12 .

By [28, Proposition 2.11], we may identify L2(G, φ) and L2(G,ψ), so we will simply
use L2(G) for this Hilbert space throughout the paper. We denote by R the unitary
antipode ofG.

Let L1(G) denote the predual of L∞(G). _en the pre-adjoint of Γ induces an
associative completely contractive multiplication on L1(G), deûned by

⋆∶ L1(G) ⊗̂ L1(G) ∋ f ⊗ g ↦ f ⋆ g = Γ∗( f ⊗ g) ∈ L1(G).
_e multiplication ⋆ is a complete quotient map from L1(G) ⊗̂ L1(G) onto L1(G),
implying ⟨L1(G) ⋆ L1(G)⟩ = L1(G). Moreover, L1(G) is always self-induced. _e
proof is a simple application of [42, _eorem 2.7], but we provide the details for the
convenience of the reader.

Proposition 3.1 Let G be a locally compact quantum group. _en L1(G) is a self-
induced completely contractive Banach algebra.

Proof Let m̃∶ L1(G) ⊗̂L1(G) L1(G) → L1(G) be the induced multiplication map.
_en m̃∗∶ L∞(G) → (L1(G) ⊗̂L1(G) L1(G))∗ is nothing but the co-multiplication Γ.
Since (L1(G) ⊗̂L1(G) L1(G))∗ ≅ N⊥, where N ⊆ L1(G) ⊗̂ L1(G) is the closed linear
span of { f ⋆ g ⊗ h − f ⊗ g ⋆ h ∣ f , g , h ∈ L1(G)}, given X ∈ (L1(G) ⊗̂L1(G) L1(G))∗ ⊆
L∞(G) ⊗ L∞(G), it follows that (Γ ⊗ id)(X) = (id⊗Γ)(X). Hence, X ∈ Γ(L∞(G))
by [42, _eorem 2.7], and m̃∗ is surjective. Since m̃∗ = Γ is also a complete isometry,
the result follows.

For any locally compact quantum group G, the canonical L1(G)-bimodule struc-
ture on L∞(G) is given by f ⋆ x = (id⊗ f )Γ(x) and x ⋆ f = ( f ⊗ id)Γ(x), for
x ∈ L∞(G) and f ∈ L1(G). A le� invariant mean on L∞(G) is a state m ∈ L∞(G)∗
satisfying ⟨m, x ⋆ f ⟩ = ⟨ f , 1⟩⟨m, x⟩, for x ∈ L∞(G), f ∈ L1(G). Right and two-sided
invariant means are deûned similarly. A locally compact quantum group G is said
to be amenable if there exists a le� invariant mean on L∞(G). It is known that G is
amenable if and only if there exists a right (equivalently, two-sided) invariant mean
(cf. [13, Proposition 3]). We say that G is co-amenable if L1(G) has a bounded le�
(equivalently, right or two-sided) approximate identity (cf. [1, _eorem 3.1]).
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_e le� regular representation λ∶ L1(G) → B(L2(G)) ofG, deûned by

λ( f ) = ( f ⊗ id)(W), f ∈ L1(G),
is an injective, completely contractive homomorphism from L1(G) into B(L2(G)).
_en L∞(Ĝ) ∶= {λ( f ) ∶ f ∈ L1(G)}′′ is the von Neumann algebra associated with
the dual quantum group Ĝ. Analogously, we have the right regular representation
ρ∶ L1(G) → B(L2(G))deûned by ρ( f ) = (id⊗ f )(V), for f ∈ L1(G), which is also an
injective, completely contractive homomorphism from L1(G) into B(L2(G)). _en
L∞(Ĝ′) ∶= {ρ( f ) ∶ f ∈ L1(G)}′′ is the von Neumann algebra associated with the
quantum group Ĝ′. It follows that L∞(Ĝ′) = L∞(Ĝ)′, and the le� and right funda-
mental unitaries satisfyW ∈ L∞(G)⊗L∞(Ĝ) andV ∈ L∞(Ĝ′)⊗L∞(G) [28, Propo-
sition 2.15]. Moreover, dual quantum groups always satisfy [44, Proposition 3.4]

L∞(G) ∩ L∞(Ĝ) = L∞(G) ∩ L∞(Ĝ′) = C1.

If G is a locally compact group, we let Ga = (L∞(G), Γa , φa ,ψa) denote the
commutative quantum group associated with the commutative von Neumann algebra
L∞(G), where the co-multiplication is given by Γa( f )(s, t) = f (st), and φa and ψa
are integrationwith respect to a le� and rightHaarmeasure, respectively. _e dual Ĝa
ofGa is the co-commutative quantum groupGs = (VN(G), Γs , φs ,ψs), where VN(G)
is the le� group vonNeumann algebra with co-multiplication Γs(λ(t)) = λ(t)⊗λ(t),
and φs = ψs is Haagerup’s Plancherel weight (cf. [38, §VII.3]). _en L1(Ga) is the
usual group convolution algebra L1(G), and L1(Gs) is the Fourier algebra A(G).
It is known that every commutative locally compact quantum group is of the form
Ga [37, 43, _eorem 2; §2]. _erefore, every commutative locally compact quantum
group is co-amenable, and is amenable if and only if the underlying locally compact
group is amenable. By duality, every co-commutative locally compact quantum group
is of the formGs , which is always amenable [34,_eorem4], and is co-amenable if and
only if the underlying locally compact group is amenable, by Leptin’s theorem [30].

For a locally compact quantum group G, we let C0(G) ∶= λ̂(L1(Ĝ))
∥ ⋅ ∥

denote
the reduced quantum group C∗-algebra of G. We say that G is compact if C0(G) is a
unital C∗-algebra, in which case we denote C0(G) by C(G). We say thatG is discrete
if L1(G) is unital. It is well known that G is compact if and only if Ĝ is discrete,
and in that case, L1(Ĝ) ≅ ⊕1{Tnα(C) ∣ α ∈ Irr(G)}, where Tnα(C) is the space of
nα × nα trace-class operators, and Irr(G) denotes the set of (equivalence classes of)
irreducible co-representations of the compact quantum group G [45]. For general
G, the operator dual M(G) ∶= C0(G)∗ is a completely contractive Banach algebra
containing L1(G) as a normclosed two-sided ideal via themap L1(G) ∋ f ↦ f ∣C0(G) ∈
M(G) [21].

