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Abstract 

Nosemosis, caused by microsporidian parasites of the genus Nosema, is considered a 

significant health concern for insect pollinators, including the economically important 

honeybee (Apis mellifera). Despite its acknowledged importance, the impact of this disease on 

honeybee survivorship remains unclear. Here, a standard laboratory cage trial was used to 

compare mortality rates between healthy and Nosema-infected honeybees. Additionally, a 

systematic review and meta-analysis of existing literature were conducted to explore how 

nosemosis contributes to increased mortality in honeybees tested under standard conditions. 

The review and meta-analysis included 50 studies that reported relevant experiments involving 

healthy and Nosema-infected individuals. Studies lacking survivorship curves or information 

on potential moderators, such as spore inoculation dose, age of inoculated bees, or factors that 

may impact energy expenditure, were excluded. Both the experimental results and meta-

analysis revealed a consistent, robust effect of infection, indicating a threefold increase in 

mortality among the infected group of honeybee workers (hazard ratio for infected individuals 

= 3.16 [1.97, 5.07] and 2.99 [2.36, 3.79] in the experiment and meta-analysis, respectively). 

However, the meta-analysis also indicated high heterogeneity in the effect magnitude, which 

was not explained by our moderators. Furthermore, there was a serious risk of bias within 

studies and potential publication bias across studies. The findings underscore knowledge gaps 

in the literature. It is stressed that laboratory cage trials should be viewed as an initial step in 

evaluating the impact of Nosema on mortality and that complementary field and apiary studies 

are essential for identifying effective treatments to preserve honeybee populations.  
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Introduction 

Numerous insects in most climatic zones play important roles in pollination (Garibaldi et al. 

2013; Klein et al. 2007). Among these, the honeybee (Apis mellifera) can be considered a key 

pollinator for many crops and wild plants due to the high efficiency of its workers in collecting 

and transferring pollen between flowers, which is essential for fertilization and subsequent fruit 

and seed production (Abrol 2012). The significance of honeybees is also underscored by their 

large colonies that enable the recruitment of high numbers of workers for pollination (Abrol 

2012). This makes honeybees particularly valuable for commercial agriculture, where large-

scale pollination is often key to ensuring high yields and the quality of crops (Aizen and Harder 

2009; Morse and Calderone 2000). However, within the agricultural context, honeybees, and 

consequently beekeepers, face a wide range of significant issues (Genersch 2010). These 

encompass challenges such as exposure to pesticides and chemicals, along with susceptibility 

to diseases and parasites (Goulson et al. 2015; Potts et al. 2010).  

Nosemosis is one of the most prevalent and widespread diseases in honeybees, often 

regarded as a significant threat to their health and well-being (Hristov et al. 2020; Moritz et al. 

2010). This disease is caused by microsporidian parasites of the genus Nosema, which includes 

two species that infect honeybees: N. apis and N. ceranae. Although Nosema was recently 

reclassified as Vairimorpha (Tokarev et al. 2020), this revision has faced criticism (Bartolomé 

et al. 2024). To maintain clarity and consistency with the existing literature, we continue to 

refer to the genus as Nosema. Both parasites complete their life cycle within the honeybee 

midgut cells. Upon ingestion, spores reach the midgut, germinate, and inject their contents into 

host cells. Following phagocytosis, the infected cells are destroyed and release new spores  

(Gisder et al. 2011; Huang and Solter 2013), which ultimately result in gut lesions (reviewed 

in (Goblirsch 2018)). Consequently, affected bees become weakened and lethargic, which 

compromises the colony's foraging capacity (Koch et al. 2017). The spores can infect other 
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digestive tract cells or be excreted, contaminating nesting environments and floral resources. 

The fecal-oral transmission facilitates the easy and rapid spread of these parasites to new 

habitats and hosts (Fürst et al. 2014). Therefore, while N. apis was originally confined to 

Europe and North America, and N. ceranae to South East Asia, both species are now distributed 

worldwide (Chen et al. 2008a; Grupe and Quandt 2020; Paxton et al. 2007). The exacerbation 

of this spread can be at least in part attributed to the global trade of honeybee colonies and 

related products (Higes et al. 2008b; Mutinelli 2011).  

Among the two agents responsible for nosemosis, N. ceranae has garnered significantly 

more attention compared to N. apis. N. ceranae was previously known as a parasite of Apis 

ceranae (Fries et al. 1996) and A. mellifera (Klee et al. 2007), but it has recently been 

confirmed to also infect other bee species (Grupe and Quandt 2020; Martín‐Hernández et al. 

