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Abstract

For a fixed integer h, the standard orthogonality relations for Ramanujan sums cr(n) give an asymptotic
formula for the shifted convolution

∑
n≤N cq(n)cr(n + h). We prove a generalised formula for affine

convolutions
∑

n≤N cq(n)cr(kn + h). This allows us to study affine convolutions
∑

n≤N f (n)g(kn + h) of
arithmetical functions f , g admitting a suitable Ramanujan–Fourier expansion. As an application, we
give a heuristic justification of the Hardy–Littlewood conjectural asymptotic formula for counting Sophie
Germain primes.
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1. Introduction

Let us write e(x) = exp(2πix) and let N be the set of positive integers. In [11],
Ramanujan introduced the following sums for r ∈ N and n ∈ Z, now known as
Ramanujan sums:

cr(n) =
r∑

a=1
(a,r)=1

e(an/r),

where (a, r) denotes the greatest common divisor (gcd) of a and r. An important feature
of Ramanujan sums is that they satisfy certain orthogonality relations, first noticed by
Carmichael [1].

THEOREM 1.1 (Shifted orthogonality relations). Let h ∈ Z and let q, r ∈ N. Then,

lim
N→∞

1
N

N∑
n=1

cq(n)cr(n + h) =

⎧⎪⎪⎨⎪⎪⎩
cr(h) if r = q,
0 otherwise.

That is, the orthogonality relations give an asymptotic formula for the shifted con-
volution of Ramanujan sums. Our first result is a generalisation for affine convolutions.
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THEOREM 1.2 (Affine orthogonality relations). Let h ∈ Z and let k, q, r ∈ N. Then,

N∑
n=1

cq(n)cr(kn + h)

=

⎧⎪⎪⎨⎪⎪⎩
cr(h)N + O(q2r2) if there is d | k with r = dq and (k/d, q) = 1,
O(q2r2) otherwise.

Here and in the rest of this article, the term affine refers to the fact that the
arguments used in the convolutions are n and kn + h; thus, they are related by an affine
transformation.

A Ramanujan–Fourier expansion for an arithmetical function f : N→ C is a series
representation of the form

f (n) =
∞∑

r=1

f̂ (r)cr(n),

where the series converges for each positive integer n. The coefficients f̂ (r)
are called Ramanujan–Fourier coefficients for f. In [11], Ramanujan obtained
Ramanujan–Fourier expansions for several classical arithmetical functions. The
literature on Ramanujan–Fourier expansions is vast, and we refer the reader to [9]
for a survey.

For example, we have the following result due to Ramanujan [11]:

σs(n)
ns = ζ(s + 1)

∞∑
q=1

cq(n)
qs+1 (1.1)

for s > 0, where σs(n) =
∑

d|n ds and ζ(z) is the Riemann-zeta function. In this case,
the series is absolutely convergent.

A more delicate example due to Hardy [7] is a Ramanujan–Fourier expansion for
(essentially) the von Mangoldt function Λ(n):

ϕ(n)
n
Λ(n) =

∞∑
r=1

μ(r)
ϕ(r)

cr(n), (1.2)

where ϕ(n) is the Euler totient function and μ(n) is the Möbius function. In this case,
the series converges for each n but not absolutely.

A topic that has captured considerable attention is that of shifted convolutions of
arithmetical functions admitting a Ramanujan–Fourier expansion (see, for instance,
[2–5, 10, 12]). Namely, given f (n) =

∑
r f̂ (r)cr(n) and g(n) =

∑
r ĝ(r)cr(n), two

arithmetical functions admitting Ramanujan–Fourier expansions, the orthogonality
relations for Ramanujan sums heuristically suggest

lim
n≤N

1
N

∑
n≤N

f (n)g(n + h) =
∞∑

r=1

f̂ (r)ĝ(r)cr(h), (1.3)
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in analogy with the Wiener–Khintchine formula from the theory of Fourier series.
In fact, such a formula has been proved in several cases, as in the examples just cited.

Under suitable convergence conditions, we use Theorem 1.2 to prove an analogous
formula for affine convolutions.

THEOREM 1.3. Let f (n) =
∑

r f̂ (r)cr(n) and g(n) =
∑

r ĝ(r)cr(n) be arithmetical
functions admitting Ramanujan–Fourier expansions. Suppose that

∞∑
r=1

| f̂ (r)|r2 and
∞∑

r=1

|ĝ(r)|r2

converge. Let k ∈ N and h ∈ Z. Then,∑
n≤N

f (n)g(kn + h) = κ( f , g, k, h) · N + O(1),

where

κ( f , g, k, h) =
∞∑

q=1

∑
d|k

(k/d,q)=1

f̂ (q)ĝ(dq)cdq(h).

This result is applicable, for instance, to sums of powers of divisors.