We let Cu(G) be the universal quantum group C∗-algebra of G, and denote the
canonical surjective *-homomorphism onto C0(G) by πu ∶Cu(G) → C0(G) [27].
_e space Cu(G)∗ then has the structure of a unital completely contractive Banach
algebra such that themap L1(G) → Cu(G)∗ given by the composition of the inclusion
L1(G) ⊆ M(G) and π∗u ∶M(G) → Cu(G)∗ is a completely isometric homomorphism,
and it follows that L1(G) is a norm closed two-sided ideal in Cu(G)∗ [27, Proposi-
tion 8.3].
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Let G be a locally compact quantum group. An element b̂′ ∈ L∞(Ĝ)′ is said to
be a completely bounded right multiplier of L1(G) if ρ( f )b̂′ ∈ ρ(L1(G)) for all f ∈
L1(G) and the induced map mr

̂b′
∶ L1(G) ∋ f ↦ ρ−1(ρ( f )b̂′) ∈ L1(G) is completely

bounded on L1(G). We let Mr
cb(L1(G)) denote the space of all completely bounded

right multipliers of L1(G), which is a completely contractive Banach algebra with
respect to the norm

∥[b̂′i j]∥Mn(Mr
cb(L

1(G))) = ∥[mr
̂b i j

]∥cb .

Completely bounded le� multipliers are deûned analogously, and we denote the cor-
responding completely contractive Banach algebra by M l

cb(L1(G)). We now review
the relevant properties of completely bounded multipliers, adopting the notation of
[23].

_ere is a canonical, injective, completely contractive homomorphism

ρ̃∶Cu(G)∗ → Mr
cb(L1(G)),

extending ρ̃ from [21, §4], whichmaps µ ∈ Cu(G)∗ to the operator of rightmultiplica-
tion by µ on L1(G). In general, given b̂′ ∈ Mr

cb(L1(G)), the adjoint Θr(b̂′) ∶= (mr
̂b′
)∗

deûnes a normal completely bounded right L1(G)-module map on L∞(G). _e re-
striction Θr(b̂′)∣C0(G) leaves C0(G) invariant by [23, Proposition 4.1], and, together
with [23, Proposition 4.2], we have the completely isometric identiûcations

Θr ∶Mr
cb(L1(G)) ≅ CB

σ
L1(G)(L∞(G)) ≅ CBL1(G)(C0(G)).

It is known that Mr
cb(L1(G)) is a dual operator space [21,_eorem 3.5], with pred-

ualQ r
cb(L1(G)). WhenG = Gs is co-commutative, Haagerup andKraus gave a repre-

sentation for elements ofQcb(L1(Gs)) = Qcb(A(G)) as ΩA,ρ for A ∈ C∗λ(G)⊗minK∞
and ρ ∈ A(G)⊗̂T∞ [18, Proposition 1.5], where ⟨φ, ΩA,ρ⟩ = ⟨(Θr(φ)⊗ idK∞)(A), ρ⟩,
for φ ∈ McbA(G); C∗λ(G) is the reduced C∗-algebra of G; the spaces K∞ and T∞
denote the compact and trace-class operators on a countably inûnite-dimensional
Hilbert space, respectively, and ⊗min denotes the minimum tensor product of C∗-al-
gebras. _is was later generalized to the setting of Kac alegbras by Kraus and Ruan
[26, _eorem 3.3]. Relying upon the general result [18, Lemma 1.6], their argument
readily extends to arbitrary locally compact quantum groups.

Proposition 3.2 Let G be a locally compact quantum group. _en

Q r
cb(L1(G)) = {ΩA,ρ ∣ A ∈ C0(G) ⊗min K∞ , ρ ∈ L1(G) ⊗̂ T∞},

where ⟨b̂′ , ΩA,ρ⟩ = ⟨(Θr(b̂′) ⊗ idK∞)(A), ρ⟩, b̂′ ∈ Mr
cb(L1(G)).

4 T(L2(G)) ↷ B(L2(G))

Let G be a locally compact quantum group. _e right fundamental unitary V of G
induces a co-associative co-multiplication

Γr ∶B(L2(G)) ∋ T ↦ V(T ⊗ 1)V∗ ∈ B(L2(G)) ⊗B(L2(G)),
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and the restriction of Γr to L∞(G) yields the original co-multiplication Γ on L∞(G).
_e pre-adjoint of Γr induces an associative completely contractive multiplication on
the space of trace-class operators T(L2(G)), deûned by

⊳∶T(L2(G)) ⊗̂ T(L2(G)) ∋ ω ⊗ τ ↦ ω ⊳ τ = Γr
∗
(ω ⊗ τ) ∈ T(L2(G)).

Since Γr is a complete isometry, it follows that Γr
∗
is a complete quotient map, so we

have

(4.1) T(L2(G)) = ⟨T(L2(G)) ⊳ T(L2(G))⟩.

Analogously, the le� fundamental unitaryW ofG induces a co-associative co-multi-
plication Γ l ∶B(L2(G)) ∋ T ↦ W∗(1 ⊗ T)W ∈ B(L2(G)) ⊗ B(L2(G)), and the
restriction of Γ l to L∞(G) is also equal to Γ. _e pre-adjoint of Γ l induces another
associative completely contractive multiplication

⊲∶T(L2(G)) ⊗̂ T(L2(G)) ∋ ω ⊗ τ ↦ ω ⊲ τ = Γ l
∗
(ω ⊗ τ) ∈ T(L2(G)).

It was shown in [21, Lemma 5.2] that the pre-annihilator L∞(G)⊥ of L∞(G) in
T(L2(G)) is a norm closed two-sided ideal in (T(L2(G)), ⊳) and (T(L2(G)), ⊲),
respectively, and the complete quotient map

π∶T(L2(G)) ∋ ω ↦ f = ω∣L∞(G) ∈ L1(G)

is an algebra homomorphism from (T(L2(G)), ⊳), respectively, (T(L2(G)), ⊲), onto
L1(G).
By [28, Proposition 2.1] the unitary antipode R satisûes R(x) = Ĵx∗ Ĵ, for x ∈

L∞(G), where Ĵ is the modular conjugation associated to the dual le� Haar weight φ̂.
It therefore extends to a *-anti-automorphism (still denoted)

R∶B(L2(G)) → B(L2(G)),

via R(T) = ĴT∗ Ĵ, T ∈ B(L2(G)). _e extended antipode maps L∞(G) and L∞(Ĝ)
onto L∞(G) and L∞(Ĝ′), respectively, and satisûes the generalized antipode rela-
tions, i.e.,

(4.2) (R ⊗ R) ○ Γr = Σ ○ Γ l ○ R and (R ⊗ R) ○ Γ l = Σ ○ Γr ○ R,

where Σ is the �ip map on B(L2(G)) ⊗ B(L2(G)). At the level of T(L2(G)), the
relations (4.2) mean

R∗(ω ⊳ τ) = R∗(τ) ⊲ R∗(ω) and R∗(ω ⊲ τ) = R∗(τ) ⊳ R∗(ω)

for all ω, τ ∈ T(L2(G)). We may therefore pass between the le� and right products
using R, and as a result, we will o�en focus on the right product ⊳ throughout the
article.

