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Abstract We initiate a systematic study of the perfection of affine group schemes of finite type over
fields of positive characteristic. The main result intrinsically characterises and classifies the perfections
of reductive groups and obtains a bijection with the set of classifying spaces of compact connected Lie
groups topologically localised away from the characteristic. We also study the representations of perfectly
reductive groups. We establish a highest weight classification of simple modules, the decomposition into
blocks, and relate extension groups to those of the underlying abstract group.

Introduction

For a (group) scheme over a field k of characteristic p> 0, its “perfection” is defined as the

inverse limit over the Frobenius homomorphism. In this paper, we study the perfection

of group schemes and their representation theory. We place particular emphasis on
reductive groups. We obtain an intrinsic characterisation (“perfectly reductive groups”)

and give a classification in terms of root data “with p inverted”. We also give a highest

weight classification of simple modules for perfectly reductive groups, establish the block

decomposition, and make a first step towards the study of multiplicity questions. Finally,
we prove that perfectly reductive groups and the classifying spaces of compact Lie groups

localised away from p are classified by the same data. This result is the “perfect analogue”
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of the fact that reductive groups over algebraically closed fields and compact Lie groups
are both classified by root data.

The motivations for the current work were three-fold and came from several directions.

Before describing the structure of this paper in more detail, we outline these motivations
and possible future directions.

Perfect representability

Sometimes functors on rings in characteristic p are only well-behaved on perfect

algebras (that is, algebras for which the Frobenius homomorphism is an isomorphism).
A prominent example is the functor of Witt vectors and its relatives. An important

observation (see, for instance, [BS, BD, Zh]) is that if a functor on the category of perfect

commutative k -algebras can be represented by a scheme, it determines the scheme “up to
perfection”. An example of such a setting is the Witt vector affine Grassmannian, which

plays a prominent role in recent advances in the Langlands program.

It is important that passage to the perfection gives an isomorphism of étale topoi.

In particular, constructions built via étale sheaves (like étale cohomology, or categories
of perverse sheaves in the étale topology) are insensitive to passage to the perfection.

This fact plays an important role in [Zh], where a mixed characteristic analogue of the

geometric Satake equivalence is obtained. Similarly, it plays an important role in [BD],
where the “Serre dual” of a unipotent group is shown to be the perfection of a unipotent

group, and its character sheaves are studied.

By the above, also the étale homotopy type of a (simplicial) scheme only depends on
its perfection. In [Fr], Friedlander used this homotopy type to construct interesting maps

between topological localisations of classifying spaces of compact Lie groups, based on

(exceptional) isogenies in positive characteristic. This is one of the main results we rely

on to establish our bijection between perfectly reductive groups and localised classifying
spaces.

Fractal representation theory

For a (reduced) group scheme defined over Fp, the Frobenius twist realises its category
of representations as a full subcategory of itself. This self-similarity induces a fractal-like

structure. For example, Figure 1 shows a classic picture of the non-zero weight spaces of

simple modules for SL2 in characteristic 3. (For the reader unfamiliar with this picture,

it may be helpful to note that it simply depicts the (non)-vanishing behaviour of Pascal’s
triangle modulo p; see, for instance, [Wi, §1].) This picture is fractal-like, but not genuinely
fractal: one can “zoom out” but one cannot “zoom in” indefinitely since the Frobenius

homomorphism is not an isomorphism. By passing to the perfection, one gets a genuine
fractal. One goal (not realised in the current paper) is to use this fractal structure to say

something about important open questions in representation theory like dimensions and

characters of simple modules.
Much of the difficulty in the representation theory of reductive groups in characteristic

p remains after perfecting. We do observe two interesting simplifications. Firstly, the

complexities of the block decomposition disappear after passage to the perfection (see
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Figure 1. Characters of simple modules for SL2 in characteristic p= 3.

