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Coupled ice—till deformation near subglacial channels
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ABSTRACT. Previous models of icetill deformation near subglacial channels or cav-
ities neglect the fact that the motions of the two materials are coupled, and thus the interface
between ice and till may not remain stationary. Here, we analyze in succession two models
which address the effect of such coupling via specification of appropriate continuity con-
ditions for stress and velocity across the interface. The modelled scenario is that of a shallow
channel—cavity, with its long axis parallel to the principal ice-flow direction, overlying
actively deforming till sediments. By applying asymptotic techniques, we investigate how
the pattern and velocity of the creep flow depend generally on the ratio between the ice
and till viscosities, and on the deforming-till thickness. A more sophisticated, non-linear
rheology for till sediments is then introduced. It reveals that the two-way interaction
between water percolation and deformation in the till will enhance the localization of sedi-
ment flow near the channel margins. The length scale over which transition of effective
stress in the till takes place — from its relatively high, far-field value to the low, channel
value —is found to depend critically on a dimensionless permeability parameter (A). In
any case, coupled deformation causes sediment (and ice) flow towards the channel, sub-
sidence of the ice—till interface just outside the channel, and extension of the area over which
the ice is in contact with till. Apart from having direct implications for subglacial sediment
transport, these results indicate that coupled deformation can contribute significantly to the
spatial evolution of stress distribution under a glacier, and thus its incorporation into future

sliding and drainage theories for a soft bed should be considered essential.

MATHEMATICAL SYMBOLS Ny Far-field effective stress
n Glen’s flow-law constant

Ag Rate factor in Glen’s flow law for ice P Till overburden pressure
Ar Rate factor 1n till rheology model D, q Local flow pressure in ice, till
ail, am Transfer functions in Fourier integrals Pe Water pressure in channel—cavity
a,b Till rheology parameters Di Ice overburden stress
B Yield boundary label in till (y = —d) Dw Till pore-water pressure
bij, cij Transfer functions in Fourier integrals Poo Far-field pore-water pressure
C4...Cq Coefficient functions of A Qr Total sediment flux towards channel
o Till cohesion r Density ratio py/ ps
d Deforming-till thickness t Time
F (and F7')  Fourier transform operator (and inverse) [ty] Pinch-out time-scale
Fer Fs Fourier “cosine” and “sine” transforms U = (U,V,W) Vector velocity of water percolation
g Gravitational acceleration (=98 ms 7 relative to till motion
g Vector gravity u = (u,v,w) Flow-velocity vector in ice and till
H,, Hy Neumann series expansions VL, UT Vertical velocity in ice and till
h Depth of subglacial channel—cavity (z,9, 2) (or (x1, xa, x3)) Position vector
I Identity matrix Tq Dividing streamline position on y = 0
i =v-1
i, 5, k Subscript indices denoting tensor o Dimensionless model parameter

components o Clonstant coeflicients in Neumann series
Ji, Jo,. Bessel functions of the first kind I} Dimensionless viscosity ratio n/m
kr Till hydraulic permeability v Dimensionless deforming-till depth d/1
ko Till rheology parameter o Dimensionless model parameter
Land L' Labels for channel and ice—till interface 0ij Kronecker delta function
Lyn Integrals required for determining g, €ij Strain rate, strain-rate tensor

1,09, ... o Reference strain rate
l Half-width of channel—cavity n (M, 1) Dynamic viscosity (for ice, till)
N Effective stress K Fourier transform of g(x, y)
N, Effective channel pressure K Till compression index
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A Dimensionless till permeability/deform-
ability ratio

A Wavenumber

- Water viscosity (=2 x10 *kgm 's )

I Fourier transform of p(z, y)

p (p1, p1) Density (for ice, bulk till)

Ps Sediment grain density (~2650 kgm °)

Pw Density of water (10° kgm )

Oij (Or Oy, Oy, €tc,) Stress tensor

aij’ Effective stress tensor

T Shear stress, or second stress invariant

AT Stress difference 1) — 7

Th Basal shear stress

Te Till yield stress

Tij Deviatoric stress tensor

To Reference shear stress

10) Till porosity

b0 Till internal friction angle

v Fourier transform of ¥(x, y)

P Stream function in the ice

Q Fourier transform of w(z,y)

w Stream function in the till

Miscellaneous

o() Order of magnitude

[x] Characteristic scale for x

a* Dimensionless variable /]

Uy, Vg, €LC. Partial derivatives Qu/0z, dv/Ox, etc.

Ugy Second partial derivative 9%u/0xdy

(Note: 1 bar = 10° Pa))

1. INTRODUCTION

Over the past decade, the concept of a deformable glacier
bed has fuelled innumerable investigations particularly with
respect to its role in basal sliding (e.g. Kamb, 1991; Blake and
others, 1992; Iverson and others, 1995; Engelhardt and Kamb,
1998), subglacial water drainage (e.g. Walder and Fowler,
1994), sediment transport (e.g. Alley, 1991; Boulton, 1996)
and landform development (e.g. Boyce and Eyles, 1991;
Hindmarsh, 1998a, b). An interesting question which arises
1s this: How is the basal traction distributed under a glacier?
To answer this requires a knowledge of the spatial extent of
basal ice that is in contact with the bed. The contact interface
can support stresses. For a soft bed, storage or transport of
water can occur where the ice and till have separated, as well
as by percolation within the till (and subsequent advection);
deformation of till may also contribute to glacier motion.
Hence, contact regions have critical dynamical and hydro-
logical implications. The difficulty lies in describing how their
nature and distribution vary with time. Given that these may
be spatially variable, determination by field measurement
may require a large number of sampling points (e.g. bore-
holes); yet theories that are constructed to focus measurements
and aid their interpretation have been conspicuously few.
Evolution of the regions of contact between ice and till is
the net result of various processes. For instance, the ice—till
interface may recede (in terms of areal coverage) when bed
sediments are eroded by an expanding subglacial drainage
system. But generally, the interface itself is in continual
motion as the two materials deform. This occurs in response
to the heterogeneous stress distribution at the glacier bed,
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induced, for example, by the presence of subglacial chan-
nels. Our aim in this paper 1s to calculate such motion.

Even in the simplest case, the proposed calculation is
difficult because it requires simultaneous solution of flow
problems in both the ice and the sediment. (They cannot
be solved independently) This is further complicated by
the rheologies involved. Thus, in this preliminary work, we
shall make several assumptions to facilitate our analysis;
these concern especially the detailed mechanical and hy-
draulic behaviour of till. This approach should not alarm
experimentalists, however, as the emphasis is not on any
definite numerical predictions, but on properties of the
coupled deformation of ice and till that deserve further
attention, especially with sliding and drainage theories in
mind. Indeed, we argue that coupled deformation should
not be neglected in the dynamical description of glaciers
overlying a soft bed.

2. BACKGROUND
2.1. Basal sliding

A classic description of the extent of ice—bed contact is
encountered in the theory of basal sliding over a hard bed with
non-uniform topography (Fowler, 1987, Kamb, 1987). Here,
consideration is given also to the water flow that occurs in the
resulting system of linked cavities (Walder, 1986; Kamb, 1987).
The proportion of decoupled area (cavities) is controlled by
the rates of sliding, melting (due to dissipative heating) and
deformation closure of the ice. This ratio is important because
it determines the partitioning of normal/shear stresses acting
at the bed.

The current investigation provides a constituent for a
soft-bed extension of the theory, in which relevant processes
include ice and till deformation, as well as melting (of ice)
and erosion (of sediment) in the decoupled region. Till slid-
ing (relative motion af the ice—till interface) is also possible,
but its effect is excluded here. In this paper, only deform-
ation 1s investigated. The decoupled region may correspond
to a locally thickened water film, a subglacial cavity or a
water channel, but distinction between these is not neces-
sary in the present context. We shall refer to it as the “chan-
nel” or “channel—cavity” in the following. Basic inputs for
calculating deformation include the overburden stress due
to the ice above, and drainage parameters for this channel—
cavity, which we shall take as prescribed.

2.2. Subglacial water transport

Several authors have sought ice-deformation rates near sub-
glacial channels, motivated by the need to describe sub-
glacial drainage regulation. The elementary theory
considers a balance between the velocities of melting and
creep closure at the channel walls (Rothlisberger, 1972;
Nye, 1976). A soft bed introduces new factors when deter-
mining the analogous theory, since deformation, erosion
and deposition of sediment presumably have at least some
effect on channel form and network configuration.
Extensive till deposits of the order of decimetres or more
in thickness have been inferred at a number of locations
beneath contemporary glaciers and ice sheets (e.g. Alley
and others, 1986; Rooney and others, 1987; Blake and others,
1992; Murray and Porter, 1994; Iverson and others, 1995).

Drainage can provide an efficient mechanism whereby till
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sediments are evacuated. Specifically, if drainage is predom-
inantly channelized, then the sediments can interact with
water flow through uptake as bedload and suspended load.
Channels tend to enlarge as a result, but in the case where
the till is water-saturated and subjected to an overburden
stress higher than the channel flow pressure, this would be
opposed by the inward creep of sediments into the channels.

Since drainage network survival depends on the main-
tenance of individual pathways, the counterbalance described
above, namely, that between creep deformation, which causes
closure, and fluvial erosion, which causes opening, provides
a plausible starting-point for analyzing soft-bed channelized
drainage. (This is additional to the melting vs closure com-
petition in the ice.) This idea was first introduced by Boulton
and Hindmarsh (1987), and subsequent modelling by Walder
and Fowler (1994) examined the properties of steady flow,
where an exact balance is assumed. In their proposed theory,
sediment creep motion is a prerequisite for steady drainage to
occur; the closure velocity controls the cross-sectional shape of
the “canals”, and hence their drainage characteristics. These
results have since been supplanted by those of Ng (2000). How-
ever, he showed that a knowledge of till deformation is still
required for describing the sediment budget and drainage
organization, particularly in the downstream direction of
the canals. This conclusion would be unaltered in a time-
averaged description of drainage over soft bed which
attempts to capture the irregular nature of flow-path forma-
tion and evolution—such as that suggested by Hindmarsh
(1997). Some quantification of overall deformation rates is
therefore necessary.

2.3. Determining deformation rates

Previous calculations of ice/till deformation adjacent to sub-
glacial conduits illustrate well the effect of non-linear rheol-
ogy. These include the following:

(i)  Nye’s (1953) derivation, based on Glen’s law, which
considered the creep of ice near a (long) cylindrical
conduit.

(i1)  Alley’s (1992) model of the behaviour of deformable till
adjacent to a subglacial channel. He showed that sedi-
ment flow with a Coulomb—Bingham rheology would
be limited to a narrow zone by the channel margins,

and that this process leads to pinch-out of the till over
bedrock.