2018). However, its infectivity varies depending on geographical origin and host species  

(Chaimanee et al. 2013; Müller et al. 2019; Porrini et al. 2020; van der Steen et al. 2022). N. 

ceranae appears to have higher biotic potential at different temperatures compared with N. apis 

(Martín-Hernández et al. 2009). The spread of N. ceranae is often associated with worker and 

colony mortality, including colony collapse syndrome (e.g., in Spain, (Botías et al. 2013; Higes 

et al. 2008a, 2009, 2010), but conflicting research suggests that nosemosis may not 

significantly contribute to beekeepers’ losses (e.g., (Cox-Foster et al. 2007; Fernández et al. 

2012; Gisder et al. 2010; Kielmanowicz et al. 2015; Pohorecka et al. 2014; Schüler et al. 2023). 

Thus, the precise impact of N. ceranae infection on honeybee mortality remains unclear and 

requires further investigation. 

Laboratory cage trials, a widely used standard method, involve the confinement of 

control and Nosema-infected honeybees in cages and strictly controlled conditions (Fries et al. 

2013). Despite the frequent use of this method, primarily in the search for an effective treatment 

against the parasite (e.g., Borges et al. 2020; Chaimanee et al. 2021; Naree et al. 2021b; Van 
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Den Heever et al. 2016), it has never been formally validated in the context of Nosema 

infection. Fries et al. (2013) compiled a list of commonly used methods, but their real-world  

applicability has never been thoroughly investigated. The described cage trial methods are 

general and leave researchers with a broad range of choices regarding specific conditions. 

Consequently, the trials are often poorly standardized across studies, leading to highly varied 

infection effects. For example, concerning mortality, some studies show a powerful effect of 

N. ceranae infection (e.g., (Naree et al. 2021a; Van der Zee et al. 2014)), while others indicate 

no discernible effect (e.g., (Duguet et al. 2022; Hosaka et al. 2021; Huang et al. 2015; 

Retschnig et al. 2014a)). Such discrepancies may stem from different experimental setups that 

involve, for example, various levels of artificial inoculation or ages of the hosts, both of which 

can affect nosemosis development (e.g., (Berbeć et al. 2022; Jabal-Uriel et al. 2022)). 

Additionally, considering that nosemosis operates through energy-related processes, such as 

hosts’ starvation or failed thermoregulation due to impaired digestive system function (Martín-

Hernández et al. 2011; Mayack and Naug 2009; Vidau et al. 2014), assessing infection effects 

in honeybees maintained in laboratory cages with minimal energy expenditure, stable 

temperature, and ad libitum access to food might be suboptimal methodologically. Hence it is 

not clear how justified the use of this method is in Nosema-related research. 

In this study, an experiment was conducted to compare mortality rates between healthy 

bees and those infected with N. ceranae, using a laboratory cage trial setup. Furthermore, a 

systematic review and meta-analysis of existing literature were performed to explore the impact  

of N. ceranae infection on mortality among honeybee workers in similar experimental setups. 

The primary objective was to assess the effect of nosemosis on honeybee survivorship to 

evaluate the suitability of mortality assessment in caged honeybees as a method. It was 

hypothesized that, generally, N. ceranae infection would lead to a significant decrease in 

honeybee survivorship. However, it was also hypothesized that the magnitude of this effect 
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would depend on mediating factors that often vary between studies, such as the spore dosage 

used for inoculation or the age of the experimentally inoculated honeybees. Incubation 

temperature and food supplementation were included as additional factors that  may impact 

energy expenditure and serve as potential mediators of the effect of infection on mortality. All 

these factors are likely to influence the development and course of nosemosis (Goblirsch 2018). 

 

Materials and methods 

Survivorship experiment  

Preparation of spores for infection and their genetic identification  

The spore suspension for experimental infection was freshly prepared. Utilizing a stock 

population of infected honeybees, the digestive tract of several individuals was homogenized 

with a micro-pestle and suspended in distilled water. To isolate spores, the suspension 

underwent centrifugation (Frontier 5306, Ohaus, Switzerland) for 5 minutes at 2,000 G, 

repeated three times, with each round involving the replacement of the supernatant with fresh 

distilled water. Subsequently, the supernatant was substituted  with a 1M sucrose solution, and 

the spore concentration was assessed using a Bürker hemocytometer under a Leica DMLB light 

microscope equipped with phase contrast (PCM) and a digital camera. Achieving a final 

concentration of 100,000 spores per 10 µL involved appropriate dilution of the infection 

solution with 1M sucrose solution. This dose was subsequently used for individual infection in 

the experiment (a typical dose used to ensure infection (Fries et al. 2013)). To verify the identity 

of N. ceranae spores, PCR was employed following the protocol outlined by Berbeć et al. 