Since L2(G) ≅ L2(Ĝ) for any locally compact quantum group G, applying the
above construction to the co-multiplication Γ̂ on L∞(Ĝ) yields two dual products

⊳̂∶T(L2(G)) ⊗̂ T(L2(G)) ∋ ω ⊗ τ ↦ ω ⊳̂ τ = Γ̂r
∗
(ω ⊗ τ) ∈ T(L2(G)),

⊲̂∶T(L2(G)) ⊗̂ T(L2(G)) ∋ ω ⊗ τ ↦ ω ⊲̂ τ = Γ̂ l
∗
(ω ⊗ τ) ∈ T(L2(G)).
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_is li�ing of quantumgroup convolution toT(L2(G)) allows one to study properties
of G and Ĝ, as well as their interactions on a single space. One such interaction was
obtained in [25], and states that the dual products anti-commute.

_eorem 4.1 ([25, _eorem 3.3]) Let G be a locally compact quantum group. _en
for every ρ,ω, τ ∈ T(L2(G)) we have

(4.3) (ρ ⊳ ω) ⊳̂ τ = (ρ ⊳̂ τ) ⊳ ω.

Equation (4.3) has an important consequence (Proposition 4.2) that will be used
in the proof of the main result.
For a locally compact quantum group G, the multiplications ⊳ and ⊲ deûne op-

erator T(L2(G))-bimodule structures on B(L2(G)) such that for x ∈ L∞(G) and
f = ω∣L∞(G) with ω ∈ T(L2(G)), we have

x ⊳ ω = x ⊲ ω = x ⋆ f and ω ⊲ x = ω ⊳ x = f ⋆ x .

_e bimodule actions of (T(L2(G)), ⊳) and (T(L2(G)), ⊲) onB(L2(G)) are there-
fore li�ings of the usual bimodule action of L1(G) on L∞(G). For details on these
bimodules we refer the reader to [7,21]. In what follows we denote the algebra of com-
pletely bounded right (T(L2(G)), ⊳)-module (respectively, le� (T(L2(G)), ⊳̂)-mod-
ule) maps by CBT⊳(B(L2(G))) (respectively, T⊳̂CB(B(L2(G)))).

In [21, Remark 7.4], the authors observed that for co-amenableG we have

CBT⊳(B(L2(G))) ⊆ CB
L∞(G)
L∞(Ĝ)

(B(L2(G))),

where the right-hand side is the algebra of completely bounded L∞(Ĝ)-bimodule
maps on B(L2(G)) that leave L∞(G) globally invariant. As a corollary to the com-
mutation relation (4.3), we can remove the co-amenability hypothesis in the above
inclusion using the following “automatic” module property.

Proposition 4.2 Let G be a locally compact quantum group. _en

CBT⊳(B(L2(G))) ⊆ T⊳̂CB(B(L2(G))).

Proof Let Φ ∈ CBT⊳(B(L2(G))), and ûx ρ ∈ T(L2(G)) and T ∈ B(L2(G)). _en
for any ω, τ ∈ T(L2(G)), we have

⟨(ρ ⊳̂ T) ⊳ τ,ω⟩ = ⟨ρ ⊳̂ T , τ ⊳ ω⟩ = ⟨T , (τ ⊳ ω) ⊳̂ ρ⟩
= ⟨T , (τ ⊳̂ ρ) ⊳ ω⟩ = ⟨T ⊳ (τ ⊳̂ ρ),ω⟩.

_us,

⟨Φ(ρ ⊳̂ T), τ ⊳ ω⟩ = ⟨Φ(ρ ⊳̂ T) ⊳ τ,ω⟩ = ⟨Φ((ρ ⊳̂ T) ⊳ τ),ω⟩
= ⟨Φ(T ⊳ (τ ⊳̂ ρ)),ω⟩ = ⟨Φ(T) ⊳ (τ ⊳̂ ρ),ω⟩
= ⟨Φ(T), (τ ⊳̂ ρ) ⊳ ω⟩ = ⟨Φ(T), (τ ⊳ ω) ⊳̂ ρ⟩
= ⟨ρ ⊳̂Φ(T), τ ⊳ ω⟩.

By (4.1) it follows that Φ(ρ ⊳̂ T) = ρ ⊳̂Φ(T), as required.
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Corollary 4.3 For any locally compact quantum group G, we have

CBT⊳(B(L2(G))) ⊆ CB
L∞(G)
L∞(Ĝ)

(B(L2(G))).

Proof Let Φ ∈ CBT⊳(B(L2(G))), and x̂ , ŷ ∈ L∞(Ĝ). _en for any ρ ∈ T(L2(G))
and T ∈ B(L2(G)) we have

(x̂T ŷ) ⊳ ρ = (ρ ⊗ id)V(x̂T ŷ ⊗ 1)V∗ = (ρ ⊗ id)((x̂ ⊗ 1)V(T ⊗ 1)V∗( ŷ ⊗ 1))
= ( ŷ ⋅ ρ ⋅ x̂ ⊗ id)V(T ⊗ 1)V∗ = T ⊳ ( ŷ ⋅ ρ ⋅ x̂).

_us, for any ω ∈ T(L2(G)) we obtain
⟨Φ(x̂T ŷ), ρ ⊳ ω⟩ = ⟨Φ(x̂T ŷ) ⊳ ρ,ω⟩ = ⟨Φ((x̂T ŷ) ⊳ ρ),ω⟩

= ⟨Φ(T ⊳ ( ŷ ⋅ ρ ⋅ x̂)),ω⟩ = ⟨Φ(T) ⊳ ( ŷ ⋅ ρ ⋅ x̂),ω⟩
= ⟨(x̂Φ(T) ŷ) ⊳ ρ,ω⟩ = ⟨x̂Φ(T) ŷ, ρ ⊳ ω⟩.

Again by (4.1), it follows that Φ is an L∞(Ĝ)-bimodule map on B(L2(G)).
By Proposition 4.2 Φ ∈T⊳̂ CB(B(L2(G))), and since V̂ ∈ L∞(G)′ ⊗ L∞(Ĝ), for

any x ∈ L∞(G) and ρ ∈ T(L2(G)) we have
(id⊗ρ)V̂(Φ(x) ⊗ 1)V̂∗ = ρ ⊳̂Φ(x) = Φ(ρ ⊳̂ x) = ⟨ρ, 1⟩Φ(x) = (id⊗ρ)(Φ(x) ⊗ 1).

It follows that V̂(Φ(x)⊗1)V̂∗ = Φ(x)⊗1, which implies that ρ̂( f̂ )Φ(x) = Φ(x)ρ̂( f̂ )
for every f̂ ∈ L1(Ĝ). Since ρ̂(L1(Ĝ)) is weak* dense in L∞(G)′, we have Φ(x) ∈
L∞(G)′′ = L∞(G). _us, Φ leaves L∞(G) globally invariant, and the claim follows.