(111) Walder and Fowler’s (1994) canal model, which
employed modified forms of Nye’s result for both ice
and till. Their full derivation of the closure velocity of
a till channel, assuming a Boulton—Hindmarsh type

rheology for the sediment (see section 3), is reported
by Fowler and Walder (1993).

This brings us to the main point of the paper. None of these
models, which consider ice and till flow independently, can
describe coupled deformation of both materials. The
adopted description for each material has been derived on
the basis that the other material was either stationary or ab-
sent altogether, but this is not generally the case. This poses
a significant problem when building consistent sliding and
drainage theories for a soft bed. Herein, we present a pilot
investigation of the coupled deformation. Most crucially, we
allow the interface outside the channel—cavity to be freely
mobile. In mathematical terms, such mobility can be
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accounted for by applying continuity conditions for stress
and velocity across the interface.

With the ice, sediment and channel, it is necessary to
consider a more realistic geometry than has been analyzed
in (i) to (iii). But given additional rheological complica-
tions, it seems reasonable to begin the modelling with the
bare essentials. A simple situation is where the principal
ice-flow direction (and also the channel axis) is “out-of-
paper”, which allows us to formulate plane flow equations
in two dimensions. The channel is assumed to have high
aspect ratio, 1.e. it is wide and low. The deforming thickness
of till is prescribed. Also, we assume the simplest workable
models of rheology, at least initially. While these would
obviously limit the applicability of our model, extensive
computation is avoided. And although this arrangement is
by no means general, it provides a basis for extension,
particularly to the three-dimensional problem.

Rheology-related issues are covered in section 3. The
investigation then consists of two parts. First (in section 4),
we solve a mathematical model that describes linear coupled
flow, taking constant (effective) values for ice and till viscos-
ities. This exercise is informative, because the till viscosity is
particularly sensitive to till type and basal (e.g. drainage)
conditions and lies in a range that spans many orders of
magnitude, even though each viscosity value (for ice or till)
may vary spatially. Therefore, our initial interest is not in
their precise values but in their ratio. If typical ice and till
viscosities are 7y and 7r, respectively, then the resulting
deformation is examined for 71 ~ 71, and for the asymptotic
limits associated with 7y < nt and 71 > 1. We also consid-
er the effect of varying the depth of the deforming-till layer.

Next (in section J), an assessment is made of the effect of
spatially varying viscosity, specifically that of the till, despite
uncertainties in modelling its rheology (as will be explained
in section 3). We do this by analyzing a steady-state creep
model based on Fowler and Walder’s (1993) formulation for
non-linear viscosity till. We use the interfacial stresses/
velocities derived in section 4 to represent the general form
of the boundary conditions. This model allows us to explore
in more detail sediment hydraulics and mechanics near the
margins of the channel—cavity. Our deductions will primar-
ily be based on the results of scaling analysis.

Finally (in section 6), our results and their implications
are discussed, and we indicate directions for further
research and extensions. We should point out that, although
the close connection of this work with subglacial drainage
will soon become evident, no attempt is made here to pro-
mote any particular drainage theory.

3. MODELLING TILL RHEOLOGY

Ice 1s usually treated as a non-linear viscous fluid (obeying
Glen’s law, for instance), but the analogous model for till has
been rather controversial and demands attention. The
current debate focuses on whether a viscous or plastic
description is more appropriate (Hindmarsh, 1997).

The realization that fast ice flow may be caused by a
deforming substrate is based on the premise that subglacial
till, like other granular materials, undergoes irreversible
deformation once a yield stress (7.) is exceeded. 1o describe
the subsequent motion, a constitutive relation between stress
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T (> 7T.) and strain rate € has often been adopted. Some
modellers proposed a viscous rheological law of the form”

. (r=7)"
sochC (a, b>0), (1)
where N is the ¢ffective stress in the till (overburden pressure
minus pore-water pressure), and a and b are empirically
determined constants. The yield stress depends on N also,

via the Coulomb expression
Te = ¢o + N tan ¢y, (2)

where ¢y 1s cohesion (usually negligible) and ¢¢ is the
internal friction angle of the sediment. When 7 > 7., Equa-
tion (1) implies a stress-dependent viscosity given by

77:(31—; o (T —7) "N, (3)
The modelled till viscosity then decreases as effective stress
decreases.

According to Equation (3),“low” values of a and b (specifi-
cally, a =1and b =~ 0) would lead to an approximately constant
value of 1. The resulting, mildly non-linear, viscous behaviour
was much popularized after Boulton and Hindmarsh’s (1987)
measurements under Breidamerkurjokull in Iceland, where
they obtained @ = 1.33, b = 1.8 and A = 3 x10° Pa’ s " as
best-fit parameters to the equation

7_(1

é=Ar g (4)

(a special case of Equation (1)). Their yield stress was found
to be negligible as compared to the range of applied stress
(1o =0).

In contrast, laboratory experiments on till samples have
indicated a highly non-linear behaviour under deformation,
with measured values of 7 close to 7. over a large range of €
(Kamb, 1991; Hooke and others, 1997; Iverson and others,
1998). This is in broad agreement with results from geotech-
nical testing of similar materials, where it is common to
express the weak dependence of stress (in geotechnical terms,
the “residual” stress) on strain rate by writing

l:l—l—k‘glln(i) for 7> 7, (5)
7o €o

(e.g. Kamb, 1991, equation (5); Mitchell, 1993, fig. 14.15).
Here, 79 (2 7¢) is the stress at the reference strain rate &g,
and typical values of kg are found to be large, 10 < kg <60
(Hooke and others, 1997).

The weak dependence represented by Equation ()
suggests a plastic “idealization” associated with a particular
limit of Equation(d) (as ko — oo): that 7 = 7 at failure,
independent of strain rate €. For this reason the validity of
Equation (4) has been challenged. (Another factor is the
reliability of Boulton and Hindmarsh’s data. See Hooke and
others (1997) and Iverson and others (1998) for discussions.)

In this connection, two notions are relevant to our forth-
coming analysis. First, we demonstrate that Equation (4), in
the form as given, can in fact be used to approximate Equa-

* Equation (1) is strictly a “visco-plastic” law owing to the
addition of 7., but we draw a distinction between this
and the “ ideal-plastic” law, described later.
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tion (5), for large kg. We follow Fowler (2000), rewriting the
latter equation as

_ ( T — 7-0>
e =¢pexp| ko
7o

ko
~ ég{exp [ln(l —1—7;7—0)1 }
0

(when |1 — 79| < 1)

()

and then putting
To=AT+7. = AT+ co+ Ntangy (7)

(we have used Equation (2)). Since 1 2 7, cg < Ty, 1t follows
that AT < 7y, 79 & Ntan¢), and thus (approximately)
Equation (6) becomes

¢ <%> ‘) (8)

On comparing with Equation (4), we obtaina = b = ko (> 1).
Therefore, a highly non-linear rheology may be accommo-
dated by Equation (4) by means of large and equal a and b
values (Fowler, 2000). This provides the principal motiva-
tion for section 5: Fowler and Walder’s (1993) formulation,
which is based on Equation (4), at least contains some facil-
ity for understanding the effect of very non-linear (“near-
plastic”) till rheology.

The second notion concerns till rheology in three dimen-
sions. Neither of Equations (4) and(5) provides a complete
description. Specifically, previous measurements focus on
motion under simple shear, but they have not been extended
to flow behaviour within the plane perpendicular to the
shearing direction. (In our model, this shearing direction is
in the principal direction of ice flow,) If the downstream driv-
ing stress of the glacier is such that the yield stress has
already been attained, then the till would actively deform to
some depth. In the perpendicular plane, however, the viscos-
ity of the deforming till, 71, is not well known. It certainly
does not have to be the same as that value downstream,
though we can suppose that it would again depend on local
shear-stress/effective-stress conditions (cf. Equation (3)).

Despite the lack of experimental data for till, it is possible
to extract some useful information about the coupled deform-
ation. We can consider what happens if the till is generally
much stiffer or much softer than the ice, or if they have
similar stiffnesses; and in doing so, we may plausibly ignore
spatial variations of T and 7y by assuming that they are con-
stants. Therefore, in section 4, a dimensionless parameter
B = nr/m1 is introduced, and we investigate the limiting be-
haviour of model solutions for (i) B> 1, (ii) § ~ | and (iii)
B < L The first case corresponds essentially to a “hard-bed”
scenario, whereas the last corresponds to an extremely “runny”
till. Due to uncertainties in rheology, it is at present difficult to
determine which case is the most typical for subglacial envir-
onments. For example, Paterson (1994, table 8.2) quoted till-
viscosity estimates of 10° to 10 Pass, inferred from field obser-
vations. Conservative use of Glens law (using 71 =
(AIT"_l)fl, and let us take 7 < 3 bar, withn = 3, A; 510 %
Pa s ") gives an ice viscosity of >10"Pas, so this would
seem to suggest 3 < 1. However, the inferred range for till here
refers to the principal ice-flow direction, and also it takes no
account of till sliding, nor the effect of local drainage condi-
tions, which may result in a much stiffer (more viscous) till
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within the perpendicular plane. This is the reason for our
general approach. In principle, a more formal (but tentative)
analysis may be achieved if we make certain assumptions
about till rheology and adopt a tensor formulation based on
Equation (4). This is examined in section 5.

4. COUPLED ICE-TILL DEFORMATION

Consider the cross-sectional view in Figure 1, which shows a
channel—cavity of half-width ! and depth h overlying
subglacial till. z and y, respectively, are the horizontal and
vertical coordinates. The channel contains water at pressure
De, and it is taken to be long and “shallow” (with A < 1) such
that effectively its roof and bed may be taken to lie on y = 0.
The channel axis is co-aligned with the principal ice flow, 2
direction (out of page). We assume that the till has already
yielded to some depth as a result of high basal shear stress
(exceeding 7,) in this direction.

Due to an overburden stress in the ice p; far away (on
y = 0), where typically p; > p., both the ice and the till
deform so as to close up the cavity. We assume that the
mobilized till depth, d, is prescribed, and that it is constant
(see section 5.1 for discussion). Our analysis is concerned
with flow in the z—y plane only.