Theorem 5.1.5). Secondly, perfect representation theory appears to provide the correct

setting for the generic cohomology results of [CPSV]: for a perfectly reductive group,

extensions computed inside algebraic representations agree with extensions computed as
abstract groups (see Theorem 5.2.2). (That perfect group schemes provide the correct

setting for generic cohomology was suggested by Donkin in the early 1980s and proved

by Wang [W].)

Tensor categories in characteristic p

Over fields of characteristic zero, a famous theorem of Deligne classifies those tensor

categories which admit a fibre functor to super vector spaces as precisely those of

moderate growth [D]. It is a fascinating open problem to find an analogue of this
theorem in characteristic p, with many potential applications to modular representation

theory. Recently, this problem was solved in [CEO] for tensor categories with exact

Frobenius functor. An important technical tool was a limit procedure in [CEO, §6] which,
by restriction to representation (tensor) categories of affine group schemes, generalises

perfection of group schemes. Remarkably, the “perfection” of a Frobenius exact tensor

category of moderate growth essentially returns the representation category of a perfect
group scheme. In other words, up to perfection, all Frobenius exact tensor categories of

moderate growth arise from (perfect) group schemes. We consider this as further evidence

for their importance.
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Structure of the paper

Motivated by the above considerations, we initiate a systematic study of perfecting group

schemes. The paper is organised as follows:

In Section 1, we investigate the purely combinatorial problem of describing root data

over the ring Z[1/p], for later use in our classification results. In Section 2, we derive
some general results on perfect schemes. In Section 3, we start studying the perfections

of group schemes. We study perfect subgroups of perfect groups and their quotients. We

also obtain criteria for when two group schemes perfect to isomorphic groups and derive
some results on the perfections of the additive and multiplicative groups. In Section 4, we

classify perfectly reductive groups by their Z[1/p]-root data. In Section 5, we study the

representation theory of perfectly reductive groups. We classify simple modules and realise
them as socles of induced modules from Borel subgroups. Then we show that the block

decomposition simplifies considerably compared to the non-perfect case; in fact, blocks are

governed by the root lattice. We also show that extension groups for the perfected groups

are given in terms of generic cohomology in the sense of [CPSV]. This actually implies
that extensions in the category of (rational) representations over the perfected reductive

group can be computed in the category of representations of the abstract group of
Fp-points. In Section 6, we prove that Z[1/p]-root data also classify the localisations away
from p of the classifying spaces of compact connected Lie groups. Finally, in Section 7, we

present some explicit computations for extension groups, decomposition multiplicities and

line bundle cohomology for perfected SL2. We also make explicit the fractal behaviour
of perfected representation theory for SL2.

1. Root data over rings

For the entire section, we assume that D is a principal ideal domain of characteristic 0.

By a D-lattice, we understand a finitely generated free D-module. Because D is a PID, we
could replace “free” by “projective”, so our definition agrees with standard terminology

(e.g. in [CR]). For a lattice V, we have the dual lattice V ∗ := HomD(V ,D).

1.1. Reflection groups and root data

We follow the definition of root data of, for instance, [Gr].

Definition 1.1.1. (0) A reflection σ ∈ AutD(V ), for a D-lattice V, is a non-trivial

automorphism that fixes every element of a submodule V ′ ⊂ V for which V/V ′ is
free of rank 1.

(1) A D-reflection group is a pair (W,V ), where V is a D-lattice and W <AutD(V )

is a subgroup generated by reflections. We say (W,V ) is finite if W is a finite

group.

(2) A D-root datum is a triple (W,V ,{Pσ}), where (W,V ) is a finite D-reflection

group and {Pσ} is a collection of rank one submodules of V, indexed by the set {σ}
of reflections in W, satisfying

https://doi.org/10.1017/S1474748024000033 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748024000033


Perfecting group schemes 2553

(a) im(1−σ)⊂ Pσ and

(b) w(Pσ) = Pwσw−1 for all w ∈W .