In [7], we studied the existence of conditional expectations

E∶B(L2(G)) → L∞(Ĝ)
commuting with the four T(L2(G))-module structures on B(L2(G)) arising from
G. We now complete this picture by studying the four remaining T(L2(G))-module
structures on B(L2(G)) arising from Ĝ. We denote by

T⊲̂CB(B(L2(G))) and CBT⊲̂(B(L2(G)))
the algebra of completely bounded le� and right (T(L2(G)), ⊲̂)-module maps on
B(L2(G)), respectively, and similarly for (T(L2(G)), ⊳̂).

Proposition 4.4 LetG be a locally compact quantum group. _ere exists a conditional
expectation E∶B(L2(G)) → L∞(Ĝ) in CBT⊳̂(B(L2(G))) if and only ifG = C1.

Proof For any T ∈ B(L2(G)) and ρ ∈ T(L2(G)), we have T ⊳̂ ρ ∈ L∞(Ĝ), so if
such a conditional expectation E exists, then T ⊳̂ ρ = E(T ⊳̂ ρ) = E(T) ⊳̂ ρ. By density
of products (4.1), it follows that E(T) = T . In particular B(L2(G)) ⊆ L∞(Ĝ), which
entails that G = Ĝ = C1. _e converse is trivial.

Proposition 4.5 LetG be a locally compact quantum group. _ere exists a conditional
expectation E∶B(L2(G)) → L∞(Ĝ) in T⊲̂CB(B(L2(G))) if and only ifG = C1.
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Proof Using the extended unitary antipode of Ĝ, denoted by R̂, it follows that R̂ ○
E ○ R̂ is a conditional expectation onto L∞(Ĝ) in CBT⊳̂(B(L2(G))), so the result
follows from Proposition 4.4.

Proposition 4.6 LetG be a locally compact quantum group. _ere exists a conditional
expectation E∶B(L2(G)) → L∞(Ĝ) in T⊳̂CB(B(L2(G))) if and only ifG is amenable.

Proof If G is amenable, then by [7, _eorem 4.2] there exists a conditional expec-
tation onto L∞(Ĝ) in CBT⊳(B(L2(G))), which, thanks to Proposition 4.2, lies in
T⊳̂CB(B(L2(G))).

On the other hand, if there exists such a conditional expectation E, then for any
x ∈ L∞(G) and ρ ∈ T(L2(G)) we have ρ ⊳̂ E(x) = E(ρ ⊳̂ x) = ⟨ρ, 1⟩E(x). As in
the proof of Corollary 4.3, this implies E(x) ∈ L∞(G) ∩ L∞(Ĝ) = C1. Hence, G is
amenable by [36, _eorem 3].

Proposition 4.7 LetG be a locally compact quantum group. _ere exists a conditional
expectation E∶B(L2(G)) → L∞(Ĝ) inCBT⊲̂(B(L2(G))) if and only ifG is amenable.

Proof _is follows from Proposition 4.6 using the extended unitary antipode R̂.

We record the normal version of Proposition 4.7 for later use. _e proof is le� to
the reader.

Proposition 4.8 Let G be a locally compact quantum group. _ere exists a normal
conditional expectation E∶B(L2(G)) → L∞(Ĝ) in CBT⊲̂(B(L2(G))) if and only ifG
is compact.

5 Main Result and Applications

We are now in position to prove the main result of the paper: the equivalence of
amenability of Ĝ and 1-injectivity of L∞(G) as an operator L1(G)-module. _e theo-
remalso reveals a duality between the le� and right (T(L2(G)), ⊳)-module structures
onB(L2(G)): amenability ofG is captured by le� injectivity ofB(L2(G)) [7, _eo-
rem 5.5], while amenability of Ĝ is captured by right injectivity ofB(L2(G)).

_eorem 5.1 Let G be a locally compact quantum group. _e following conditions
are equivalent:

(i) Ĝ is amenable;
(ii) B(L2(G)) is 1-injective in mod-(T(L2(G)), ⊳);
(iii) L∞(G) is 1-injective in mod-L1(G).

Proof (i)⇒ (ii). By [7, Proposition 5.8] amenability of Ĝ implies that B(L2(G)) is
relatively 1-injective inmod-(T(L2(G)), ⊳). SinceB(L2(G)) is a 1-injective operator
space, the implication follows from Proposition 2.3.

(ii)⇒ (iii). IfB(L2(G)) is 1-injective inmod-(T(L2(G)), ⊳), there exists a com-
pletely contractive morphismΦ∶B(L2(G))⊗B(L2(G)) → B(L2(G))which is a le�
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inverse to Γr , where the pertinent right (T(L2(G)), ⊳)-module structure on

B(L2(G)) ⊗B(L2(G))
is deûned by

X ▶ ρ = (ρ ⊗ id⊗ id)(Γr ⊗ id)(X), X ∈ B(L2(G)) ⊗B(L2(G)), ρ ∈ T(L2(G)).
By the proof of Proposition 4.2 it follows that Φ(ρ ▶̂ X) = ρ ⊳̂Φ(X), where the le�
module action ▶̂ is given by

ρ ▶̂ X = (id⊗ρ ⊗ id)(Γ̂r ⊗ id)(X), X ∈ B(L2(G)) ⊗B(L2(G)), ρ ∈ T(L2(G)).
Furthermore, the proof of Corollary 4.3 entails the invariance

Φ(L∞(G) ⊗B(L2(G))) ⊆ L∞(G).
Since Γ l ∶B(L2(G)) → L∞(G) ⊗B(L2(G)), the composition Φ ○ Γ l therefore maps
into L∞(G). Moreover, if x ∈ L∞(G), then Φ○Γ l(x) = Φ○Γr(x) = x, so that Φ○Γ l is
a projection of norm one fromB(L2(G)) onto L∞(G). _us, L∞(G) is a 1-injective
operator space.

Next consider the map Ψ = Φ∣L∞(G)⊗L∞(G)∶ L∞(G) ⊗ L∞(G) → L∞(G). Since
the right (T(L2(G)), ⊳)-module action onB(L2(G)) restricts to the canonical right
L1(G)-module action on L∞(G), it follows that Ψ is a completely contractive right
L1(G)-module map such that Ψ ○ Γ = idL∞(G). Under the completely isometric iden-
tiûcation L∞(G) ⊗ L∞(G) ≅ CB(L1(G), L∞(G)), Γ = ∆, and since L∞(G) is faith-
ful in mod-L1(G), the existence of Ψ entails the relative 1-injectivity of L∞(G) in
mod-L1(G). By Proposition 2.3, L∞(G) is 1-injective in mod-L1(G).

(3) ⇒ (1). Viewing B(L2(G)) as a right operator L1(G)-module via

T ⊲ f = ( f ⊗ id)Γ l(T) = ( f ⊗ id)W∗(1⊗ T)W , f ∈ L1(G), T ∈ B(L2(G)),
1-injectivity of L∞(G) in mod-L1(G) gives an extension of idL∞(G) to a completely
contractive morphism E∶B(L2(G)) → L∞(G). Proposition 4.7 then entails the
amenability of Ĝ.