4.1. The linear model

Standard equations to describe steady, “slow” viscous flow
(since the Reynolds number < | here) are

ou o _
or oy
0oyy 00y
Ox oy
00y . % _

8x 8y pg7

0, 9)

0

(10)

where (u,v) denotes vector flow velocity, the ¢’s denote
components of the stress tensor, p is the material density
and gis gravitational acceleration. On specifying the appro-
priate density value p = pr or pr, Equations (9) and (10),
which describe conservation of mass and momentum, re-
spectively, are applicable in the ice (y > 0) or in the till

channel-cavity

ice , + ,

&

Ig. I Definition diagram for the problem of coupled ice—tll
deformation. Principal ice flow occurs in the z direction (out

of page ). Dotted line denotes yield boundary in the till.
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(—=d <y < 0). Under a linear rheology, constitutive rela-
tions supplementing these equations are

4o o
Ogp = — a9 Oyy = — a0
p nax vy p Uay

ou  Ov
Ozy:ﬁ<a—y+£>, (11)
where 7 is the effective viscosity, and p = — (045 + 0yy)/2
denotes the flow pressure. As is the case for density, we take
1 = nr and 7 1n the ice and in the till accordingly.

There are six unknown functions (u, v, p and the o) of
position. The model Equations (9—11) constitute an elliptic
problem, the solution of which requires the prescription of
two (traction and/or velocity) boundary conditions around
the domain. In this case, suitable conditions are

(i)y=>0: Oz, Oyy — —Di + P19y, Ozy — 0,

as x° + y2 — 00;
(i) y=0: Oy = —Pe, Oz =0, for|z| <,
[C’wy]t = [Uyyt = [u]f

(iii> —-d< y<0: o4, Oyy — —Pi + prgy, Ozy — 0,

= [11]1L =0, for |z|>1;

as |z| — o00;
(iv)y=—d: u=v=0. (12)
Condition (i1); derives from the fact that water within the
channel can exert a normal stress only. []* represents the
jump across ¥ = 0, and thus (i1) 9 ensures stress/velocity con-
tinuity across the ice—till interface (we assume no slip). This
second condition is responsible for the coupling between
ice-flow and sediment flow. Together with (i), it gives rise
to mixed boundary conditions on y = 0.
The momentum equations may be expressed in an alter-
native form by substituting for the stresses in Equations (10);
we find

Op

o VY 0,
Op 9

- Vv = 13
ay+77 v =pg, ( )

where V2 is the Laplace operator (= 9%/0z* + 0% /0y?).
This pair of equations provides a quadrature for determin-
ing the flow pressure p(x, y).

Scaled model

It is useful at this point to non-dimensionalize the model, for
which a natural length scale is [, and an obvious stress (and
pressure) scale to use is the difference p; — p.. For conveni-
ence, let us first subtract the “glacio-static” component from
the normal stresses, by making the change of variables

ice: (ijﬂ O';Jy, _p/) = (Ul'a:a Oyys _p) + bi — p19Y,
till: (0’;1, U;/yv —(]/) = (sz7 Oyy, _p) +pi — pTgy - (14)

(We introduce p’ and ¢’ in order to distinguish between pres-
sure variables in the ice and in the till) If we now define

@) =50 e =1

/ ’
Xk ko k% (Um:vojyyvo':nyvpaQ)
(0m3:70yy701ny’p )4 ) - N, ’
c

(15)
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where

Ne = pi = pe, (16)

then the dimensionless model corresponding to Equations
(9) and (11-13) becomes (after dropping the asterisks)

ice: U, +vy, =0,

pr = Viu, p, =V, (17)
till: Uy + vy =0,

¢ = BV, q, =BV, (18)

with the supplementary relations
ice: 0y = —p 4 2uy, 0y = —p + 20y, 04y = Uy + v, , (19)
till: 04 = —q + 2Buy, 04y = —q + 2Pvy, 02y = B(uy + V),

(20)
and boundary conditions
() y>0: 0, Oy Ty, p— 0, as 22 + 3 — 00;
(ii))y=0: oy =1, 04y =0, for |z| <1,
[o2y) " = [oy]” = [u]” =[] =0, for |2] > 1;
(iil) =y <y <0: 04s,04y,0xy, ¢— 0, as |z| — 00}
(ivyy=—y: u=v=0. (21)

(We have used the subscripts , and , to represent the partial
derivatives 0/0x and 9/0y. In Equation (16), [ ] denotes “the
scale of”, and N, (a constant) is the ¢ffective channel pressure
commonly referred to in drainage theories. Note, in addi-
tion, that we have chosen a velocity scale based on ice visc-
osity, rather than on till viscosity.

The two parameters appearing in this model are

d
g="

L and y=-, (22)
Ui

l
of which the first, a relative viscosity ratio, has already been
mentioned. 7y is an aspect ratio which accounts for the depth
of the deforming-till layer. Specifically, v>> 1 and v < 1
correspond respectively to the “deep-till” and “shallow-till”
scenarios shown in Figure 2. (Alternatively, one can think
of these situations as arising from differently sized subglacial
cavities for a given deforming-till depth.) In the rest of this
section, we seek analytic solutions to Equations (17), (18) and
(21), imposing the stress boundary conditions through the use
of Equations (19) and (20). Parametric limits of 5 and ~y are
then investigated.

4.2. Fourier transform solutions

Since the model is linear, we can proceed by taking Fourier
transforms, in this case in the x direction. But first, it is use-

a b

Fig. 2. Two lLimiting scenarios of problem geometry: (a)
“eep” till, with d>1, v> 1 (b) Shallow” ull, with
d<lykl
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ful to introduce two separate stream functions 1 and w for
the ice and till, respectively; we let

y>0:
y<0:

U:d}yv v= =y,
U=Wwy, V= —W,. (23)

The stream functions thus satisfy mass conservation
(Equations (17); and (18),) automatically, and their values
are defined to within an arbitrary constant of integration.
By symmetry, x = 0 must represent a streamline in both
domains. Without loss of generality, we therefore put
¥(0,y) = w(0,y) = 0. It is easy to deduce that 1) and w are
then odd functions of . (On the other hand, p and ¢ are
even functions.)

By substituting for u and v in terms of the stream func-
tions and cross-differentiating Equations (17)9 3 and(18)4 3,
the model reduces to

y=>0 Vip =0, Vip =0, (24)
<0: V=0, Viw=0, (25)

where also we have
pe =V, ¢ =pVw,. (26)

The boundary conditions are unchanged, and the sup-
plementary stress relations become

y>0: 0pp=—p+2¢%sy, 0oy =-—p— 2y,

Toy = Py — Yz (27)
Y<0: 0pp=—q+ 2/3wxya Oyy = —q — 2ﬂwzyv

Oy = P(wyy — wyz) - (28)

We now take the Fourier transform of Equations (24-26),
using the usual transform pair definition

F(\y) = FIf) :% / fe,y) ¢ da,

o]

f(w,y):F’I[F]:\/%—W / Fug)e ™ dr  (20)

(see, e.g., Lighthill, 1958). The wavenumber A is taken to be
real. If we define U, €, IT and K (functions of A and y),
respectively, as the transforms of 1, w, p and ¢ (which are
functions of  and y), then the transformed model is

2 2

y>0: I, — NII=0, (%—V)\I/:o, (30)
0 ?

y<0: K, —MNK=0, (@—/\2>Q:O, (31)

where also we have

, 1 : > 1

(32)
Solution of Equations (30) and (31), subject to the two

restrictions in Equation (32), is algebraically involving but
straightforward. If, in addition, we observe the vanishing
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stress conditions at the far field (Equation (21); implies that
¥, II — 0asy — +400), then the general solutions are

y=0: U0y) =[Cr+yCole MV,
II(\, y) = 2iACye A
y<0: Q) = [Cs+yCie ™ +[Cs5 + yCgl e
K\, y) = 2iBA[Cre ™ + CgeM]. (33)
Here, C)...Cy are functions of A yet to be determined by

satisfying the other boundary conditions. Once ¥, II, © and
K are known, their inverse counterparts may be obtained by
using Equation (29)9, and then all the velocities and stresses
may be determined via Equations (23), (27) and (28).

Application of boundary conditions
The boundary conditions require that inverse transforms of
various linear combinations of ¥, I, 2 and K adopt certain
values at the boundaries. For instance, the first condition in
Equation (21-ii) (for o,,) requires that

FUI - 2iA¥, ] = F 1K — 2i6AQ,]

=-1, forlz|<1l, y=0. (34)

In this regard, it is useful to exploit the following prop-
erty: that given A\, x € R, the Fourier transform of an even
(odd) function is also even (odd). Then it is simple to deduce
that ¥ and €2 are odd functions, and IT and K even functions

(of A). Moreover, we can rewrite the inverse Equation (29),
in terms of “cosine” and “sine” transforms, 1.e.

\[/F A\, y) cos Az d),
\/»/ F(\ y)sin Az dA,

(35)

Fleven F] =

Flodd F] = —iF|F

which requires only the “A > 0” portion of the function F.
Taking the previous example, we rewrite Equation (34) as
FeIl = 2000, | = F.[K — 2iBAQ,]
=—-1, for|z|<1, y=0, (36)

which, on further substitution from the solutions in Equa-
tion (33), reduces to

FJINCL] = FBN(Cs — C)] = % for 0 <z <1.

(37)

The same treatment is now applied to other boundary
conditions in Equations (21-ii) and (2I-iv) (in the order as
given). We obtain, for 0 < z <1I:

FAMNMCs + C5) + (C — Co)]} = F[AMAC1 = Cy)] =0
(38)

forxz > 1:

FAAACL — Co — BA(C3 + Cs) — B(Cs — Cy)]} =0, (39)

FAN[B(C3 - C5) — Cy]} =0, (40)

F[MCs = C5 = C1) + C2 Cy—Cs] = (41)

FMC3+C5 —Ch)] = (42)
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and
(Cg — ’YC4)€FM = —(05 — 706)6_7)\ N (43)
[(1+90)Cy — AC3]e™ = —[(1 — yN)Cs + ACsle . (44)

(The conditions in Equation (21-ii1) are automatically con-
sistent with the solutions which we derive later) Evidently,
Equations (37—44) provide ten constraints between the six
unknowns Cf...Cg. This is actually the correct number, for
the first eight relations account for transformed values on
only part of the = axes (either on 0 <x < 1, or z > 1).
Indeed, for this reason the determination of C;...Cy
becomes problematic.