(Berbeć et al. 2022). Briefly, 50 µL of the spore suspension was incubated in TNES buffer 

(100 mM Tris-HCl pH 8.0, 5 mM EDTA, 0.3% SDS, 200 mM NaCl) with 8 µL of proteinase 

K (10 mg/ml) for 2 hours at 56°C with shaking. Following centrifugation, DNA from the 

supernatant was precipitated by adding an equal volume of 100% isopropanol, washed twice 
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in 70% ethanol, and resuspended in 50 µL of nuclease-free water. PCR amplification, using 

species-specific primers complementary to the rRNA genes of Nosema species and a PCR Mix 

Plus kit containing PCR anti-inhibitors (A&A Biotechnology), was carried out under the 

following conditions: 94°C for 3 minutes for initial denaturation and 35 cycles (94°C for 30 

seconds, 52°C for 30 seconds, and 72°C for 30 seconds). Primers were employed following 

Chen et al. (Chen et al. 2008b). The resulting amplification products were analysed through 

gel electrophoresis to confirm the exclusive presence of N. ceranae. 

 

Experimental procedure 

We obtained newly emerged worker honeybees (Apis mellifera carnica) from two unrelated 

and queenright colonies with naturally inseminated queens. The selected colonies were in 

overall good condition, having undergone treatment with oxalic acid against Varroa destructor 

in early spring. Additionally, before the experiment, they were confirmed to be Nosema-free 

through spore count assessment in several randomly collected foragers using hemocytometry. 

For the experiment, we obtained worker bees by selecting a single bee-free frame with capped 

brood from each colony and placing it in an incubator (KB53, Binder, Germany) at 32 °C 

overnight. The emerged bees were used for individual feeding in the laboratory. About 120 

individuals were placed on Petri dishes (30 bees per group and colony) and left for 

approximately 1 hour to increase their feeding motivation. Following this, a droplet of food  

was provided to each bee. In the experiment, individuals in the infected groups (one from each 

colony) received a 10 µl drop of a 1M sucrose solution containing 100,000 spores of N. 

ceranae, while individuals in the control groups (another from each colony) received a 10 µl 

drop of a 1M sucrose solution without spores. The bees were monitored for 3 hours, and any 

bee that consumed the food was immediately transferred to the appropriate cage. Bees that 

failed to consume the provided food were excluded. Ultimately, we achieved a final count of 
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20 bees in each cage. The cages were provided with ad libitum water and gravity feeders with 

1M sucrose solution and were placed in an incubator (KB400, Binder, Germany) at 34 °C. 

Water and food were renewed every morning in each cage. The mortality assessment lasted for 

38 days, continuing until the death of all individuals, and was performed blind (cages were 

coded). We refrained from counting weakened or lethargic individuals as dead, leaving them 

in their cages. All dead individuals were frozen and later analysed to confirm their infection 

status (control vs. infected). 

 

Analysis of experimental samples 

The level of infection in honeybees after the survivorship experiment was examined using 

hemocytometry. The digestive tract of each frozen honeybee was homogenized using micro -

pestle in 300 μL distilled water. The spores were counted in a hemocytometer, analogically to 

the preparation of spores for infection. The contents of 5 small squares (volume: 0.00125 μL) 

were counted. If the number of spores counted per sample was less than 10, the contents of 5 

large squares (volume: 0.02 μL) were counted. To determine the total number of spores per 

individual we used the following formula: number of spores per individual = number of spores 

per sample × 300 μL / total solution volume of sample. We analysed 40 control and 39 infected 

honeybees in total (1 infected sample was misplaced). 

 

Statistical analysis 

To analyse the survivorship data, we used the Cox mixed-effect regression with a fixed factor 

of the group and random factor of the colony in R (coxme, survival, and survminer packages) 

and visualized the results using Kaplan-Meier curves (Kassambara et al. 2021; Therneau 2022, 

2023). We chose Cox mixed-effect regression for our survival analysis to account for random 

effects and estimate hazard ratios in the control and infected individuals. 
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Systematic review and meta-analysis 

We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 

(PRISMA) guidelines (Moher et al. 2015). The review and its protocol have not been pre-

registered. 

 

Eligibility criteria 

We first prepared a list of eligibility criteria for studies to be included in the systematic review 

and meta-analysis: (i) in English, (ii) with the use of workers of the honeybee (Apis mellifera), 

(iii) comprising a laboratory experiment with a treatment group, i.e. workers exposed to N. 

ceranae spores, and a control group, i.e. workers exposed to no Nosema treatment, and (iv) 

reporting a measure of mortality in the form of a survivorship curve. 