COROLLARY 1.4. Let s ∈ R with s > 2, let h ∈ Z and let k ∈ N. Then,
∑
n≤N

σs(n)
ns · σs(kn + h)

(kn + h)s = C(s, k, h) · N + O(1),

where C(s, k, h) > 0 is a constant depending only on s, k and h.

Corollary 1.4 gives a variation of a result of Ingham [5, 8]. Theorem 1.3 motivates
the following question.

QUESTION 1.5. Let f (n) =
∑

r f̂ (r)cr(n) and g(n) =
∑

r ĝ(r)cr(n) be arithmetical
functions admitting Ramanujan–Fourier expansions and let k ≥ 1 and h be integers.
Does the asymptotic formula∑

n≤N

f (n)g(kn + h) ∼ κ( f , g, k, h) · N

hold with

κ( f , g, k, h) =
∞∑

q=1

∑
d|k

(k/d,q)=1

f̂ (q)ĝ(dq)cdq(h)?

A motivation to study shifted convolutions via Ramanujan–Fourier expansions
comes from [6], where it is shown that if (1.3) holds for f (n) = g(n) = ϕ(n)Λ(n)/n
with the Ramanujan–Fourier expansion (1.2), then the twin prime conjecture would
hold in the following strong form conjectured by Hardy and Littlewood.
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CONJECTURE 1.6 (Twin prime conjecture). Let π2(x) = #{p < x : p, p + 2 are primes}
and let

C2 = 2
∏
p>2

(
1 − 1

(p − 1)2

)
.

Then we have the asymptotic formula

π2(x) ∼ C2 ·
x

(log x)2 .

Arguing as in [6] but using affine convolutions instead of shifted convolutions, one
can study prime pairs of the form p, kp + h. In particular, let

πG(x) = #{p < x : p and 2p + 1 are primes}

be the counting function of Sophie Germain primes.

THEOREM 1.7 (Heuristic for Sophie Germain primes). If Question 1.5 has a positive
answer for f (n) = g(n) = ϕ(n)Λ(n)/n with the Ramanujan–Fourier expansion (1.2)
and k = 2, h = 1, then there are infinitely many Sophie Germain primes and, moreover,

πG(x) ∼ C2 ·
x

(log x)2 ,

where C2 is the same constant appearing in the twin prime conjecture.

It will be clear from the proof that our argument works, more generally, for prime
pairs of the form p, kp + h. We restrict our attention to the case of Sophie Germain
primes for the sake of exposition.

2. Orthogonality relations

We need the following simple estimate.

LEMMA 2.1 (Trigonometric sums). Let α be a nonintegral rational number and let
D > 0 be an integer with αD ∈ Z. Let P < Q be positive integers. Then,

∣∣∣∣∣
Q∑

n=P

e(nα)
∣∣∣∣∣ ≤ D/2.

PROOF. Using the elementary formula for a geometric sum, one finds

∣∣∣∣∣
Q∑

n=P

e(nα)
∣∣∣∣∣ ≤ 2

e(α) − 1
=

1
sin(πα)

and the result follows. �
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PROOF OF THEOREM 1.2. Let S =
∑N

n=1 cq(n)cr(kn + h) and note that

S =
r∑

b=1
(b,r)=1

e(bh/r)
q∑

a=1
(a,q)=1

E(a, b),

where

E(a, b) =
N∑

n=1

e
(
n
(a
q
+

kb
r

))
.

We consider three cases.

Case 1: dq � r for every d | k. We claim that for a, b as in S, the number a/q + kb/r
is not an integer. For otherwise, let m be this integer and note that ar + kbq = mqr.
Since (a, q) = 1, this implies q | r, say r = dq, which in turn gives ad + kb = mdq. As
(b, dq) = (b, r) = 1, we have (b, d) = 1, and hence d | k, which is a contradiction.

By Lemma 2.1, |E(a, b)| ≤ qr/2, and hence |S| ≤ ϕ(r)ϕ(q)qr/2 < (qr)2.

Case 2: dq = r for some d | k with (k/d, q) > 1. We claim that for a, b as in S, the
number a/q + kb/r is not an integer. Indeed, let s = k/d and note that a/q + kb/r =
(a + sb)/q, which is not an integer because (a, q) = 1, while (sb, q) ≥ (s, q) > 1.

As in the previous case, we apply Lemma 2.1 to deduce |S| < (qr)2.

Case 3: dq = r for some d | k with (k/d, q) = 1. Let s = k/d so that (s, q) = 1. Let a and
b be as in S. Note that (b, q) = 1 because (b, dq) = (b, r) = 1. Thus, for each b, there is
a unique a ∈ (Z/qZ)× satisfying a ≡ −sb mod q, which is equivalent to a/q + kb/r =
(a + sb)/q ∈ Z.