Problem reduction
Equations (43) and (44) allow us to eliminate (any) two of
the unknown “C functions”. The relations in Equations (37—
42) may be manipulated in two ways to enable further sim-
plification. We can establish (1) by combining Equations (37)
and (40), and (ii) by evaluating (38)9 — 3 x (38),, then com-
bining with Equation (39), that for all x > 0:
(i) FAN[B(Cs —C5) — ]} =0,
(i) FAAACT — C2 = BA(C3 + C5) — B(Cs — Cy)]} =
(45)
and hence that
Gy = B(Cs = C5), (46)
ACy = Oy = BA(Cs + C5) + B(Cs — Cy) . (47)
It is now possible to express the problem in terms of two
unknowns only. We choose to eliminate all except C; and
Cs. (This involves a lot of algebra) On discarding used
equations amongst (37—44), we then find, for 0 < xz <1:

Filan(ACy — Cy)] =0

FolanACy] = % : (48)
forx > 1:
Fs[b11(ACy — C3) + b12AC1] =0
Fe [b21 ()\Cl — 02) + bgg/\cl] =0; (49)

in which the weighting coefficients (functions of A) are

ain =ax = A, (50)
and
b1 =—-1-— sinh(yA) cosh(yA) + yA
Bleosh?(YA) + (YA)?]
b12 - le = 5 (7)\) .
Blcosh?(yA) + (7A)7]
byy = —1 — smh(’Y/\)2 cosh(y\) — Q,M | o
[COSh ( ) ( ) ]

In arriving at this result, it was necessary to express
C3 + C5 and Cy + Cp in terms of C; and Cy. These combi-
nations, together with other ones used later, are given in
Appendix I(a).

Dual integral equations

The problem now boils down to solving Equations (48) and
(49), given 3 and 7. These equations constitute a pair of dual
integral equations for the functions (AC; — C5) and (AC}),
from which Cj...Cg, and hence all the stresses and velocities
of the deformation, may be calculated. For completeness, we
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have derived all the relevant velocity/stress formulae and
listed them in Appendix I(b).

Dual integral equations commonly arise from contact
problems (e.g. in classical elasticity) involving mixed
boundary conditions, as is the current case. An early
description of their solutions is due to Tranter (1956). We
adopted the method given by Erdogan and Bahar (1964)
who had specifically studied problems with trigonometric
kernels. (The details are too lengthy to report here) We
found

by Hy — bia H
A(b11b2g — biobay)
—bo1 Hy + by Hy
ACy = ,

"7 Albuabaz — bizban)
where Hy(\) and Hy(\) are, respectively, the even and odd
Neumann series

Hl()\) = O[QJQ()\) + 044J4(>\) + Ct(;J(j()\) + ...,

HQ()\) = OllJl()\) + 043J3(>\) + Oé5<]5()\) + ... (53)
In these expansions, J;, ¢ = 1,2, ... are Bessel functions of
the first kind (see Abramowitz and Stegun, 1965), and the

coefficients oy, (for n =1,2,...) are given by solving the
(infinite set of) simultaneous equations

AC — Cy =

(52)

00 ./ D) =1 ,
Z Lm,nan = { ! 7T/3 o (54)
n=1 0, Vm>1,
where
r A
Lm.n = / ng()\)J7n(>\>Jn()‘> ﬁ 5
0
{ 1 ; { even ( )
1,7 = , it m,n= , 55
2 odd
and
(Cu 612> _ (bu b12>1(a11 0 ) (56)
c1 €2 bo1 by 0 an)/)’

(Note that L, , = L, ,) The constants L, , are readily
calculated by numerical integration, but since there is an
infinite number of equations in (54) (for the infinite number
of a’s), computationally it is possible only to solve the
approximate problem, where the Neumann expansions have
been truncated. Equation (54) may then be written as a
(finite-sized) matrix equation for the a’%, which is easily
invertible. Generally, a;, decays as n increases, and thus the
computed a values converge rapidly as more terms in the
series expansions are retained (and then the corresponding
matrix size is increased). In the results that follow, we found
that truncating fourth and higher terms in both expansions
generally leads to sufficient accuracy. (Thus, in this case we
calculated «j...05 by approximating Equation (54) as a
6-by-6 matrix equation.)

4.3. Analysis and results

Numerical procedure

To briefly summarize, once the o values have been deter-
mined, the functions (AC}; — C5) and (AC}), and also the
combinations C5 — C5, C3+ C5, C5 — Cy, Cs+ Cy (see
Equations (Al—A5)) may be evaluated. We may then obtain
all the velocities and stresses by computing the transforms in
Equations (A6—Al5) (see Appendix I). An efficient way of
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performing this is to use the fast Fourier transform (FFT)
algorithm.

Note that we have actually derived an analytic solution,
even though it takes an integral form that requires numeri-
cal evaluation. Naturally, # and < appear in the solution,
specifically via the coefficient functions b;j, ¢;5, and also in
the relations in Appendix I. In this section, model solutions
are investigated for various values of these parameters.

Case I: B =~y =1 (the control)

In general, analytic approximations cannot be made when
B,y ~1.We put 8 = v =1as example. Computed results for
the dimensionless flow velocity vector (u, v), stresses Oug, Oy,
04y, and pressure p for both materials are given in Figures
3-5. In these “quiver” plots, each arrow takes the direction
of the vector quantity being shown, with its length directly
proportional to the size of the vector. Thus, Figure 3 shows
the actual flow field and intensity of deformation. In Figures
4 and 5, the pairings (04, 0yy) and (04, p (or ¢)) are used
simply to show results concisely. (Remember that these vari-
ables denote normalized stress deviations from their glacio-
static values) We include the characteristic length, stress
and velocity scales in the figure captions.

As expected, the general pattern of deformation is such
that there is flow towards the channel—cavity (|z| <1, y =0).
Orders of magnitude for ice and till velocities are comparable
in this case (~ 0.5N.l/nr), and there is stress concentration
close to the channel, especially near the margins (£1,0)
where the stresses become singular.

In Figure 6, we plot specifically the flow velocities and
contact stresses on y = 0 as functions of z. In |z| > 1, these
functions take the same values in the ice and in the till
because of the imposed velocity/stress coupling. Just outside
the channel, the ice—till interface generally subsides during
the creep motion (v <0; see Fig. 6a). This is consistent with

Parameters f=y=1

L L I T A
25Kk N \ \ \ & l J l / / 7/ 7
TN NN
15K N \ \ \ &{ ‘1/ J / / Vs 7 E |
> 1F ~ N \ \ x l/ J / / ' . -
0.5+ N N \ x/ ‘Z / Vs . R
° o i b
0 1
-0.5 | E— 1
(uv) scale
s 2 = o 1 2 3
ok N L
?5_0‘5- . ~ — - 1 ~ -— .
I ; ; : ;

Fig. 3. “Quuver” plots of dimensionless flow velocities w and v
wn ice (top) and till (bottom), for the parameter values
8=~ = 1 Each arrow shows the velocity vector at the
location of the arrowhead; the ruler applies to both domains.
Characteristic length and velocity scales used in the non-
dimensionalization are, respectively, l ( for x,y) and N.l/m

(for w v), where No = pi — Pe.
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Parameters f=y=1
3 T T T T T

1 T S
ol ' T S ' _
B R -
T AR N A R

L / / / D U B I,
o v v 4 + + s 0T
05} 0 2 4
(Oxx> Oyy) —
XXy scale
13 -2 -1 [} 1 2 3
osF . : / : / ; : 1
A + 4, 0
- I 7]

=05 / / \ - x / v 7

Ing. 4. “Quuver” plots of the dimensionless stresses 04, and
Oyy tnice (top) and till (bottom ), for B =y = 1. The ruler
applies to both domains. Characteristic length and stress scales
are land Nq, respectively. Plus sign marks the location of stress
singularity.

conservation of mass for the till, which requires that (for a
net sediment transfer towards the channel)
-1 0
/ v(z,0)dz = — / u(—=1,y)dy < 0. (57)
-0 -1
In the long term, the subsidence may lead to “pinch-out”of

the till layer, as envisaged by Alley (1992), if the channel (and

Parameters B=y=1

3 - . T - r
25F - - - - v’ 0 N ~ ~ =~ - N
2 - - - . i N ~ ~ - -
1.5F - - . P . N ~ -~ 4
> 1+ - e Va l N ~ - b
o5k ! N / l \ , ' J
ok ' 1 \ + + ! ' ' 4
LT ]
O, or
(Oxy» Porq) scale
s 2 -1 0 1 2 3
A N i \L i + 0]
_os) ' t ' - - ' ' ' J
~ Voo
s ' t / - \ / — N\ | ' 4
15 L . \L . .
>3 2 ) 0 1 2 3
X

Fig. 5. “Quiver” plots of the dimensionless stresses 0z, and pres-
surepor q (= (Opy + 0yy) [2) inice (top) and till ( botiom),
Jor B =~ = L The ruler applies to both domains. Character-
istic length and stress scales are l and N, respectively. Plus sign
marks the location of stress singularity.
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Ig. 6. Computed results for the dimensionless velocities and
contact stresses on y = 0. (a) Vertical velocity v in ice (solid
line) and ll (dotted line); (b) horizontal velocily w in ice
(solid line) and till (dotted line); (¢ ) normal stress oy ( solid
line) and shear stress 04, (dash-dotted line ). The stress func-
tions apply for both ice and till because of the continuity and
boundary conditions on y = 0. Characteristic length, velocity
and stress scales are I, N1/ and N, respectively.

its pressure) is being maintained by continuous removal of
the relocated sediment.

We note, however, that although v(+1,0) < 0, v(z,0)
actually becomes slightly positive further away from the
channel before decaying (not shown in Fig. 6a). This (small)
uplift is due to the stress concentration, which induces sedi-
ment flow to the far field as well as towards the channel. Hor-
izontal velocities at the interface are also non-zero, and in
particular u(—1,0) > 0, u(1,0) <0; therefore, a result of the
deformation is that the ice—till contact area wncreases (Fig. 6b).

Figure 6¢ (for o,,) can be understood in terms of force
balance in the y direction, which requires that (in dimen-
sionless terms)

-1 0
/ oyy(z,0)de = — / oy(z,0)de=—-1.  (58)
-0 -1

Essentially, in order to support the ice above, the vertical
force deficit in |z| < | (water in the channel exerts a stress
—p. on the ice, but p. < p;) has to be compensated by
elevated normal stresses at the interface outside. The stress
singularity at (£1,0) has been verified to be of 1/square-
root type. (It is therefore integrable) All of our results are
consistent with conditions (57) and (58).

Case II: 7y > 1 (deep till)

If the deforming till layer is “deep” (d > [; see Fig. 2a), an
approximate solution may be derived by taking the limit as
v — 00.We have by1, bes — —(1 + 1/0), bi2, a1 — 0, and so

C11 C12 BA
=1 59
(821 €22 > B+1 (59)
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(by Equations (51) and (56)). It may then be shown that

o _i 7TJ1()\)

(see details in Appendix II). In this case, Fourier inversions

(60)

for the velocities and stresses on y = 0 take the form of stan-
dard integrals. Using the formulae in Appendix I, we obtain

(i) w(zx,0) = oyy(z,0) =0,
(ii) 04 (2,0) = 0y (2,0) = —2iF [N CY]

:/Jl()\) cos Az dA
0
1, lz| <1
:{l—x/\/xQ—l, lz| > 1,

(111) ’UI({L', 0) = z}"c[)\Cl]

1 o0
D) / A LT (A) cos Az dA
0

— { —(1-2)"?/2, |z <1
0, lz| > 1,
(iv) vr(,0) = —%ﬂm]
— { (]- - x2)1/2/2ﬂv |{E| <1 (6].)
0, x| > 1.