Analogously, there is a le�module version of_eorem5.1 involving the le� product
⊲ (which relies on the corresponding le� (T(L2(G)), ⊲)-module version of [7, Propo-
sition 5.8]). _e proof follows similarly.

_eorem 5.2 Let G be a locally compact quantum group. _e following conditions
are equivalent:
(i) Ĝ is amenable;
(ii) B(L2(G)) is 1-injective in (T(L2(G)), ⊲)-mod;
(iii) L∞(G) is 1-injective in L1(G)-mod.

In the co-commutative setting, we obtain a new characterization of amenable lo-
cally compact groups.

Corollary 5.3 Let G be a locally compact group. _e following conditions are equiv-
alent:
(i) G is amenable;
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(ii) VN(G) is 1-injective in mod-A(G);
(iii) VN(G) is 1-injective in A(G)-mod.

Remark 5.4 Corollary 5.3 highlights the signiûcance of the non-relative homology
of VN(G) as an operator A(G)-module. In fact, relative 1-injectivity of VN(G) in
mod-A(G) is equivalent to inner amenability of G [8, _eorem 3.4]. Related results
at the level of quantum groups will appear in subsequent work.

In [17] Haagerup provided an elegant characterization of injective von Neumann
algebras via decomposability of completely bounded maps. More speciûcally, a von
Neumann algebraM is injective if and only if CB(M) = spanCP(M), where CP(M)
is the set of completely positive maps Φ∶M → M. _e next result provides a simi-
lar decomposition for L1(G)-module maps on L∞(G) when L∞(G) is 1-injective in
mod-L1(G).

Proposition 5.5 Let G be a locally compact quantum group. If L∞(G) is 1-injective
in mod-L1(G) (equivalently, Ĝ is amenable), then

CBL1(G)(L∞(G)) = spanCPL1(G)(L∞(G)).

Proof Viewing Mn(L∞(G)) as an operator L1(G)-module under the ampliûed ac-
tion: [x i j] ⋆ f = [x i j ⋆ f ], for [x i j] ∈ Mn(L∞(G)), f ∈ L1(G), we claim that
Mn(L∞(G)) is 1-injective in mod-L1(G) for any n ∈ N. Indeed, the canonical mor-
phism

∆n ∶Mn(L∞(G)) → CB(L1(G),Mn(L∞(G))) = Mn(CB(L1(G), L∞(G)))

is nothing but the n-th ampliûcation of ∆∶ L∞(G) → CB(L1(G), L∞(G)), so the n-
th ampliûcation of a completely contractive module le� inverse of ∆ (which exists by
1-injectivity of L∞(G)) provides a completely contractive module le� inverse to ∆n .
SinceMn(L∞(G)) is 1-injective inmod-C [39, Proposition XV.3.2], the claim follows
from Proposition 2.3.

Now let Φ ∈ CBL1(G)(L∞(G)) be a complete contraction, and consider the Paul-
sen system S ⊆ M2(L∞(G)) deûned by

S = { (α1 x
y β1) ∣ x , y ∈ L∞(G), α, β ∈ C} .

_en S is an L1(G)-submodule ofM2(L∞(G)) andΦ gives rise to a unital completely
positive L1(G)-module map ΦS∶S→ M2(L∞(G)) via oò-diagonalization [32]:

ΦS ((α1 x
y β1)) = ( α1 Φ(x)

Φ∗(y) β1 ) , (α1 x
y β1) ∈ S,

where Φ∗(y) = Φ(y∗)∗, y ∈ L∞(G). By 1-injectivity ofM2(L∞(G)) inmod-L1(G),
the map ΦS extends to a completely contractive L1(G)-module map

Φ̃∶M2(L∞(G)) → M2(L∞(G))
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such that

Φ̃((1 0
0 1)) = (1 0

0 1) .

Hence, Φ̃ is completely positive and is of the form

Φ̃((x11 x12
x21 x22

)) = (Ψ1(x11) Φ(x12)
Φ∗(x21) Ψ2(x22)

) , [x i j] ∈ M2(L∞(G)),

where Ψi ∈ CPL1(G)(L∞(G)) is associated to Pi i ○ Φ̃ ○ Pi i , and

Pi i ∈ CPL1(G)(M2(L∞(G)))
is the diagonal projection onto the (i , i)-th entry for i = 1, 2. By [15, Proposition
5.4.2], it follows that the map

Φ̃∣L∞(G)∶ L∞(G) ∋ x ↦ (Ψ1(x) Φ(x)
Φ∗(x) Ψ2(x)

) ∈ M2(L∞(G))

is a completely positive L1(G)-module map. _us, via polarization (as in [15, Propo-
sition 5.4.1]), it follows that Φ ∈ spanCPL1(G)(L∞(G)).

Remark 5.6 As the proof of Proposition 5.5 shows, when L∞(G) is 1-injective in
mod-L1(G) we can decompose any Φ ∈ CBL1(G)(L∞(G)) into a linear combination
of four completely positive L1(G)-module maps.

For a locally compact groupG, it is well known that B(G) = McbA(G)wheneverG
is amenable [12, Corollary 1.8]. Using Proposition 5.5 together with [11,_eorem 5.2],
we can now generalize this implication to arbitrary locally compact quantum groups.

Lemma 5.7 LetG be a locally compact quantum group. _en there exists a completely
contractive projection

Pσ ∶CBL1(G)(L∞(G)) → CB
σ
L1(G)(L∞(G))

mapping CPL1(G)(L∞(G)) onto CPσ
L1(G)(L∞(G)).

Proof First we claim that CBL1(G)(C0(G), L∞(G)) = CBL1(G)(C0(G)). One in-
clusion is obvious, so let Φ ∈ CBL1(G)(C0(G), L∞(G)). _en the restriction of its
adjoint Φ∗∣L1(G) ∈ L1(G)CB(L1(G),M(G)) = L1(G)CB(L1(G)), noting that L1(G) =
⟨L1(G)⋆L1(G)⟩ is a closed ideal inM(G). Hence, (Φ∗∣L1(G))∗ ∈ CBσ

L1(G)(L∞(G)) =
CBL1(G)(C0(G)) by [23, Proposition 4.1]. But

⟨(Φ∗∣L1(G))∗(x), f ⟩ = ⟨x , Φ∗∣L1(G)( f )⟩ = ⟨x , Φ∗( f )⟩ = ⟨Φ(x), f ⟩
for all x ∈ C0(G) and f ∈ L1(G), so (Φ∗∣L1(G))∗ is an extension of Φ which leaves
C0(G) invariant, hence so, too, does Φ.