Consequently, E(a, b) = N if a ≡ −sb mod q (which, for a given b, occurs exactly
for one a), while |E(a, b)| ≤ qr/2 otherwise (by Lemma 2.1). It follows that

S =
r∑

b=1
(b,r)=1

e(bh/r)
q∑

a=1
(a,q)=1

E(a, b)

= N
r∑

b=1
(b,r)=1

e(bh/r) + O(ϕ(r)(ϕ(q) − 1)qr)

= N · cr((h) + O((qr)2). �

3. Convolutions

PROOF OF THEOREM 1.3. Since |cr(n)| ≤ φ(r) ≤ r, the convergence hypothesis
implies that the Ramanujan–Fourier expansions f (n) =

∑
r f̂ (r)cr(n) and g(n) =∑

r ĝ(r)cr(n) are absolutely convergent, which justifies the following computation:

https://doi.org/10.1017/S0004972722001137 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972722001137


16 E. Fuentes [6]

∑
n≤N

f (n)g(kn + h) =
∑
n≤N

(∑
q

f̂ (q)cq(n)
)(∑

r

ĝ(r)cr(kn + h)
)

=
∑
q,r≥1

f̂ (q)ĝ(r)
∑
n≤N

cq(n)cr(kn + h).

By Theorem 1.2, this last expression is

N
∑
q≥1

∑
d|k

(k/d,q)=1

f̂ (q)ĝ(dq)cdq(h) + O
(∑

q,r

| f̂ (q)ĝ(r)|q2r2
)
.

Finally, by the convergence hypothesis, the error term is O(1). �

PROOF OF COROLLARY 1.4. Invoke (1.1), the estimate |cq(n)| ≤ q and Theorem 1.3. �

4. Sophie Germain primes

Before proving Theorem 1.7, we need the following lemma.

LEMMA 4.1. We have
1

(log N)2

∑
n≤N

Λ(n)Λ(2n + 1) = (1 + O((log N)−1/2)) · πG(N) + O((log N)−5/2).

PROOF. Let

L(N) =
∑
p≤N

p,2p+1 are primes

log(p) log(2p + 1).

First we note that

∑
n≤N

Λ(n)Λ(2n + 1) = L(N) + O
(

log N
2 log N∑
α=2

∑
p≤2N1/α

log p
)
.

By Chebyshev’s bounds, the sum inside the error term is O(N1/2 log N) from which∑
n≤N

Λ(n)Λ(2n + 1) = L(N) + O(N1/2 log2 N). (4.1)

We observe that

L(N) =
∑
p≤N

p,2p+1 are primes

log2(p) + O(πG(N) log N). (4.2)

By partial summation,
∑
p≤N

p,2p+1 are primes

log2(p) = πG(N) log2(N) + O
( ∫ N

2

πG(t) log(t)
t

dt
)
. (4.3)
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At this point, we could use an unconditional upper bound for πG(t) coming from
sieve theory, but let us proceed in a more elementary way. We split the integral at
T = N/

√
log N and use Chebyshev’s bound πG(t) ≤ π(t) = O(t/ log t) to find
∫ N

2

πG(t) log(t)
t

dt =
∫ T

2

πG(t) log(t)
t

dt +
∫ N

T

πG(t) log(t)
t

dt

≤
∫ T

2
dt + πG(N)

∫ N

T

log(t)
t

dt

= O(T) + O(πG(N) · N · (log T)/T)

= O(N/(log N)1/2 + πG(N)(log N)3/2).

The result now follows from (4.1), (4.2) and (4.3). �

PROOF OF THEOREM 1.7. Under the given assumptions,
∑
n≤N

ϕ(n)
n
Λ(n) · ϕ(2n + 1)

2n + 1
Λ(2n + 1) ∼ κ · N,

where

κ =

∞∑
q=1

∑
d|2

(2/d,q)=1

μ(q)μ(dq)
ϕ(q)ϕ(dq)

cdq(1).

By a computation similar to (14) in [6], we deduce∑
n≤N

Λ(n)Λ(2n + 1) ∼ κ · N.

By Lemma 4.1, we obtain

πG(N) ∼ κ · N
(log N)2 .

It only remains to show κ = C2. Since cr(1) = μ(r) and the only divisors of 2 are d = 1
and d = 2, we find

κ =

∞∑
q=1

∑
d|2

(2/d,q)=1

μ(q)μ(dq)2

ϕ(q)ϕ(dq)

=
∑

q≥1 odd

μ(q)3

ϕ(q)2 +
∑
q≥1

μ(q)μ(2q)2

ϕ(q)ϕ(2q)

=
∑

q≥1 odd

μ(q)
ϕ(q)2 +

∑
q≥1 odd

μ(q)μ(2q)2

ϕ(q)ϕ(2q)
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=
∑

q≥1 odd

μ(q)
ϕ(q)2 +

∑
q≥1 odd

μ(q)μ(2)2

ϕ(q)2ϕ(2)

= 2
∑

q≥1 odd

μ(q)
ϕ(q)2 = C2.

�
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