 

Data sources and search 

We completed an electronic search of documents on October 31, 2022. For this, we used Web 

of Science™ and the Scopus databases. Our search used the phrase “nosema mortality apis” in 

the topic, as well as a forward search (i.e. documents citing one or more works on the list) 

refined by the same phrase in the topic. References were de-duplicated using Mendeley. The 

screening was conducted in two phases. First, we screened the documents for potential 

inclusion based on their titles and abstracts. Second, we retrieved the full texts of potentially 

eligible documents for further reading. This action was done independently by two 

investigators and the full texts retrieved by just one or both were used. 
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Extraction of study details and study exclusion 

From the selected studies, we extracted the following types of data: (i) inoculation dose (spores 

per individual), (ii) age of the inoculated workers, (iii) food provided to the workers (plain 

sucrose or with supplements), (iv) the number of individuals per cage as well as the number of 

replicates and the resulting group size (N), (v) days of mortality assessment (i.e. duration of 

the survivorship analysis), and (vi) incubation temperature. Further, we noted (vii) the 

inoculation method (individual or collective) as a factor likely to compromise the accuracy of 

the above-mentioned data type (i) and, as such, a potential methodological mediator of the 

effect of infection on mortality. This action was completed by one investigator. Studies were 

excluded if (i) survivorship figures were unreadable, (ii) infection dose or method was not 

specified, (iii) group size was not reported, (iv) Nosema spores used were of mixed species, (v) 

worker age was unknown. There was also one case in which the survivorship was reported for 

only 24 hours and another case in which the results were already reported in a different 

publication (duplicate results). Both these works were excluded. For the full list of references 

containing the studies excluded during the second phase of screening see Appendix A. 

Among the included studies, some did not specify the number of replicates (4 studies) 

or incubation temperature (1 study). In these cases, we noted the number of replicates as 1 and 

the temperature as 33 °C (the median from the other studies). Further, some works used 

multiple Nosema populations with different geographic origins (1 study) and multiple 

inoculation doses (3 studies), but with a single control group of workers. Thus, a single infected 

group of workers had to be chosen. In the case of multiple Nosema populations, we selected 

the group infected by spores from a population corresponding geographically to the honeybee 

population. In the case of multiple inoculation doses, we selected the group with the lowest 

inoculation dose as studies that utilize low doses are rare.  
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Risk of bias 

The risk of bias was assessed by two investigators independently, with disagreements resolved 

by consensus, using a modified SYRCLE tool (Hooijmans et al. 2014) and visualized with a 

summary plot in R using the robvis package (McGuinness 2019). We used the following 

assessment categories: (1) whether baseline characteristics of animals allocated to the control 

and infected groups were likely similar (low bias if were similar, high bias if were not similar, 

unclear if there were differentiating factors of unknown effect), (2) whether housing conditions 

in the incubator were randomized (low if cage positions were switched, high if cages were 

stationary, unclear if randomization was not mentioned), (3) whether investigators assessing 

mortality were blind to the group identity of animals (low bias if were blind, high bias if were 

not blind, unclear if blinding was not mentioned), (4) whether the contamination was measured 

and reported (low bias if was measured and reported, high bias if was not measured or not 

reported, unclear if was not mentioned), (5) whether there was any commercial funding for the 

study (low bias if none, high bias if funded by industry, unclear if was not mentioned). These 

assessment categories had the highest relevance in the context of our systematic review and 

meta-analysis. 

 

Data extraction for survivorship 

To assess worker mortality in the selected studies, we computed hazard ratios (HRs) by 

reconstructing Kaplan-Meier curves from figures included in the papers using a Web Plot 

Digitizer (Rohatgi 2022). This action was performed first by one investigator, and then checked 

for completeness and accuracy by another investigator, with corrections applied if needed by 

consensus. Curve construction, HRs, and confidence interval calculations were performed via 

methods and R script from Guyot et al. (Guyot et al. 2012).  
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Meta-analysis 

Analyses were conducted in R using the random-effects meta-analysis function (rma) in the 

metafor package (Viechtbauer 2010). Data are reported such that increased death in infected 

groups resulted in HR > 1.  

 

Publication bias 

Publication bias, the failure to publish null results from small studies, was assessed visually by 

examining the degree of effect asymmetry in the funnel plot (standard error plotted against 

HRs, Appendix B) and was evaluated statistically via the rank correlation test. 

 

Exploration of data heterogeneity 

Heterogeneity was assessed using the Q and I2 statistics. To explore potential causes of data 

heterogeneity, we conducted meta-regressions. These regressions included inoculation dose, 

inoculation age of workers, and incubation temperature as continuous moderators, and food 

supplementation (sucrose or supplement) and inoculation method (individual or collective) as 

categorical moderators in the random-effects model.  