Therefore, at very large deforming-till depth, closure
velocity distributions within the channel (v(|z| <1, y = 0))
tend towards ellipsoidal functions of z (see also Fig. 10a and
b, shown later). Motion of the ice—till interface vanishes
also. (The sediment flux must therefore originate from the
far field) The relations in Equation (61) are leading-order
terms in the asymptotic expansions of the model solutions
(in powers of 1/7).

Cases T and IV: B> 1, 0ry < 1 (hard bed)

If the till is very stiff (nr > nr) and/or very thin (d < [), we
essentially recover a “hard”-bed situation. Taking the limit
as 8 — 00, or 7 — 0, we obtain by, by — —1, by, ba; — 0.
It follows that (by using the same method as before)
ap = —iy/7/8, a, =0 for n > 1, and AC} (= C3) is again
given by Equation (60), so that in the ice the results in Equa-
tions (61);, (61)s and (61)3 apply as before. (Then the till 1s
either motionless or absent.) It is thus interesting to note that
in these cases (where nt > 7y, and/or d < [), the ice motion
1s essentially identical to that if it were underlain by an infi-
nitely deep till of any viscosity (d >> ).

To illustrate, we give two numerical examples for: (1)
large 3, and (ii) vy small but non-zero. Figure 7 shows the
computed velocities with 3 = 10, v = 1. The ice velocities
are similar to those in Figure 3, but a stiff till means that
sediment velocities are suppressed (much less than the ice
velocities) and thus the ice—till interface subsides and
extends slowly. In fact, the closure velocity in the ice here
already approaches its limiting ellipsoidal distribution (see
Fig. 10a later).

Figure 8 shows what happens in the till when § =1, v =
0.1. (The ice velocities are again similar to those in Figures 3
and 7, in y > 0) We show specifically till deformation near
the (lefthand) channel margin. Most of it is localized to
within a distance of O(7) (i.e. order of the till thickness)
from = = —1. The till velocities are suppressed because d is
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Parameters B=10, y=1

e S S e Y
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2K N N \ \ & ¢ J / / 7/ .
151 ~ N N \ \ l, J / I's 7 .
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05t ~ . B
A i /7
of ]
N
-05F —_
(uv) scale
s ) a 0 1 2 3
1 T T T
0 0.1
0.5 [ S b
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>0 \ \ / ! \ / / b
05 - -~ ] -~ - 4
) 1 L 1 . L
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Fig. 7. Dimensionless flow velocities (u, v) for § =10,y = 1.
Note the different rulers used in the ice (top) and tll
(bottom) domains. Characteristic length and velocily scales
are L and N 1/, respectively.

small (cf. Fig. 3, lower panel), and they decay rapidly away
from the margin both inside and outside the channel. Inter-
estingly, this calculation reveals a dividing streamline located
outside the margin (shown dotted in Fig. 8) that separates
the till motion into two “cells”. Sediment in either cell can-
not cross the streamline. In fact, the dividing streamline is
always present (except for the special cases 3 or v — o0, or
v = 0). This requires a value z4 (< —1) to exist such that

Tq

/ v(z,0)dz = 0.

—00

(62)

(In this case 4 ~ —L1; see Fig. 8) But since, as we remarked,
v(x,0) switches sign in z < —1 and it decays rapidly away
from the channel, condition (62) is always satisfied.

CaseV: B < 1

Finally, we consider the situation where the till is much
weaker than the ice (np < np). It 1s possible to perform a
detailed perturbation analysis based on the limit § — 0. This
1s not necessary here, howevers; it is sufficient to examine the
dependence of the solutions on 3 (in an asymptotic sense).
Careful analysis of the integral in Equation (55) (with ¢;;

Parameters B=1,y=0.1

T T T
0.05F g
u,v 0 0.1

( ’ ) %y L1 scale
oF ~ = - - . . sy T TIA A e
S LN\t
\
~005F ~ = = = - - - .\ NN e
N e s s e
Y . LN . . L .
-13 -12 -1 -1 -0.9 -0.8 -0.7 -0.6

Fig. 8. Dimensionless velocities (u, v) in the till for 8 = 1,
v = 0.1, near the left-hand margin of the channel x = —1.
Characteristic length and velocity scales are | and N.l/ny,
respectively. xq marks the start of the dividing streamline
(dotted curve ), which separates the flow here into two “cells”
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Parameters B=0.1,y=1

L A
25K \ \ \ \ L l \l / / / / 7
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Fig. 9. Dimensionless flow velocities (u,v) for 3 = 0.1,y =1
The ruler applies to both ice (top) and till (bottom ) domains.
Characteristic length and velocity scales are | and NI/,
respectively.

given via Equations (50), (51) and (56)) shows that as 8 — 0,
we have Ly 1 = O(f%?), whereas Ly, ,, ~ Bform, n #1, and
therefore v, Hy, Hy ~ 572/3. It follows that both AC; — Cy
and Cy ~ '3 (because b;j ~ 7). The relations in Appen-
dix I now imply that the ice velocity and stresses everywhere
would vanish (as 3/3), whereas the till velocities ~ 7%/3, so
they would “blow up” as  — 0. In other words, the till
velocities would become infinitely large if the till viscosity
nt were to vanish. For small values of nr (< 1), very large
till velocities would be predicted by the model.

The singular behaviour as f — 0 may be anticipated if
we imagine the lowering of a “rigid” ice—till interface,
corresponding to n; — oo. Since our domain has an infinite
span in the z direction, any non-zero velocity at the inter-
face (i.e. v(y = 0) < 0) would result in an infinite sediment
flux towards the channel. However, we suppose that even if
(B were very small, the assumption of infinite span will not
be realistic in practice, and ultimately the sediment flux
would be limited by, say, finite horizontal spacing between
channel—cavities under the glacier.

'To demonstrate the effect of a small but non-zero value of
B, let us put § = 0.1, v = 1. Figure 9 shows the computed
velocities. On comparison with Figure 3, we can see (as
predicted) the elevated till velocities and rate of subsidence
at the interface, while the region of subsidence also becomes
more extensive. (It becomes infinite if 3 — 0. The dividing
streamline in this case occurs far away from the channel,
with —4 $24<-3.5.

To summarize the preceding results, we plot the interfa-
cial velocities vi(z,0), vr(x,0), ur(x,0) and the normal
contact stress oy, (, 0) in Figure 10 (showing only portions
in z < 0), for the cases (I) § = v = 1, which is our control,
(I B =10,y =L (IV)B=1Lvy=0Land (V) 3=0Lv=
1. We see that stress concentration at the margin is always
present. The general effect of decreasing the value of 7y is to
reduce till velocities (and till flux into the channel) and the
rate of subsidence of the interface. On the other hand, redu-
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Fig. 10. Dimensionless ice/till velocities and normal contact
stresses on 'y = O, for the four parametric cases (1) B =~y =1,
(1) B =107 =1, (IV) B= Ly =0Land (V) B =01
v =1 (a) Vertical ice velocity vy, (b) vertical till velocity v,
(¢) horizontal till velocity wr, (d)normal stress o,. Charac-
teristic length, velocity and stress scales are I, Nol/ny and N,
respectively. As the problem is symmetrical about the y axis, only
results in x < 0 are shown.

cing (B has the opposite effect, and it also increases the lateral
extent of the subsidence. Generally we have u(—1,0) > 0
(except when (3, v — o0, or v = 0), so a net “stretching” of
the interface takes place, 1.e. the channel closes laterally. We
discuss the implications of these results in section 6.

5. EXTENSION FOR COMPRESSIBLE-PERMEABLE
TILL

Hitherto, a till with constant viscosity and density has been
assumed to enable a most basic analysis of coupled deform-
ation. We now examine how spatial variation of 7r might
more realistically arise from interaction between the
mechanical and hydraulic behaviour of the till.

We do this by adopting the model proposed by Fowler
and Walder (1993). There are several reasons for this choice.
Their model is amenable to a continuum formulation. It is
capable of describing non-linear dependence of 71 on the
stress state within the till, based on Equation (4). And as
such, it is also sufficiently general, for, as we demonstrated
earlier, Equation (4) can approximate a “near-plastic” till
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rheology. We must, however, note that the various assump-
tions behind this model still await experimental validation;
therefore, the results here are best viewed as tentative exten-
sions of those in section 4 and should be treated with cau-
tion. Given such reservation, it seems logical to avoid full
numerical solution but emphasize the qualitative aspects of
the problem. This we shall achieve via a scaling analysis.

5.1. Model formulation

Let us refer to the set-up as before, in Figure 1; but here we
focus on what happens in y < 0 only, and we assume, more
realistically, that the till is saturated and conducts pore
water at pressure py, varying with position. As mentioned
in section 3, py is a surrogate of the effective stress N, which
1s assumed to play an important role in controlling till vis-
cosity. Determination of till velocity thus requires also that
the water-pressure distribution py (z, 3) be calculated.
Percolation of water within the till is caused by spatial
variations of py, as described by Darcy’s law. However, it is
also modified as the till deforms, since water is advected by
sediment motion and the till may dilate or compact. Hence,
there is a complicated coupling between the problems of till
deformation and water drainage. In the following, we build
up a mathematical description of these processes with the
goal of identifying their relative roles in the deformation.
As can be expected, N will appear as a key variable in
describing the flow of both sediment and water. By definition

N =P —py, (63)

where P is the overburden pressure in the till. This is not the
same as p;, which is the stress that the ice—till interface must
support (on average)in order to balance the weight of the ice
above. Instead, P describes the isotropic stress state at any
position (i.e. it is a function of z and y). Its tensor definition
is given later.

Depth of deforming t1ll

To facilitate discussion, we begin with the scenario where N
generally increases with depth (in the minus y direction),
leading to a similar trend in the yield stress 7. via Equation
(2), 1.e. the till becomes progressively stronger at depth. This
1s the case if basal meltwater percolates downward through
the till to an aquifer below. Given a sufficiently large basal
shear stress 7, to cause yielding, deformation would there-
fore occur within the upper layer of the till (the “A-horizon”,
where 7, < 73,; see Boulton and Hindmarsh, 1987). The
deforming thickness d depends on many factors, including
sediment porosity and density, the basal melt rate and also
the interfacial water pressure (see, e.g., Hindmarsh, 1997;
Equation (1)).

