J. Austral. Math. Soc. (Series A) 55 (1993), 132136

ON SPINES OF 3-MANIFOLDS WITH BOUNDARY

C. McA. GORDON

(Received 5 August 1992)

Communicated by J. H. Rubinstein

Abstract

We give a simple necessary and sufficient condition for the inclusion map of a subpolyhedron into
a compact 3-manifold with non-empty boundary to be a homotopy equivalence.

1991 Mathematics subject classification (Amer. Math. Soc.): 57N 10.

1. Introduction

In this note we prove the following theorem.

THEOREM 1. Let Y be a compact, connected (triangulated) 3-manifold with
dY # @, and let X be a connected subpolyhedron of Y such that the maps
m(X) = m(Y) and Hy(X) — H,(Y), induced by inclusion, are isomorphisms.
Then the inclusion map X C Y is a homotopy equivalence.

This has the following corollary.

COROLLARY 2. Let M be a rational homology 3-sphere, andlet Q C P C M
be polyhedra such that

(1) each component of P contains exactly one component of Q;

(2) each component of M — Q contains exactly one component of M — P;

(3) foreachq € Q, inclusion induces an isomorphismm,(Q, q) — m(P, q).
Then Q is a deformation retract of P.
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Taking M = S3 in Corollary 2 gives the result that was announced as Pro-
position 3.4 in [3].

Theorem 1 is a straightforward consequence of the following result, which is
implicit in [1].

THEOREM 3. Let (K, L) be a pair of connected CW complexes such that
K — L has finitely many cells, each of dimension < 2. Suppose that the maps
m (L) - m(K)and H,(L) — H,(K), induced by inclusion, are isomorphisms.
Then the inclusion map L C K is a homotopy equivalence.

We learned about the question answered by Corollary 2 in 1988, from
T. Y. Kong, who was interested in it in the context of image thinning algorithms
for 3-dimensional binary digital images in computer graphics (see [3]). Our
original proof of Theorem 1, obtained in 1989, used 3-manifold topology, for
example the sphere theorem. Later, on wondering whether the corresponding
statement was true in the category of 2-complexes, we were led to Cohen’s paper
[1] and the realization that it essentially contained a proof of Theorem 3.

I would like to thank Dr. Kong for bringing the question mentioned above to
my attention.

2. Proofs

PROOF OF THEOREM 3. Since this is not stated explicitly in [1], we describe
the relevant parts of that paper and how they imply the theorem. We follow
closely the notation of [1].

We may assume that L has a single 0-cell, €%, and that K — L consists of
1-cells and 2-cells. The homology exact sequence of the pair (K, L) shows
that H,(K, L) = Hy,(K, L) = 0. It follows that the boundary homomorphism
9 : Co(K,L) - Ci(K, L) is an isomorphism, and hence that K — L has the
same number of 1-cells as 2-cells. So K = LU J/_, ¢] UU;_, €/, say.

Let L* = L U|J;_, e;. Taking ¢’ as base point for 7, throughout, let x; be
the element of 77, (L*) represented by e}, 1 < j < n,and let F be the free group
on{xy,...,x,}. Thenm(L*) = m (L) x F.

Write G = m;(L). Let r; € G * F be the element represented by the
attaching map of ¢?, (1 <i < n), and let R C G * F be the normal closure
of {ry,...,r,}. Then7;(K) = (G * F)/R = H, say, where the map m,(L) —
71(K) corresponds to the compositiong : G C G * F —> H.
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By hypothesis, ¢ is an isomorphism. In particular, since ¢ is onto, there exists
w; € G such that ;w;' € R, (1 < j < n). Let Ry C G * F be the normal
closure of {x,w;", ..., x,w'}. Thus R, C R.

Clearly the composition ¢, : G C G*x F — (G * F)/Ry = Hy is an
isomorphism. But if ¥ : Hy — H is the quotient map, then ¢ = w¢,. Hence =
is an isomorphism, giving Ry = R. Therefore r; € Ry, s0O we may write

ql
—I\n -1 .
ri= I Igik(xikwik Y8 1<i<n,
k=1

as in the hypothesis of Lemma 2.3 of [1]. (Here gy € G, ny € Z, x; = x; for
some j, and wy = w; for the same j.)