 

Quality of evidence 

The strength of the body of evidence was assessed by one investigator using the Grading of 

Recommendations, Assessment, Development, and Evaluation (GRADE) guidelines (Guyatt 

et al. 2011). The quality of evidence was based on the study design and decreased for risk of 

bias, publication bias, inconsistencies, indirectness, or imprecision in the included studies as 

well as increased for the size of the effect or dose-response relationship. 
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Results 

Survivorship experiment 

Cox regression showed a significant effect of the infection (control vs. infected group of 

workers, z = 4.77, p < 0.001). The hazard ratio for the group infected with N. ceranae spores 

was 3.16 [1.97, 5.07] (Fig. 1), indicating that the risk of death in infected bees was three times 

higher than in healthy bees. The infected group had high infection levels (average number of 

spores per individual: 18,536,634, 39 individuals in total) with 8 individuals that had no 

detectable spores. In the control group, we found 5 Nosema-contaminated samples (range: 

30,000-165,000 spores per individual, 40 individuals in total). 

 

Systematic review and meta-analysis 

Study characteristics 

Our search yielded 1599 documents in total (273 from Web of Science™ and 1326 from 

Scopus). After de-duplication (n = 314 duplicates) and removal of patents (n = 1) 1284 

documents were screened for potential inclusion based on their titles and abstracts. This action 

yielded a total of 123 publications. Upon reading the full texts of the selected 123 publications, 

we were able to identify 52 eligible studies. During data extraction for survivorship, we 

excluded 1 additional article (containing 2 studies that used separate groups of animals) 

because no mortality occurred in the control groups for over 2 weeks, which made resulting 

hazard ratios improbably large and thus unusable. By this action, the number of studies 

included in the meta-analysis decreased to 50 from 44 publications (Fig. 2).  

Among the included studies (Table 1), the majority (70 %) used a plain sucrose diet, 

while 30 % of the studies included diet supplementation. Most of these supplements involved 

a protein source, with 9 studies using commercially available protein patties such as 

Provita'Bee, Pro Bee, or MegaBee, 5 studies using handmade pollen paste or beebread and  1 
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study using Apifonda powdered sugar. Similarly, most studies implemented individual (82 %), 

not collective spore feeding method (18 %). Freshly emerged, one-day-old workers were most 

often used (in 38 % of studies) and an inoculation dose of 100,000 spores per individual was 

most often implemented (in 42 % of studies). In the majority of works included in the meta-

analysis, the mortality assessment lasted for longer than 2 weeks (70 %), and the workers 

undergoing assessment were most frequently kept at 33 or 34 °C (in 58 % of studies).  

 

Risk of bias 

Overall, the risk of bias was serious (Fig. 3). Baseline characteristics of animals participating 

in the studies were mostly similar between groups, except for a few studies in which the control 

and infected groups were kept in separate housing incubators. Randomization of the position 

of cages within the housing incubator was applied in only one study, thanks to which it avoided 

possible effects related to the position of a cage in the incubator. Notably, not a single study 

mentioned any form of blinding applied during the mortality assessment. Considering that only 

one study listed specific criteria for counting an individual as dead, this made the omission of 

blinding quite conspicuous and created space for investigator bias during mortality assessment. 

Several studies failed to control the contamination of the control groups and infection levels in 

the artificially infected groups. There was no commercial funding in any of the studies. 

 

Meta-analysis 

A random-effects meta-analysis of the hazard ratios (HRs) showed a significant effect of 

infection with N. ceranae spores (HR = 2.99 [2.36, 3.79]) (Fig. 4), indicating that infected bees 

had nearly three times higher risk of death compared to healthy bees. There was high 

heterogeneity (Q = 647.32, df = 49, p < 0.0001; I² = 94.44%). 
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Publication bias 

Visual inspection of the funnel plot and the rank correlation test indicated the presence of 

publication bias (tau = 0.223, p = 0.022) (Appendix B).  

 

Exploration of data heterogeneity 

Included moderators did not significantly explain HR magnitudes (F5,44 = 1.812, p = 0.130, R2 

= 10.92 %). A trend emerged demonstrating that HRs increased with increasing inoculation 

doses (F1,44 = 3.650, p = 0.063). Another trend indicated a positive relationship between the 

increased age of workers at inoculation and larger HRs (F1,44 = 3.800, p = 0.058).  

 

Quality of evidence 

All studies included in the systematic review and meta-analysis were considered randomized 

trials. The overall quality of evidence was high (Table 2). Even with a serious risk of bias, 

likely publication bias, and serious inconsistencies indicated by high heterogeneity, the 

included studies had no serious indirectness or imprecision. Moreover, the detected effect was 

large and there was a trend towards dose response.  