Letting I denote the complete isometry

CBL1(G)(C0(G)) ∋ Φ ↦ (Φ∗∣L1(G))∗ ∈ CBσ
L1(G)(L∞(G))

and R∶CBL1(G)(L∞(G)) → CBL1(G)(C0(G), L∞(G)) the completely contractive
restriction map, it follows that Pσ ∶ = I ○ R∶CBL1(G)(L∞(G)) → CB

σ
L1(G)(L∞(G))
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is a completely contractive projection onto CB
σ
L1(G)(L∞(G)). Moreover, Pσ maps

CPL1(G)(L∞(G)) onto CP
σ
L1(G)(L∞(G)).

_e observations in the proof of Lemma 5.7 lead to the following new characteri-
zation of the predual of Mr

cb(L1(G)).

Proposition 5.8 Let G be a locally compact quantum group. _en

Q r
cb(L1(G)) ≅ C0(G) ⊗̂L1(G) L1(G)

completely isometrically.

Proof As noted in the proof of Lemma 5.7, we have

CBL1(G)(C0(G)) = CBL1(G)(C0(G), L∞(G)).

_us, Θr ∶Mr
cb(L1(G)) ≅ CBL1(G)(C0(G), L∞(G)) completely isometrically ([23,

Proposition 4.1]). We need to show that Θr is a weak*-weak* homeomorphism. Since
CBL1(G)(C0(G), L∞(G)) ≅ (C0(G) ⊗̂L1(G) L1(G))∗ weak* homeomorphically, and
Θr is a completely isometric isomorphism, it suõces to show that Θr is weak* con-
tinuous on bounded sets (see [10, Lemma 10.1]). Let (b̂′i)i∈I be a bounded net in
Mr
cb(L1(G)) converging weak* to b̂′. By Proposition 3.2, for any A ∈ C0(G)⊗min K∞

and ρ ∈ L1(G) ⊗̂ T∞ we have ΩA,ρ ∈ Q r
cb(L1(G)), where

⟨â′ , ΩA,ρ⟩ = ⟨(Θr(â′) ⊗ idK∞)(A), ρ⟩, â′ ∈ Mr
cb(L1(G)).

_en (Θr(b̂′i))i∈I converges point weak* to Θr(b̂′) in CB(C0(G), L∞(G)). Letting

q∶C0(G) ⊗̂ L1(G) ↠ C0(G) ⊗̂L1(G) L1(G)

be the quotient map, and viewing Θr(b̂′i) ∈ (C0(G) ⊗̂L1(G) L1(G))∗, the density
of the image q(C0(G) ⊗ L1(G)) of the algebraic tensor product C0(G) ⊗ L1(G)
in C0(G) ⊗̂L1(G) L1(G), together with the boundedness of (Θr(b̂′i))i∈I imply that
(Θr(b̂′i))i∈I converges weak* to Θr(b̂′) in (C0(G) ⊗̂L1(G) L1(G))∗.

Remark 5.9 _e identiûcation ofQ r
cb(L1(G)) in Proposition 5.8 is new even in the

co-commutative case, that is, for any locally compact group G we have

Qcb(G) ≅ C∗λ(G) ⊗̂A(G) A(G)
completely isometrically.

Proposition 5.10 Let G be a locally compact quantum group. If Ĝ is amenable, then
ρ̃∶Cu(G)∗ → Mr

cb(L1(G)) is surjective.

Proof Since Ĝ is amenable, CBL1(G)(L∞(G)) = spanCPL1(G)(L∞(G)) by Propo-
sition 5.5. So given Φ ∈ CB

σ
L1(G)(L∞(G)), there exist Φ i ∈ CPL1(G)(L∞(G)) for

i = 1, . . . , 4 such that Φ = 1
4 (Φ1 −Φ2 + i(Φ3 −Φ4)). But then, by Lemma 5.7

Φ = Pσ(Φ) = 1
4
(Pσ(Φ1) −Pσ(Φ2) + i(Pσ(Φ3) −Pσ(Φ4))) ,
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and it follows that CBσ
L1(G)(L∞(G)) = spanCPσ

L1(G)(L∞(G)). By [11, _eorem 5.2],
spanCPσ

L1(G)(L∞(G)) = Θr(ρ̃(Cu(G)∗)). It follows that

ρ̃(Cu(G)∗) = Mr
cb(L1(G)).

Remark 5.11 A natural question is whether amenability of Ĝ implies that ρ̃ is a
weak*-weak* homeomorphic completely isometric isomorphism. _is and similar
questions will be pursued elsewhere.

For our ûnal application, we now give a simpliûed proof of the fact that amenability
of a discrete quantum group implies co-amenability of its compact dual.

_eorem 5.12 A compact quantum groupG is co-amenable if and only if Ĝ is amen-
able.

Proof Co-amenability of G always implies amenability of Ĝ [1, _eorem 3.2] So
assume that Ĝ is amenable. By _eorem 5.1 we know that L∞(G) is 1-injective in
mod-L1(G). Let Φ∶ L∞(G) ⊗ L∞(G) → L∞(G) be a completely contractive le�
inverse to Γ which is a right L1(G)-module map. As a unital complete contraction,
Φ is completely positive and Φ∣C(G)⊗minC(G) /= 0 since C(G) is unital. By [1, _eo-
rem 3.3] we also know that C(G) is nuclear, so let (Ψa)a∈A be a net of ûnite-rank,
unital completely positive maps converging to idC(G) in the point-norm topology.
For a ∈ A, consider the unital completely positive map Φa ∶C(G) → L∞(G) given by

Φa = Φ ○ (id⊗Ψa) ○ Γ∣C(G) .

Since Ψa is ûnite rank, there exist xa1 , . . . , x
a
na ∈ C(G) and µa1 , . . . , µ

a
na ∈ M(G)

such that Ψa(x) = ∑na
n=1⟨µan , x⟩xan , for x ∈ C(G), a ∈ A. For each a ∈ A, and

1 ≤ n ≤ na , let Φ(a ,n)∶C(G) → L∞(G) be deûned by Φ(a ,n)(x) = Φ(x ⊗ xan), for x ∈
C(G). _en Φ(a ,n) is completely bounded with ∥Φ(a ,n)∥cb ≤ ∥xan∥C(G), and is a right
L1(G)-modulemap. Hence, Φ(a ,n) ∈ CBL1(G)(C(G), L∞(G)) = Θr(Mr

cb(L1(G))) .
Since Mr

cb(L1(G)) = ρ̃(Cu(G)∗) by Proposition 5.10, there exist νan ∈ Cu(G)∗ such
that Φ(a ,n) = Θr(νan), where Θr(νan) denotes the map Θr(ρ̃(νan)) for simplicity.

Let x ∈ C(G). _en

Φa(x) = Φ((id⊗Ψa)(Γ(x))) =
na
∑
n=1

Φ(((id⊗µan)Γ(x)) ⊗ xan)

=
na
∑
n=1

Φ(a ,n)(((id⊗µan)Γ(x))) =
na
∑
n=1

Θr(νan)(Θr(µan)(x))

=
na
∑
n=1

Θr(νan ⋆ µan)(x) = Θr(
na
∑
n=1

νan ⋆ µan)(x).