The situation is more complicated when a channel—cavity
is present. Non-uniform pressure distribution in its vicinity
would distort the yield boundary, so that d varies in the x dir-
ection. Strictly speaking, then, d(z) has to be determined as
part of the solution of a more general problem, as a free
boundary. But a first assumption would be that this boundary
is essentially horizontal. Although this is not the general case,
it is not an unreasonable starting-point because (i) d would
be approximately constant far from the channel if one
assumes that the uniform scenario (discussed in the last para-
graph) prevails there, and (ii) below the channel both the
shear stress of deformation and the effective stress would
diminish (this is consistent with our results later), such that
there is partial cancellation of these opposing controls on d.
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In the model that follows, we therefore prescribe a constant
value of d (as in section 4). Obviously, the more advanced
problem of determining the yield boundary is worth investi-
gating, but this necessitates speculation of drainage condi-
tions beneath the till, which rather detracts from our present
purpose.

Till rheology in tensor form

We now extend Equation (4) to describe more general deform-
ation of a compressible two-phase medium, following Fowler
and Walder (1993). First, let us define the stress tensor o;; and
strain-rate tensor &;; for the “bulk” till (sediment and water),

6”72 (’)xj 8.231‘ ’

and u = (u1,ug, uz) = (u,v,w) is the tll velocity vector.

where

(64)

The usual tensor notation is assumed, with indices ¢,j (and,
later, k) taking the values 1, 2 and 3. (21, 2, 23) = (2, Y, 2)
denotes position in the till. We also introduce o;;/, given by

0ij = 0ij + Pubij, (65)

which is the part of the stress transmitted by the sediment
only. (6;; =1for ¢ = j, 6;; =0 for 7 # j) It is this quantity
that causes flow, consolidation and swelling of the till.

Since 05’ derives from subtracting pore-water pressure
(compressive) from the bulk stress, it is in fact an effective
stress tensor, 1.e. an extension of IV (see Clarke, 1987, equation
(16)). Indeed, by defining N and P formally via

N=-— %"/ P=- % ,
and then summing* the normal components of Equation
(65), we recover Equation (63). As mentioned earlier, P is
the average compressive stress within the till.

1o relate the stresses and strain rates, Fowler and Walder

(66)

(1993) assumed that there is an sotropic, apparent till viscos-
ity given by
nr = AT_lTl_aNb (67)

(based on “7/¢” in Equation (4)). A suitable constitutive
relation in three dimensions is then

Tz'j . 1
— =¢;; — = (V.u)d;;, 68
= = 5 (Vs (63)
where 7;; is the deviatoric stress tensor, i.e.
1
Tij = 0ij — gak:k/tsij : (69)

The last term in Equation (68) has to be included because
the till is compressible: V.u = €, # 0; the preceding factor
1/3 ensures that 7y sums to zero. Also, 7 in Equation (67) is
now interpreted as the second stress invariant, 1.e.

3
27225 g TijTij -

J=1

3
(70)

?

By using Equations (65) and (66)9, Equation (69) reduces
more simply to

Tij = Oij + P(SU . (71)

* . . .
Repeated indices denote summation,
3
e.g Ok = Y iy Tii-
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Equations (64), (67), (68), (70) and (71) constitute our rheology
description.

Mass and momentum conservation

Let U = (U, V, W) be the water flow velocity relative to the
till matrix, and let g be vector gravity. Darcy’s law may be
written as

U= -1

W

(va - ng)a (72)

where py, and iy are, respectively, the density and viscosity
of water. The till permeability kt depends mainly on
composition, with a wide range of values from 10 ' m?
(clay-rich) to 10 m? (coarse gravel) (Freeze and Cherry,
1979, table 2.2); we therefore take it as prescribed. The
porosity ¢ appears in Equation (72) because U is a linear
velocity (averaged over pore spaces within the till) rather
than the Darcy flux (which is ¢U). Moreover, ¢ decreases
with N. Empirical data suggest that approximately
d¢ K

=)= (73)
(derived from Clarke (1987), equation (35)), where & is a com-
pression index; typically, £ ~ 0.1 (Fowler and Walder, 1993).

Next, mass conservation for each phase requires that

Solid : —%gf—&- V.[(1-¢)ul=0,
Liquid : % +V.[p(u+U)] =0, (74)

where we have ignored internal comminution and losses due
to washing out of fines. The momentum equation for the till is

80'1‘]‘
— ;i =0, 75
oz, + o1y (75)
where pr is the bulk till density, given by
pr = ¢pw + (1= @)ps (76)

(ps 1s the density of till solids).

Two-dimensional model
On applying the plane flow condition 9/0z = 0, the devia-
toric stress components given by Equations (68) and (64) are

2
T = /iy (Quy —vy), T= Gl (2vy —uy),
3 3
2
T33 = —%(ux +uvy), T2 =n7(uy +v,),
Tag = NTWy, T31 = NTWy - (77)

Under the pseudo-steady approximation 9/0t = 0, Equations
(70), (72), (74) and (75) then lead, respectively, to

r=me{ G100 = )]+ (a0

)+ (wyf}i (8)
o kT apw
oU = 7/7;»%7
_ 6p“
oV =2 (Bt ). (79)
0 0
e+ + 5 (80) + 2 (V) =0
N, o, =N o)+ V)], (s0)
592
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and
2 o s = )]+ 5 e + 0] = P
S bty + 0]+ 32 re(20, — )] = Py + pr,
0 0
5 sl + By [mrw,] = 0. (81)

Equations (80) are alternative forms for mass conservation:
(80); is the sum of (74); and (74)9, while (80)y has been
derived by using (74),, (80); and (73).

Equations (63), (67), (73), (76) and (78-81) complete our
model for describing coupled deformation/percolation. The
principal variables of interest are (u, v, w) and N; the domain
is —d < y < 0. (Note that if the till viscosity was constant, i.e.
a =1,b =0, and Darcy flow could be neglected, i.e. U =V =
0, then Equations (80), and (81), 9 would simplify to our
Stokes flow model for till in section 4.1)

We impose the following boundary conditions: (1) a static
stress field far from the channel (thus deformation vanishes
there also), (ii) a far-field pore-water pressure ps (< pi) on
y = 0, (111) no relative sliding or through-flow of water at the
ice—till interface and the yield boundary,” (iv) a constant
channel pressure p. as before (the shear stress exerted by
water flow on the till is negligible), and (v) in the z direction,
a constant basal shear stress 7, at the ice—till interface. We
also assume that the normal/shear stresses and velocities u
and v at the ice—till interface are given, and that they take
the general forms as found in section 4, i.e. v, 092 < 0,
u x sgn(z) <0, 012 X sgn(z) >0 close to the channel, and
u, v, 012 — 0, 099 — —pj as |x| — 00. Summarizing then, we
have:

L(y=0, |z|<1):012 =093 =0,—02 = pw =pe; (82)
L’( =0, |(L">l) o3 =T, U=V =0,

099, 012, U, v prescribed; (83)
By=—-d): u=v=w=U=V=0; (84)
and as [z — 00 Py — P — Pugy, 012 — 0,

o1, 02 = —pi + p1gy. (85)

Here, the first three boundaries have been labelled L, L’
and B for ease of identification later.

Remember in section 4, we showed that the interfacial
normal stress (092(, 0)) “blows up”at the channel margins
for a wide range of parameter values. This stress singularity
seems to be counter-intuitive, but is not disastrous as long as
it 1s integrable over length, such that the force involved is
finite (see section 4.3). We suppose it is indicative of the need
to incorporate extra physics (in this case, probably thermo-
dynamics) locally near the channel margins, which in reality
would prevent the stress from becoming unbounded there;
possible mechanisms, not addressed here, include lowering
of the melting point of ice and/or regelation penetration of
ice into till (Iverson and Semmens, 1995). But at the least,

* The latter boundary condition excludes water-flow input
due to basal ice melting or ground-water flow. We make
this simplifying assumption because any non-zero vertical
flow (with velocity of up to millimetres per year) will lead

7?) when 7 is small) in

the pressure solution and does not alter our conclusions

to minor corrections only (of O(

later in section 5.3.
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such prediction of singular stress provides a reasonable basis
for assuming elevated stresses near the channel margins, in
terms of posing boundary conditions for the current non-
linear problem.

5.2. Non-dimensionalization

The model may be non-dimensionalized by choosing the
length scales [z] =1, [y] = 7l, together with other assign-
ments shown in Table 1, where 7y is defined as before, by
Equation (22),. (It is chosen to affect the desired depth
scale) We non-dimensionalize the vertical velocities v and
V by using y[u] and y[U], respectively, as scales, so as to
balance flux terms in Equation (80) .
By choosing the relations

2N
= A N, =T
[7]
~lm, kr[N]
w| = , U] = , 86
W= )= (56)
the dimensionless model equations are
N=P-— Pw
nr = TliuNb )
¢,(N) = 7H/Na
pr=1-(1-1)9, (87)

r= e ) 2?0 + 0, + 0]

2.4 1/2
4537 {(uw)Q_ Uz Vy +(Uy)2}} 7(88)
ov=-L
VoV = ——" —qar, (89)
KA 0
us oy 2y [ (0U) + a—y(W)} =
ul, oy, = 209 [gwm (%(W)} C(90)
ety +7202)] + 2 e (20 — )],

:(‘3—3/ 3 Ox

Py = —apr

9
Ay

0 0
B (nrwy) + 7 5y (rwe) = 0.

w2 oty + )]+ 0 20, — wl |
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Table 1. Characteristic scales for the variables appearing in the
dimensionless model of section 5.2. (| | denotes “the scale of )

Variable Scale
z l
Y Yl
¢ 1
pr Ps
e [7]
u [u]
v Y[yl
w [w]
4 (U]
v (U]
N? P» Pw (alSOPiJ)cJ)oo) [N]
7 (and 05, 7ij) T

The boundary conditions reduce to

Ly=0,|z|<1): uy+~*0, =0, w,=0,

N =290 (2vy — ug)/3, pw=pc; (92)
L'(y=0, |z|>1): nqwy,=1, U=V =0,
099, 012, U, v prescribed; (93)
B(y=-1): u=v=w=U=V =0; (94)
and as || = 00 py — Do — YOTY,
u, v— 0, N — Ny —~yapry, (95)
where
Noo = Pi — Doos (96)
and the parameters are
_Pw o, pd 5:M’ _ krln] (97)
Ps [N] Th Fopel?
Here, Ny (positive) is the dimensionless far-field effective

A (o< o/ [ )
and as we shall see, 0 plays a part in controlling the (iso-
tropic) till viscosity 1. The effect of these parameters will
be described in section 5.3.

stress; is a permeability/deformability ratio;