 

Discussion 

Both our experiment and meta-analysis indicated a consistent and strong impact of infection, 

with mortality increasing about threefold in the group of honeybees infected with N. ceranae 

compared to uninfected individuals. Importantly, we found no evidence of the incubation 

temperature, food supplementation, or inoculation method influencing the magnitude of the 

mortality effect. While trends suggested higher infection effects in studies where honeybees 

were infected with larger doses of spores or in studies involving older hosts, the moderators 

collectively accounted for only 10.92 % of the large heterogeneity in HRs (I2 = 94.44 %). The 
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results from our experiment closely aligned with the findings of the meta-analysis. Thus, our 

experiment can serve as a valuable reference for standardizing research methodologies in 

laboratory cage trials.  

The lack of strong evidence regarding the significance of any of the included 

moderators was surprising. Future studies must account for high heterogeneity in the effect of 

Nosema infection on honeybees. Given the type of studies incorporated into our systematic 

review and meta-analysis (Table 1), we strongly recommend future research to address the 

impact of infection on mortality in older individuals, including those considerably older than a 

few days. Most of the research included in this analysis focuses on one-day-old bees, which is 

somewhat justified since newly emerged bees are more susceptible to Nosema infection 

compared to older individuals (Urbieta-Magro et al. 2019). Additionally, even in healthy 

colonies, trace amounts of Nosema spores are detectable, suggesting that the in-hive 

environment may be the first where bees encounter this pathogen. However, several studies 

have failed to detect spores in one-day-old bees while consistently identifying N. ceranae 

spores in older bees (Jack et al. 2016; Smart and Sheppard 2012). This indicates that the 

external environment is another source of N. ceranae infection. Foraging for food likely 

exposes bees to spores, increasing their risk of infection. Our research suggests a trend for a 

positive correlation between the age of workers at the time of inoculation and the risk of 

mortality. Therefore, it is crucial to investigate the effects of repeated exposure to low doses of 

spores in older bees, particularly foragers. This experimental setup would provide a more 

accurate approximation of real-world scenarios, addressing a significant gap in our 

understanding of Nosema infection dynamics. Moreover, this scenario could help explain the 

extremely high spore infection levels, often reaching multi-million counts, observed in the 

oldest bees (Jabal-Uriel et al. 2022; Li et al. 2017; Smart and Sheppard 2012). Additionally, 

another important issue for future research would be the geographic patterns. Across 
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continents, the majority of the studies included here were based in Europe, which may 

disproportionately reflect conditions, practices, or bee populations specific to this region. 

Geographic bias needs to be addressed to enable global analyses and comparisons between 

regions, especially considering that experiments devoted to geographic differences in Nosema 

virulence are scarce (e.g., Genersch 2010; Dussaubat et al. 2013; Van der Zee et al. 2014). 

Other potentially important factors that require further study include, for example, the 

phenotype of the studied honeybees or the season (time of year).  

Our findings indicate that N. ceranae is a serious threat to honeybees in terms of 

mortality. This study strongly supports the idea that nosemosis can significantly contribute to 

honeybee colony losses. However, it’s crucial to treat cage trials as an initial step in assessing 

infection effects and possible treatment measures. The subsequent step should involve 

conducting similar research under natural conditions within colonies, where bees experience 

not only individual immunity but also full social immunity. The value of this approach is 

confirmed when we compare the results of studies such as those by Li et al. (Li et al. 2018) 

and Lourenço et al. (Lourenço et al. 2021). In the former, artificially infected bees were 

examined in cages, while in the latter, artificially infected bees were introduced into colonies. 

The results showed a significantly lower spore load in bees living in colonies compared to those 

maintained in cages 12 days post-infection. This demonstrates the significant role that the 

colony environment and its components, including substances with high antibiotic activity like 

propolis (Mura et al. 2020; Simone-Finstrom et al. 2017), secondary plant metabolites in pollen 

and honey (Erler and Moritz 2016), or even queen presence (Huang et al. 2024), can play. 

Equally important are the behavioral defense mechanisms of bees, such as avoiding 

trophallaxis among sick bees (Naug and Gibbs 2009) or consumption of honey with higher 

antibiotic activity by diseased bees (Gherman et al. 2014). In natural colony conditions, 

however, honeybees face various challenges, including exposure to pesticides and other 
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chemical substances. The synergistic impact of these challenges, combined with Nosema 

infection, surely increases the mortality rate among bees and affects queen survival (Aufauvre 

et al. 2012, 2014; Dussaubat et al. 2016; Paris et al. 2018). Additionally, Nosema-infected bees 

experience higher levels of hunger, leading to energetic stress (Alaux et al. 2010; Mayack and 

Naug 2009). The expenditure of energy in the colony environment is considerably higher than 

in laboratory cages due to task performance. Therefore, not only should experimental 

methodologies be critically evaluated for ecological accuracy, but outcomes obtained in 

controlled settings need validation within the context of natural environments. This approach 

is essential to ensure that the results and conclusions capture the complexity of real-world  

effects. 