Let p : K — K be the universal cover. Since m;(L) — m(K) is an
isomorphism, p~!(L) = L is the universal cover of L. Note that Cq(IZ ,Ly=0
for g # 1,2, while Ci(K, L) and C,(K, L) are free ZG-modules of rank n,
with bases corresponding to the 1-cells and 2-cells of K — L respectively. Note
also that under the maps m;(L*) — =7;(K) and 7,(L) — m;(K) induced by
inclusion, x; andw; (1 < j < n)have the same image. Hence Lemma 2.3 of [1]
applies to show that the boundary homomorphism 9 : CyK,L) — Ci(K,L)
is represented, with respect to the bases mentioned above, by the n x n matrix
A = (a;;) over ZG defined by

a,; = E Nik8ik »

where the sum is taken over those k for which x;;, = x;.
Next, recall the expression for r; given above and define r/ € G % F by the
corresponding expression
qi
rx{=l_[gikx;tlékg;(l’ l<iz<n,
k=1
asin[1, §1]). Let R" C G * F be the normal closure of {r{, ..., r}.

Leta : G* F — G  F be the isomorphism defined by o | G = identity and
a(x) = xw;', (1<i<n). Thena(r))=r;, (1 <i<n),soa(R)=R
and ¢ induces an isomorphism & : H' = (G * F)/R' — (G x F)/R = H.
Let ¢’ be the composition G C G * F — H’'. Then ¢ = a¢’. Since ¢ is
an isomorphism, ¢’ is also. Hence, by Proposition 4.1 of [1], the matrix A is
invertible.

Thus d : C2(K,L)— C\(K, L) isan isomorphism, and we have H,(K, L) =
0, hence 7,(K, L) = 0, and hence 7,(K, L) = 0, as in {1, Lemma 2.2]. The
result follows.

https://doi.org/10.1017/51446788700031979 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700031979

[4] On spines of 3-manifolds 135

PROOF OF THEOREM 1. Adding a collar to Y and replacing X by a regular
neighborhood, we may assume that X is a compact 3-manifold in the interior of
Y.

We claim that each component of Y — X meets Y. For if Z is a component
that does not, then [8Z] = 0in H,(Y; Z,). But 3Z must consist of a proper subset
of the components of X, otherwise Y = X U, Z and hence dY = @, contrary
to hypothesis. Therefore [0Z] # 0 in H,(X; Z,). But the universal coefficient
theorem shows that the map H,(X; Z,) — H,(Y; Z,) is an isomorphism.

Hence, starting at Y, we may collapse away all the 3-simplexes of ¥ — X,
thereby collapsing Y onto X U K where X is a finite 2-complex. The result now
follows from Theorem 3.

PROOF OF COROLLARY 2. Since M is a rational homology sphere, H!'(M) =
0, and the cohomology exact sequence of the pair (M, M — P) gives an exact
sequence

HM) - H' (M — P) > H'(M,M — P) > 0,

and similarly for Q.

Condition (2) implies that the map H°(M — Q) — H°(M — P) induced
by inclusion is an isomorphism. Hence so is the map H'(M, M — Q) —
H'(M, M — P). It follows, by Alexander Duality, that H,(Q) — H,(P) is an
isomorphism.

Now replace P by a regular neighborhood Y in M, and apply Theorem 1 to
each component of Y (with X the corresponding component of Q).

3. Concluding Remarks

Here are two questions related to the above discussion. Let X and Y be
either finite connected 2-complexes or compact connected 3-manifolds with
non-empty boundary.

(1) If f: X — Y is a map inducing isomorphisms on ; and H,, is f a
homotopy equivalence?

2) IfmX) = m(Y) and Hy(X) = Hy(Y), are X and Y homotopy equi-
valent?

Theorems 3 and 1 show that the answer to (1) is ‘yes’ in both cases if f is
an inclusion map. On the other hand, it is easy to construct counterexamples in
general. (For example, take X = Y = §' x S?>—open 3-cell ~ S! v §2. Then
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m(X) = Z, generated by z, say, and m,(X) = Zm,(X), generated by x, say.
Define f : X — X so that f,(z) =z and f,(x) = (1 —z + z%)x.)

Question (2) for finite 2-complexes has been extensively investigated. The
answer is ‘no’ in general; counterexamples were first given by Dunwoody [2]
and Metzler [4]. In fact, in the example given in [2], X is homotopy equivalent
to the exterior of the trefoil knot minus an open 3-cell. One can show, however,
that the answer to (2) is ‘yes’ in the case of 3-manifolds with boundary.
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