Letting µa = ∑na
n=1 ν

a
n ⋆ µan , we obtain Φa = Θr(µa). _en µa ∈ M(G) as M(G) is a

two-sided ideal in Cu(G)∗, and since Θr ∣Cu(G)∗+ ∶Cu(G)∗
+
→ CP

σ
L1(G)(L∞(G)) is an

isometric order bijection [11, _eorem 5.2], we have µa ∈ M(G)+ and

∥µa∥M(G) = ∥Θr(µa)∥cb = ∥Φa∥cb = 1, a ∈ A.
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Convergence of Φa to idC(G) in the point-norm topology entails

µa ⋆ x = Θr(µa)(x) → x , x ∈ C(G).

Let µ be a weak* cluster point of (µa)a∈A in the unit ball of M(G) = C(G)∗. _en µ
is a right identity ofM(G). _e restricted unitary antipode R maps C(G) into C(G)
and satisûes R∗(µ ⋆ ν) = R∗(ν) ⋆ R∗(µ) for all ν ∈ M(G). Hence, R∗(µ) is a le�
identity ofM(G). It follows that ε ∶= µ +R∗(µ)− µ ⋆R∗(µ) is an identity for M(G).
Hence,G is co-amenable by [1, _eorem 3.1].

Given a completely contractive Banach algebra A with a contractive approximate
identity, any essential module X ∈ mod-A is induced by [10, Proposition 6.4]. Since
a locally compact quantum group G is co-amenable if and only if L1(G) has a con-
tractive approximate identity [20,_eorem 2], the next proposition supports the idea
that ourmethodsmay be applicable to the general duality problem of amenability and
co-amenability.

Proposition 5.13 Let G be a locally compact quantum group for which the dual Ĝ is
amenable. _en for any closed right ideal I ⊴ L1(G), the multiplication map yields a
completely isometric isomorphism m̃I ∶ I ⊗̂L1(G) L1(G) ≅ ⟨I ⋆ L1(G)⟩. In particular, if I
is essential, then I ⊗̂L1(G) L1(G) ≅ I, that is, I is an induced L1(G)-module.

Proof First observe that for any self-induced completely contractive Banach algebra
A and any closed right ideal J ⊴ A, the map mA/J ∶ (A/J) ⊗̂A → A/⟨J ⋅A⟩ induces
a completely isometric isomorphism m̃A/J ∶ (A/J) ⊗̂A A ≅ A/⟨J ⋅A⟩. Indeed, letting
q∶A↠ A/J be the complete quotient map and identifying

(A/⟨J ⋅A⟩)∗ = ⟨J ⋅A⟩⊥ ⊆ A∗ ,

it follows that (q ⊗ id)∗ ○ (m̃A/J)∗∶ ⟨J ⋅A⟩⊥ → (A ⊗̂A A)∗ is equal to (m̃A)∗∣⟨J⋅A⟩⊥ .
In particular, (m̃A/J)∗ is a complete isometry. If X ∈ (NA/J)⊥, then (q ⊗ id)∗(X) ∈
(NA)⊥. So there exists F ∈ A∗ such that (q ⊗ id)∗(X) = (m̃A)∗(F) as A is self-
induced. Clearly, F ∈ ⟨J ⋅A⟩⊥, so (q ⊗ id)∗(X) = (q ⊗ id)∗ ○ (m̃A/J)∗(F), implying
X = (m̃A/J)∗(F), whence (m̃A/J)∗ is surjective.

Since Ĝ is amenable, by _eorem 5.1 L∞(G) is 1-injective in mod-L1(G). _en
for every 1-exact sequence of right A-modules 0 → Y ↪ Z ↠ Z/Y → 0, the induced
sequence

0→ CBL1(G)(Z/Y , L∞(G)) ↪ CBL1(G)(Z , L∞(G)) ↠ CBL1(G)(Y , L∞(G)) → 0

is 1-exact, where 1-exactness refers to an exact sequence of morphisms such that the
injection (↪) is a complete isometry and the surjection (↠) is a complete quotient
map. Taking the pre-adjoint of the above sequence, we obtain the 1-exact sequence

0→ Y ⊗̂L1(G) L1(G) ↪ Z ⊗̂L1(G) L1(G) ↠ Z/Y ⊗̂L1(G) L1(G) → 0.
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In particular, take Y = I and Z = L1(G), and consier the commutative diagram:

I ⊗̂L1(G) L1(G) L1(G) ⊗̂L1(G) L1(G) (L1(G)/I) ⊗̂L1(G) L1(G)

⟨I ⋆ L1(G)⟩ L1(G) L1(G)/⟨I ⋆ L1(G)⟩

m̃I m̃L1(G) m̃
(L1(G)/I)

As L1(G) is self-induced, the last two columns are completely isometric isomorph-
isms, and since both rows are 1-exact, it follows that m̃I ∶ I ⊗̂L1(G) L1(G) ≅ ⟨I ⋆L1(G)⟩
completely isometrically.

A locally compact quantum groupG is said to be regular (see [22, §3], for instance)
ifK(L2(G)) = ⟨(id⊗ω)(σV) ∣ ω ∈ T(L2(G))⟩, whereK(L2(G)) denotes the ideal
of compact operators on L2(G), σ denotes the �ip map on L2(G) ⊗ L2(G), and,
as usual, ⟨ ⋅ ⟩ denotes the closed linear span. Examples of regular quantum groups in-
clude Kac algebras, as well as discrete and compact quantum groups (see [22]). Under
the assumption of regularity, we now obtain a version of _eorem 5.1 at the predual
level.

_eorem 5.14 Let G be a locally compact quantum group. Consider the following
conditions:
(i) Ĝ is compact (equivalently,G is discrete);
(ii) T(L2(G)) is relatively 1-projective in (T(L2(G)), ⊳)-mod;
(iii) L1(G) is 1-projective in L1(G)-mod.
_en (i)⇔(ii)⇒ (iii), and when G is regular, the conditions are equivalent.

Proof _e implication (i) ⇒ (ii) follows by an argument similar to the proof of
[7, Proposition 5.8] using a normal two-sided invariant mean m̂′ on L∞(Ĝ′), which
exists by compactness.

(ii)⇒ (i). Condition (ii) yields a normal completely contractive morphism

Φ∶B(L2(G)) ⊗B(L2(G)) → B(L2(G))

that is a right inverse to Γr . As in the proof of _eorem 5.1, it follows that

Φ(L∞(G) ⊗B(L2(G))) ⊆ L∞(G).