Given that our results indicate a high risk that Nosema poses to honeybees, it is 

important to consider these findings in relation to other bee species. This is particularly 

concerning due to the ease with which N. ceranae can infect a variety of species, including 

bumblebees and solitary bees (Grupe and Quandt 2020; Martín‐Hernández et al. 2018; Porrini 

et al. 2017). However, our findings should not be seen as an unequivocal threat to all bee 

species. For instance, studies on the solitary bee Osmia bicornis suggest that the impact of 

Nosema infection on mortality is minimal (Müller et al. 2019). In the case of bumblebees, 

although N. ceranae has been detected in various species (Plischuk et al. 2009; Grupe and 

Quandt 2020), recent evidence shows that spores pass through the digestive tract without 

leading to infection, suggesting no pathogen proliferation (van der Steen et al. 2022). 

Therefore, N. ceranae may not represent as severe a threat to solitary bees and bumblebees as 

it does to honeybees. Instead, these species may act as reservoir hosts for N. ceranae within 

pollinator networks. 

Our study indicates that N. ceranae significantly influences the mortality of worker bees 

and, as such, likely poses a serious survival threat to the honeybee and the ecosystem services 
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it provides (Papa et al. 2022). The search for the treatment of nosemosis is ongoing (Iorizzo et 

al. 2022). Significant attention is paid to the application of Good Beekeeping Practices as a 

form of prevention (Formato et al. 2022). However, while these methods yield some results, 

they still prove insufficient (Garrido et al. 2024; Holt and Grozinger 2016; Huang et al. 2013; 

Lang et al. 2023; Prouty et al. 2023). There is a pressing need for further research on N. 

ceranae, especially in the context of its effective control strategies that consider the 

microbiological safety of the hive products (i.e. pollen and honey). 
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Table 1. Overview of studies included in the systematic review and meta-analysis. The table presents information on studies investigating worker 

honeybee mortality in control and Nosema-infected individuals. Each study is catalogued with details including reference, the type of food provided 

(plain sucrose or supplemented), worker age at spore inoculation, method of inoculation (individual or collective feeding), estimated spore dose 

per individual, group sizes with replicates, total number of tested individuals (N), duration of mortality assessment, and incubation temperatures.  

Study Reference Food 
Inoculation  

age (days) 

Inoculation 

method 

Inoculation 

dose 

Group 

size 

Number 

of 

replicates 

N 

Mortality 

assessment 

(days) 

Temperature 

1 
Duguet et al. 

2022 

Plain 

sucrose 
3 Individual 120,000 20 4 80 14 34 

2 
Berbeć et al. 

2022 

Plain 
sucrose 

2 Collective 10,000 150 4 600 7 30 

3 
Plain 

sucrose 
10 Collective 10,000 150 4 600 7 30 

4 
Balbuena et al. 

2023 
Plain 

sucrose 
2 Collective 100,000 70 3 210 30 30 

5 
Zhang et al. 

2021 
Plain 

sucrose 
5 Individual 100,000 45 3 135 20 34 

6 Özgör 2021 
Plain 

sucrose 
1 Individual 1,000,000 30 1 30 12 34 

7 
Naree et al. 

2021b 
Supplement 1 Individual 100,000 50 3 150 30 34 

8 Liu et al. 2021 
Plain 

sucrose 
10 Individual 100,000 20 3 60 10 35 

9 
Hosaka et al. 

2021 
Plain 

sucrose 
1 Individual 140 30 3 90 21 33 
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10 
Chaimanee et 

al. 2021 
Plain 

sucrose 
3 Individual 100,000 30 3 90 10 34 

11 
Borges et al. 

2021 

Plain 

sucrose 
1 Individual 50,000 40 1 40 54 30 

12 
Almasri et al. 

2021 
Plain 

sucrose 
1 Individual 100,000 30 7 210 21 33 

13 
Straub et al. 

2020 
Supplement 1 Collective 10,000 20 22 440 14 34 

14 
Porrini et al. 

2020 
Supplement 2 Individual 1,000,000 50 5 250 13 28 

15 
Paris et al. 

2020 
Plain 

sucrose 
2 Collective 100,000 50 3 150 22 33 

16 
Mura et al. 

2020 

Plain 

sucrose 
1 Individual 100,000 21 3 63 30 31 

17 

Kim et al. 2020 

Plain 
sucrose 

4 Individual 50,000 20 3 60 15 34 

18 
Plain 

sucrose 
4 Individual 50,000 20 3 60 15 34 

19 
Plain 

sucrose 
4 Individual 50,000 20 3 60 15 34 

20 
Plain 

sucrose 
4 Individual 50,000 20 3 60 15 34 

21 
Borges et al. 

2020 
Plain 

sucrose 
1 Individual 50,000 40 3 120 54 33 

22 Bell et al. 2020 
Plain 

sucrose 
1 Individual 40,000 123 1 123 9 36 

23 
Arismendi et 

al. 2020 
Supplement 2 Individual 100,000 75 4 300 20 30 

24 
Sinpoo et al. 

2018 

Plain 

sucrose 
5 Individual 100,000 30 3 90 14 34 

25 
Ptaszyńska et 

al. 2018 
Plain 

sucrose 
3 Collective 125,000 40 10 400 16 35 
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26 
Panek et al. 