If we use the constants listed at the beginning of the
paper, together with kt =10~ 19 (clay) to 10 ¥ m? (gravel),
k ~ 0.1 (Fowler and Walder, 1993), and prescribe the nom-
inal values [] = 10" Pas, [ = 1m, [N] = 1 bar, 7, = I bar,
then the last three of Equations (86) give

[u], [w] =10°y* m s, [U~107" to 10° m s ?,
(98)

and the dimensionless parameters are

ra~04, a~03, §=1, A~ 107" (clay) to 10 (gravel)
(99)

(so that kA ~10 ° to 1). We assigned a mid-range estimate of
[n] from Paterson (1994)rather than specific values of Ar, a
and b because of the uncertainties mentioned in section 3. In
this way, the possibility of non-linear rheology and variation
of nr 1s still retained in the model by way of Equation (87).
(We shall suppose that a > 1, b > 0)The point is that the
parameters 7, « and ¢ would typically be of order unity,
whereas A can vary widely depending on the nature of the
till (which determines kt and [1]), and to some extent on the
channel size being investigated. In particular, fine-grained
subglacial till will generally have low permeability, leading
to A (and kA) < 1; this is true even if [ is decreased to 0.1 m.
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Finally, the principal basal shear stress 73, enters the
model via boundary condition (83); and the parameter ¢ in
Equation (97)5. Since a typical range for 7. is 10—-100 kPa
(see Paterson, 1994, table 8.1), with the chosen value for 7,
we may assume that the requirement 7, > 7. has already
been satisfied. In this connection, it is generally inferred
that the deforming depth d does not exceed several deci-
metres (Alley, 2000; and as example, see Engelhardt and
Kamb, 1998). Therefore, unless small channels (where [ <
0.1m) are specifically considered, we may anticipate that
7 < 1. In the next section, we focus on channels/cavities with
a span of 1m or greater, and hence the case v < 1 will be
analyzed.

5.3. Analysis: “shallow” till

Putting v < 1 facilitates a low-order approximation of the
model, which may be written as follows:

m=1"NY ¢/(N) = —k/N, (100)
T rfw? + (w2 + 6%u2)] 7, (101)
_ O Opw )
oU = e oy yar —y*¢V,  (102)
9 49* d(nru,) )
p == i
P, = —yapr + O(7*), (103)
and
kA 9
Uy + Uy = *?[Nyy + 7" (Naz — Pra)),
Al —
uNy + vNy ~ ('%QS)N[NZ/Z/ + '72(N:m> - me)L (104)
0 0
o (nrwy) +7° 5 (nrws) = 0, (105)

where N = P — py. We assume a > 1, b > 0.

These equations have been derived by perturbation
expansion of Equations (87-91) in the limit as v — 0. (We
have substituted for U and ¢V in Equation (90) in terms
of N and P using Equations (89) and (87),) Without solving
them, it is possible to infer the general characteristics of the
solutions.

To leading order in 7y, Equations (100), and (102), for the
unknowns n and U decouple readily from the rest; the
boundary conditions become

L:nrwy,=0, uy=N=0, py=0pc;
L' :npw,=1, U=V=0,

092, 012, U, v prescribed;
B:u=v=w=U=V =0,

|z] = 00 Py — Poos N — Ny, u, v—0.  (106)

In the following, we consider solutions in =z <0 only,
because of symmetry of the problem.

Velocity field
Equations (103) describe how the till is being deformed, and
Equation (103),in particular defines the problem for u(z, ).
However, the till viscosity, determined implicitly via Equa-
tions (100); and (101), depends also on w and V; on eliminat-
ing 7, we obtain
nr A~ Nb/a[w!Q/ + ,YQ(wi + 52“@)](17(1)/211
~ NV, |/ (107)
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Thus (to leading order), 1 locally is controlled by both the
principal shear deformation and the effective stress.

We first discuss what happens outside the channel. In x < —1,
the leading-order solution of Equation (105) satisfying the
boundary condition nrw, =1on L isjust w, = n3', where-
by Equation (107) shows that nr = N° (and hence
w, = N7).To O(v) accuracy, Equations (102), and (103),
imply that both the pore-water and overburden pressures
are approximately static. Specifically as v — 0, py, P (and
hence N) become functions of z only, so then Equation
(103) ; reduces, at leading order, to

2
%: N’b% (inz<-1).
This equation can be integrated straightforwardly using the
boundary conditions v = 0 on B and the known value of w on
L, giving a parabolic velocity profile at each value of = (see
Fig. 11b). As we can see from Equation (108), here the flow is

(108)

driven by the overburden pressure gradient, with N modulat-
ing the local viscosity. In dimensionless terms, o9 =
—P + 29*n1(2v, — u;)/3 ~ —P. We showed in section 4.3
that generally, 099 — —p; as * — —00, and 09 exhibits a
negative singular behaviour at the margin = —1. (In addi-
tion, we shall see that IV has to decrease from its far-field
value Ny, to zero on L) Therefore, dP/dx (which is positive
in ¢ < —1) would increase markedly as we approach z = —1
from the outside, and the model predicts sediment flow away
from the channel, with the velocity decaying as we move
towards the far field.

On the other hand, we have P >> p; just outside the chan-
nel, P = p, just inside, and thus at the margin (z = —1) itself,
dP/dz is undefined. This induces a large sediment flow
there wnto the channel. We can also approximately solve
Equations (103); and (105) inside the channel. In —1< x <0,
sensible leading-order solutions are w = u = 0 (1 vanishes
also). Thus, sediment-flow velocities at the margin must
decay as we move inside the channel.

The velocity field w is therefore quite complicated: till
deforms away from the neighbourhood of £ = —1 both into
the channel and to the far field (Fig. 11b). The sign change
in v must be accompanied by a dividing streamline adjoin-
ing L' and B (cf. section 4.3). Across the margin, an abrupt
switch occurs between the leading-order solutions (for both
uwandw) inz <—land -1 < x <0. How are these achieved?
So far, our derivation has neglected  derivatives, specifically
the terms v20(nru,)/0r and v*0(nrw,)/dx appearing in
Equations (103) ; and (105). As © and w fluctuate rapidly near
the margin, these terms become important and the leading-
order approximations break down. Roughly speaking, this
happens within a distance” of O(7) from the margin (corres-
ponding to a width of the order of the till thickness). In this
transition region, the discontinuities are smoothed out. We
show these results schematically in Figure 11a and b. (Math-
ematically, the equations which describe the transition
region constitute what is known as an “inner” problem.
Solution of this is not attempted here.)

In summary, we expect the creep flow to be concen-

* This estimate is deduced by rescaling the z axis by the
factor 7y, which would then bring back the = derivatives
in the (subsequent) leading-order approximation of
Equations (103), and (105).
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Fig. 11. Schematic diagram showing structure of the dimen-
stonless solutions to the till-deformation—percolation problem
near the lefthand channel margin, at leading-order accuracy
Sor v < L Boundary conditions at the channel—cavity (L,
deeply shaded ), ice—till interface ( L' ) and the lower deform-
ing boundary (B) are given. Leading-order solutions are
underlined. Regions of transition between the leading-order
solutions are lightly shaded. (a) Velocity gradient Ow/dy.
(b) Horizontal velocity field w(x,vy); parabolic velocity
profiles inx < —1are given. (¢) Effective stress distribution
N(z,y) for a “low-permeability till” where A v* < 1. (d)
The inferred coupled flow field/stress field for A/v* < 1.
Solid arrowed curves denote streamlines of the deformation.
(4, 0) denotes the start of the dividing streamline.

trated in the neighbourhood of (%1, 0), mainly due to the
contact stress singularity, but also because of till viscosity
reduction there as N is reduced from N,,. Within the trans-
ition region, Equation (107), shows that reduction in 7y is
further enhanced by the flow itself] since (1 —a)/2a < 0,
and the term *(w}, + §*u; ) will become significant. Here,
the size of ¢ helps determine the importance of du/dy as
compared to dw/dy (which represents 712) in this reduction.
We consider N(z, y) next.

Effective stress and permeability limits
Let us say v = 0.1, then with the current scales we obtain

A
107! (clay) <= <10° (gravel).

~ 4~

(109)

But generally this ratio can fall within an even greater
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range, since we have taken only nominal values for kr, 7], [
and 7. (Remember A o kr/[n] 1) Specifically, A/7* can
be small or large, depending on the till composition. As we
now demonstrate, the end limits of this parameter allow
decoupling of the deformation and percolation problems,
associated with different approximations of Equations (104).

Equations (104); and (104)o describe, respectively, mass
conservation and convective diffusion of N, and have the
boundary conditions (i) v= 0 on B, (ii) V = 0, so that
ON /0y =0(y) = 0on L' and B, (iii) N — Ny as |z| — oo,
and (iv)N =0 on L. If A/y* < 1, then they simplify to

Uy +vy =0, uN, +vN, =0, (110)

which indicate an essentially constant density till, with the
effective stress N advected (and preserved) along stream-
lines. Since A is a measure of permeability relative to deform-
ability, A/y* < 1 refers to a subglacial till in which Darcy
drainage is relatively inefficient. Then, pore water is simply
carried along with the bulk deformation, and compaction/
dilation may be neglected; this is consistent with the two
results in Equation (110). For convenience, we designate such
till as a “low-permeability till”, even though Equation (110)
in principle applies also to a highly deformable till.

More specifically, Equation (110) is a singular approxi-
mation which breaks down near L’ and B, and also where
N changes rapidly in the z direction, because it neglects
the high derivatives N;, Ny, and P,,. However, boundary
layers for NV will be “weak”, for it is Ny (and not N) that is
prescribed; see boundary condition (ii) above. Conse-
quently, the general distribution of N(z,y) may be inferred
using its boundary values and the flow structure (u, v).

The solution for u has already been described. v is deter-
mined by solving Equation (110), given u. In -1 < z <0,
u = 0, we find at leading-order accuracy v =0 (since v =0
on B), and N = 0 (using N = 0 on L, and the fact that at
leading order N is a function of x only). On the other hand,
the leading-order solution in x < —1 is simply N = N,
since the sediment here flows toward x — —o0, and as we
found earlier, IV is preserved along streamlines. Thus, there
is again a transition from outside the channel to the inside:
N has to switch from N to zero. This takes place in a trans-
ition layer in which the neglected x derivatives(representing
diffusion) become important, and /N and P change rapidly.
By suitable rescaling of the x coordinate in Equation (104),
one can deduce that the transition region has a width of
O(v/A/7). (Thus this is inside the transition region for
velocity, as VA /v < 7) These results are shown in Figure
llc. More precisely, we speculate that this effective stress
transition would take place close to the dividing streamline
which we mentioned earlier, since, as discussed in section
4.3, it separates the till flow into two cells. This is sketched
in Figure 11d.