Hence, (Φ∣L∞(G)⊗L∞(G))∗∶ L1(G) → L1(G) ⊗̂ L1(G) is a completely contractive le�
L1(G)-module right inverse to the multiplication mL1(G)∶ L1(G) ⊗̂ L1(G) → L1(G),
and L1(G) is relatively 1-projective in L1(G)-mod. Moreover,

Φ ○ Γ l ∶B(L2(G)) → L∞(G)

is a normal conditional expectation, so the quotient map π∶T(L2(G)) ↠ L1(G) is
an admissible surjection. Viewing B(L2(G)) as a right L1(G)-module under the
⊲-action, and considering the associated le� L1(G)-module structure on T(L2(G)),
the relative 1-projectivity of L∞(G) yields a completely contractive morphism

Ψ∶ L1(G) → T(L2(G))
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satisfying π ○ Ψ = idL1(G). _en Ψ∗∶B(L2(G)) → L∞(G) is a normal condition
expectation that is a right L1(G)-module map, and Ĝ is compact by Proposition 4.8.

(ii)⇒ (iii). By the above we know that Ĝ is compact and L1(G) is relatively 1-pro-
jective in L1(G)-mod. By discreteness ofG we have

L1(G) ≅ ⊕
1
{Tnα(C) ∣ α ∈ Irr(Ĝ)},

where Tnα(C) is the space of nα × nα trace-class operators. Hence, L1(G) is 1-pro-
jective in C-mod by [2, Proposition 3.6, Proposition 3.7]. _e le� version of Propo-
sition 2.2 then entails the 1-projectivity of L1(G) in L1(G)-mod.

Now suppose that G is regular. Considering again the right L1(G)-module struc-
ture on B(L2(G)) given by the ⊲-action (which is precisely the degenerated right
(T(L2(G)), ⊲)-action), it follows from [22, Corollary 3.6] that K(L2(G)) is an es-
sential L1(G)-submodule of B(L2(G)), that is,K(L2(G)) = ⟨K(L2(G)) ⊲ L1(G)⟩.
We show (iii)⇒ (i).

Since the multiplication mL1(G)∶ L1(G) ⊗̂ L1(G) → L1(G) is a complete quo-
tient morphism and L1(G) is 1-projective in L1(G)-mod, for any ε > 0, there ex-
ists a morphism Φε ∶ L1(G) → L1(G) ⊗̂ L1(G) satisfying mL1(G) ○ Φε = idL1(G) and
∥Φε∥cb < 1 + ε. Moreover, we know that L∞(G) is 1-injective in mod-L1(G) as the
dual of a 1-projective module. _us, Mr

cb(L1(G)) = ρ̃(Cu(G)∗) by Proposition 5.10,
and L∞(G) is a 1-injective operator space. Hence, L∞(G) is semi-discrete [4, 5, 14],
so there exists a net (Ψi)i∈I of normal, unital, completely positive ûnite-rank maps
Ψi ∶ L∞(G) → L∞(G) converging to idL∞(G) in the point weak* topology. Using the
normal completely bounded morphism Φ∗

ε ∶ L∞(G) ⊗ L∞(G) → L∞(G) which is a
le� inverse of Γ, one can argue in a similar manner to _eorem 5.12 by averaging the
normal ûnite-rank maps Ψi into completely positive multipliers and use the fact that
L1(G) is a two-sided ideal in Cu(G)∗ to obtain a bounded net ( f i)i∈I in L1(G) sat-
isfying f ⋆ f i − f → 0 weakly for all f ∈ L1(G). _e standard convexity argument
then yields a bounded right approximate identity for L1(G), andG is necessarily co-
amenable.

Since π∶T(L2(G)) → L1(G) is a complete quotientmorphism in (L1(G), ⊲)-mod,
for any ε > 0, it also has a right inverse morphism Ψε ∶ L1(G) → T(L2(G)) with
∥Ψε∥cb < 1+ ε. _en Ψ∗

ε ∶B(L2(G)) → L∞(G) is a normal completely bounded right
(L1(G), ⊲)-module projection onto L∞(G). Since L1(G) has a contractive approxi-
mate identity andK(L2(G)) is an essential L1(G)-module, we know thatK(L2(G))
is induced [10, Proposition 6.4], that is,

m̃K(L2(G)) ∶K(L2(G)) ⊗̂L1(G) L1(G) → K(L2(G))

is a completely isometric isomorphism. Hence, so too is its dual

(m̃K(L2(G)))∗ ∶ T(L2(G)) ≅ CBL1(G)(K(L2(G)), L∞(G)).

_en Ψ∗

ε ∣K(L2(G)) ∈ CBL1(G)(K(L2(G)), L∞(G)) = (m̃K(L2(G)))∗(T(L2(G))), so
there exists ρ ∈ T(L2(G)) satisfying (m̃K(L2(G)))∗(ρ) = Ψ∗

ε ∣K(L2(G)). _en for all
y ∈K(L2(G)) and f ∈ L1(G) we have

⟨Ψ∗

ε ∣K(L2(G))(y), f ⟩ = ⟨(m̃K(L2(G)))∗(ρ)(y), f ⟩ = ⟨ρ, y ⊲ f ⟩ = ⟨ρ ⊲ y, f ⟩.
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By weak* density of K(L2(G)) in B(L2(G)), we obtain Ψ∗

ε (T) = ρ ⊲ T for all T ∈
B(L2(G)). In particular, π(ρ) ⋆ x = ρ ⊲ x = Ψ∗

ε (x) = x for all x ∈ L∞(G) as Ψ∗

ε is
a projection. _en π(ρ) is a right identity for L1(G), and using the unitary antipode
R as in _eorem 5.12, we may construct a two-sided identity for L1(G), that is, G is
discrete, whence Ĝ is compact.

Analogously, there is a right module version of _eorem 5.14.

_eorem 5.15 Let G be a locally compact quantum group. Consider the following
conditions:
(i) Ĝ is compact (equivalently,G is discrete);
(ii) T(L2(G)) is relatively 1-projective in mod-(T(L2(G)), ⊲);
(iii) L1(G) is 1-projective in mod-L1(G).
_en (1) ⇔ (2) ⇒ (3), and when G is regular, the conditions are equivalent.

Remark 5.16 It is not clear at this timewhether we can replace relative 1-projectivity
of T(L2(G)) with 1-projectivity of T(L2(G)) in condition (ii) of _eorems 5.14 and
5.15. However, one cannot replace 1-projectivity of L1(G) with relative 1-projectivity
of L1(G) in condition (3) of _eorems 5.14 and 5.15, as, for example, L1(G) is always
relatively 1-projective for any locally compact group G (see [9, _eorem 2.4]).

Remark 5.17 Combining [2, _eorem 3.12] with [24, Corollary 7], it follows that
a regular quantum group G is discrete if and only if L1(G) is a 1-projective opera-
tor space. _eorem 5.14 therefore yields the following equivalence for regular quan-
tum groups: L1(G) is 1-projective in C-mod if and only if L1(G) is 1-projective in
L1(G)-mod.
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