2018 
Supplement 1 Individual 50,000 130 4 520 21 33 

27 Li et al. 2018 Supplement 1 Individual 100,000 40 4 160 21 34 

28 
Arredondo et 

al. 2018 

Plain 

sucrose 
3 Collective 500,000 50 3 150 7 35 

29 
Tritschler et al. 

2017 
Plain 

sucrose 
1 Collective 100,000 50 6 300 14 35 

30 
Paris et al. 

2017 
Supplement 6 Individual 100,000 45 24 1080 22 33 

31 Li et al. 2017 
Plain 

sucrose 
2 Individual 100,000 40 6 240 26 34 

32 
Ptaszyńska et 

al. 2016 
Plain 

sucrose 
3 Individual 32,000 40 6 240 21 30 

33 
Natsopoulou et 

al. 2016 
Plain 

sucrose 
4 Individual 100,000 18 5 90 42 30 

34 
Higes et al. 

2016 
Plain 

sucrose 
5 Individual 50,000 25 3 75 30 27 

35 
Milbrath et al. 

2015 

Plain 

sucrose 
1 Individual 30,000 100 3 300 30 30 

36 
Huang et al. 

2015 
Supplement 5 Individual 100,000 30 3 90 50 30 

37 
Doublet et al. 

2015 

Plain 

sucrose 
2 Individual 100,000 30 3 90 13 30 

38 
Plain 

sucrose 
2 Individual 100,000 30 4 120 25 30 

39 
Williams et al. 

2014 

Plain 

sucrose 
2 Individual 35,000 20 3 60 30 33 

40 
Van der Zee et 

al. 2014 
Plain 

sucrose 
5 Individual 50,000 25 4 100 25 34 

41 
Retschnig et al. 

2014b 
Supplement 2 Individual 100,000 20 5 100 14 34 
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42 
Retschnig et al. 

2014a 
Plain 

sucrose 
1 Collective 100,000 20 4 80 14 30 

43 
Aufauvre et al. 

2014 
Supplement 1 Individual 125,000 165 1 165 25 33 

44 
Milbrath et al. 

2013 
Plain 

sucrose 
5 Individual 125,000 20 2 40 32 33 

45 
Goblirsch et al. 

2013 
Supplement 1 Individual 10,000 30 3 90 28 28 

46 
Dussaubat et 

al. 2013 
Plain 

sucrose 
5 Individual 40,000 30 3 90 19 33 

47 
Di Pasquale et 

al. 2013 
Supplement 1 Individual 100,000 70 1 70 50 34 

48 Aufauvre et al. 
2012 

Supplement 1 Individual 125,000 50 3 150 22 33 

49 Supplement 1 Individual 125,000 50 3 150 22 33 

50 
Vidau et al. 

2011 
Supplement 5 Individual 125,000 50 3 150 20 35 
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Table 2. Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) 

assessment of confidence of cumulative evidence.  

Number of 

studies 

Overall risk 

of bias 
Inconsistencies Indirectness Imprecision 

Publication 

bias 
Effect 

Dose 

response 
Quality 

50 Serious Serious Not serious Not serious Likely 

HR = 2.99 

[2.36, 

3.79] 

(large) 

F1,44 = 3.650, 

p = 0.063 
High 
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Figure 1. Kaplan-Meier survival curves for the control and infected groups of workers. The 

two groups differ significantly in survival. Shading indicates 95 % confidence intervals. 
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Figure 2. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 

flow diagram.   
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Figure 3. Summary plot of the results from the Systematic Review Centre for Laboratory 

animal Experimentation (SYRCLE) risk of bias tool. Green indicates a low risk of bias, yellow 

is unclear, and red indicates a high risk of bias. 
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Figure 4. Forest plot of the random-effects meta-analysis of hazard ratios (HRs) and 95 % 

confidence intervals. Diamond demonstrates the overall estimate (with the width reflecting the 

95 % CI). Black squares indicate the study HRs and their sizes indicate the weight of the study 

in the meta-analysis. The dashed line indicates no difference between groups (HR = 1). The Q 

and I2 statistics are tests of heterogeneity.  
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Appendix B 

Funnel plot (standard error plotted against hazard ratios) for the studies included in the meta-

analysis. 
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