Finally, we consider the “high-permeability” (or low-
deformability) case A/y* > 1. The corresponding approxi-
mation indicates that the till is diffusion-dominant, i.c.
advection of N is negligible. Equation (104) reduces approxi-
mately to Poisson’s equation,

which is now independent of till velocities (cf. Equation
(110)). Solution of this equation provides a smooth transition

of width O(7) between the leading-order solutions at the
channel bed (N = 0) and far from the channel (N = N).
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(This transition takes place near x = —1 and does not depend
on the position of the dividing streamline.)

Remembering that our width scale is [, the cases
A/y* < 1and A/~* > 1, respectively, give (dimensional)
transition widths of O(v/Ad/4*) and O(d). The former
width is much less than d, whereas the latter is independent
of till properties. If A/4* ~ 1, there is full coupling between
deformation and percolation, and little information may be
deduced; numerical solution is then necessary.

6. DISCUSSIONS

In this paper, two models of deformation near a subglacial
channel—cavity have been analyzed in an attempt to identify
the potential implications of ice—till interfacial coupling for
basal sliding and subglacial drainage/sediment-transport
processes. Since these processes and the evolution of contact
and decoupled regions are irrevocably interlinked, it has
been necessary for us to make various restrictive assump-
tions and isolate the deformation part alone. We considered
the specific scenario where the channel is aligned with the
principal direction of ice flow and the till is deforming;

A non-zero positive value of effective channel pressure
N.(= pi — pc) is found to have two related consequences. It
induces ice and sediment to flow towards the channel—
cavity, and it causes the ice—till interface to migrate via a
combination of subsidence and extension just outside the
channel (i.e. +u(=+l,0) < 0, v(£l,0) < 0). (The channel-
cavity narrows as a result) It is important to realize that
our calculations are based on the pseudo-steady-flow
approximation (in other words, force balance); therefore,
having defined the problem geometry, our models produce
“Instantaneous” velocities in the ice and in the till regardless
of how the problem geometry itself would then respond to
other influences such as sliding and fluvial erosion. Never-
theless, our models are indicative of the general velocity
dependence involved in the deformation.

The results in section 4 show that velocities in the till vary
directly with the thickness of deformation, and inversely with
till viscosity, so that “high” sediment flux can result for a
“weak” till. To give crude examples, let us take A 5 x10 **
Pa® 571, T ~ lbar, n = 3 for ice, so that n = (Am'"’_l)*1
~2x10” Pas (~6bara). Thus, if 7t falls in the stiff end of
the range 10° to 10" Pa s, we may assume 3 ~ 0.1. In this case,
an order-of-magnitude estimate for the till closure velocity
vr(x,0) (ie in the vertical direction) and sediment flux

(~wvr x 20 is, ford = 1 (y =1):

NI 2N, 12 2N, d?
(: : ) (112)

v ~ ) QT ~
m m m

(see Fig. 9). (Here Qr is the sediment flux per unit down-
stream channel distance, and we have used v = d/I to derive
the bracketed term.) If we further suppose N, = lbarand ! =
1 m, then Equation (112) gives vr ~ 03ma ', Qr ~06m”a ',
which are small indeed. However, reducing the value of ny
(and hence B) can greatly increase the flow rates. Using the
result in section 4.3 that vp o #~%3 for small 3, a three orders
of magnitude reduction of n from 10" t0 10° Pa s would lead to
vp ~01md 'and Qr ~02 m>d ], for instance.

To complete the picture, we note that the deforming-till
thickness may only be a fraction of the channel width. Say
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d = 0.1 m; then, on extrapolating similarly the results for

“shallow till” (y =0.1, 3 =1),
Nl N.ld N.d?
( 0.1 > (113)
my

v ~ 0.05—=, Qr ~ 0.1

Ui Ui
(see Fig. 8; note that Q1 ~ v X 2d in this case), we obtain,
for nr = 10°Pas (ie. B~ 10", vr ~ 002md ' and Qr
~0.004m?d . The point is that, provided that the till vis-
cosity is towards the low end of the spectrum, the predicted
sediment flux can still be significant. This conclusion does
not depend sensitively on the effective ice-viscosity value
being used, since increasing 1y would increase the denomi-
nators in Equations (112) and (113)but also reduce 3, which
has the opposite effect. For a given till viscosity, we have
VT X 51/3. Hence, a factor of 10° increase in nr would reduce
the velocities and fluxes by a factor of 10 only. (In addition,
we may deduce from the bracketed terms in Equations (112)
and (113) that for a given deforming depth d, a large channel
(where v < 1) 1s a more efficient sediment collector than a
small channel (where v > 1), if steady flow conditions were
to prevail in the channel))

Likewise, although the velocities of lateral migration of
the contact margins (u(%l,0)) are only a fraction of v (see
Figs 3 and 7-10), they may become relevant in a sliding
theory that considers the basal stress distribution between
contact and decoupled regions. This 1s particularly true if
these two types of region occupy comparable areas, as may
occur for a distributed system of subglacial channels or cav-
ities. The actual migration velocities are likely to be higher
than those predicted here, since marginal stress localization
will soften the ice there (reduce 1), and for non-linear vis-
cosity till, we showed also that there is further reduction of np
in the neighbourhood of the channel margins (section 5.3).

If a shallow deforming till is underlain immediately by
bedrock, then subsidence of the ice—till interface may (even-
tually) lead to pinch-out of the till near the channel margins.
Since ice—till and ice—bedrock interfaces are likely to exhibit
quite different mechanical properties, this presents another
mechanism whereby the nature of basal contact regions may
be modified. Although the problem geometry changes con-
tinuously as the thinning process takes place, a rough esti-
mate of the pinch-out time-scale (for n; = 10" Pas, nr = 10”
Pas, N, =lbar, I =1m, d = 0.1m) based on extrapolating
Equation (113),, is [t,] = 208%*3dni/ Nl ~ 5d; the thinning
can be quite rapid. On the other hand, if the sediment deposit
was deep, a natural extension would be to incorporate a yield
stress in the model, which leads to a free boundary problem.
Besides being useful in verifying our assumption of constant
deforming thickness, this may have interesting geomorphic
consequence. The pinch-out process, together with downward
migration of the yield boundary near a subglacial channel,
may provide a mechanism for the formation of tunnel valleys,
as first envisaged by Boulton and Hindmarsh (1987).

The tendency for the system to increase the contact area
between ice and till (and conversely, to decrease the channel
arca) may have implications for channelized drainage. Since
our model does not consider the effect of fluvial processes on
the till, it is not possible to say at present whether soft-bed
channels can remain stable, and under what conditions they
would do so. Conceivably, channels can persist if the time-
scale for coupled deformation is significantly longer than
that for sediment erosion and deposition (see Ng, 2000). Even
without resorting to elaborate drainage theories, however,
we can see that till sediments relocated to within the channel
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will become susceptible to fluvial erosion. In this way,
coupled deformation provides a transport mechanism which
should not be neglected in sediment budget analysis.

Obviously, the foregoing inferences are somewhat limit-
ed by uncertainties in till rheology, especially by plausible
values for (the range of) 11, a and b, and thus they are at best
qualitative; but they do suggest that closer examination of
coupled deformation is warranted. And more than anything
else, our investigation points to the need for more detailed
measurement of till rheology. Only then might it be possible
to generate a quantitative theory that encompasses soft-bed
sliding and drainage consistently.
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APPENDIX I

(a) Combinations of C5...Cg(\)

Let us define

P1 = /\Cl — CQ, and PQ = /\Cl . (Al)

Manipulation of Equations (43), (44), (46) and (47) then

leads to
P
Cs—Cs W (A2)
Cyt-Cy = VAP, + [yA—cosh(y\) sinh2(7)\)]P2/)\ (A3
Bleosh®(4A) + (vA)7]
2 . y a
06_04:cosh (7/\)P1+[cc;sh(fy/\) 51nh(2fy/\) YA Py (A4)
Bleosh™(yA) + (vA)]

Cot Cy= [cosh(yA) sinh(yA) +yA] Py +cosh® (yA) P, (A3)

Bleosh® (7A) + (vA)’]

(b) Formulae for the stress and velocities

The following results have been derived by applying the in-
verse Fourier transform in Equation (29) to the stress/
velocity relations in Equations (23), (27) and (28), then sub-
stituting for W, I, 2 and K from Equation (33).
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(i)  Ice domain (y >0)

u(z,y) = iF{[(1 - yA) P + yAPsJe ™}, (A6)
v(x,y) = iF{[-yAPL + (1 + yA) Ple "}, (A7)
0ae(,y) = 2F AN(2 = yA) P — (1 — yA) Pole '}, (AB)
Ouy(,y) = =2iF{N(1 —y\) P + y)\Pg]e_y’\} , (A9)

(2,y) = —2iF AN~y AP, + (1 + y\) PoJe "} . (A10)

Oyy\ T,
(i1) Till domain (—y <y < 0)
Define ch = cosh(y)), and sh = sinh(yA), then

u(z,y) = —iF{A[sh(Cs + C5) — ch(C5 — C5)]
+ (ch + yAsh)(Cs + Cy)

+ (Sh + y)\ch)(CG — 04)} y (All)
v(z,y) = iFAAch(Cs + Cs) — sh(C3 — C5)
+ ych(Cs + Cy) + ysh(Cs — Cy)]}, (A12)

O'M;(l‘, y) = —QZﬂfc{A[/\Sh(Cg + 05) - /\Ch(Cg - 05)
+ (2ch + yAsh)(Cs + Cy)

+ (2sh 4+ yAch)(Cs — Cy)l}, (A13)
oy, y) = Qiﬁ]:c{)‘Z[Sh(CB + Cs5) — ch(C3 — Cs)
+ ysh(Cs + Cy) 4+ ych(Cs — Cy)]}, (A14)

Ouy(x,y) = —2iBF {A[Ach(Cs + C5) — Ash(Cs — Cs)
+ (sh + yAch)(Cs + Cy)

+ (ch + yAsh)(Cs — Cy)]} - (A15)

APPENDIX II

The limit v — oo

Given Equation (59), Equation (55) implies that Ly, , = 0
when m + n is odd, and that

8 [,
Lnn= =557 0/ X)L A (AlL6)

when m +n is even. By applying the standard result
(Gradshteyn and Ryzhik, 1980, p.679)

-1 _[1/2m, m=n
/)\ I (N)Jn(A) dA = { 0, m £ n (A1T)
0
we may further deduce that
B 1/2m, m=n
Lrn n— " 5 1 ’ Al
B+1l 0, m#mn, (A18)
and hence, by Equation (54), o, = 0 forn > 1, and
(6+1) /m
= - . Al
wm=-121 1 (A19)

The result in Equation (60) now follows directly from Equa-
tions (52) and (53).
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