An isomorphism of D-reflection groups (W,V )
∼−→ (W ′,V ′) is an isomorphism ϕ : V →V ′

withW ′ =ϕWϕ−1. An isomorphism of D-root data (W,V ,{Pσ}) ∼−→ (W ′,V ′,{P ′
σ}) is such

an isomorphism ϕ : V → V ′ satisfying additionally ϕ(Pσ) = P ′
ϕσϕ−1 for each reflection

σ ∈W .

1.1.2. A Z-reflection group (W,V ) yields a D-reflection group D⊗(W,V ) := (W,D⊗V )

via extension of scalars. Similarly, for a root datum (W,V ,{Pσ}) over Z, we have the D-

root datum D⊗ (W,V ,{Pσ}) := (W,D⊗V ,{DPσ}).

Lemma 1.1.3. If there exists an embedding D ↪→ Q, then every D-root datum is the
extension of scalars of a Z-root datum.

Proof. Let (W,V ) be a D-reflection group. Starting from a Z-lattice in V and acting on it
with W shows there exists a finitely generated ZW -submodule V 0 ⊂ V with D⊗ZV

0 → V

an isomorphism; see [CR, Corollary 23.14]. For a D-root datum (W,V ,{Pσ}), we can then

take the Z-root datum (W,V 0,{P 0
σ}), with P 0

σ := Pσ∩V 0.

Remark 1.1.4.

(1) Lemma 1.1.3 does not imply that root data over D⊂Q are “the same” as root data

over Z; see Example 1.4.2.

(2) The condition D ⊂ Q is necessary in Lemma 1.1.3, as one observes by considering

dihedral groups as real reflection groups on R2, or the complex reflection groups
generated by a root of unity acting by multiplication on C.

We will use the following direct computations several times.

Lemma 1.1.5. Consider a D-lattice V.

(1) For a fixed φ ∈ V ∗ and κ1,κ2 ∈ V with φ(κ1) = 2 = φ(κ2), we have the reflections

si : λ �→λ−φ(λ)κi of order 2 on V. Then

(s1s2)
j(κ1) = κ1+2j(κ1−κ2), for all j ∈ N.

(2) For a fixed κ ∈ V and φ1,φ2 ∈ V ∗ with φ1(κ) = 2 = φ2(κ), we have the reflections
si : λ �→λ−φi(λ)κ of order 2 on V. Then, for all λ ∈ V ,

(s1s2)
j(λ) = λ+ j(φ2(λ)−φ1(λ))κ, for all j ∈ N.

Lemma 1.1.6. Consider a prime p and two Z-root data (W,V ,{Pσ}) and (W ′,V ′,{P ′
σ′}).

Assume there exists an isomorphism ϕ : Z[1/p]⊗ (W,V )
∼−→ Z[1/p]⊗ (W ′,V ′) of Z[1/p]-

reflection groups.

(1) If p= 2, then ϕ is actually an isomorphism of Z[1/p]-root data.

(2) If p > 2 and if the further extension along Z[1/p]→ Z2 = lim←−Z/2n of ϕ induces an

isomorphism of Z2-root data, then ϕ is an isomorphism of Z[1/p]-root data.
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Proof. It is well-known and easy to show that for Z-root data, we either have

Pσ = im(1−σ) or im(1−σ) = 2Pσ. (1.1)

Hence, the additional condition in the definition of an isomorphism of Z[1/2]-root data
is trivially satisfied.

Now assume p > 2. In this case, (1.1) shows that in Z[1/p]⊗V ′, we have either ϕ(Pσ) =

P ′
ϕσϕ−1 , ϕ(Pσ) = 2P ′

ϕσϕ−1 , or 2ϕ(Pσ) =P ′
ϕσϕ−1 . By assumption, after extension to scalars

to Z2, only the first option is possible. As 2 is not invertible in Z2, this means that also

over Z[1/p], only the first option was possible.

1.2. Real-type root data

The following definition is closer to the classical definition of (reduced) root data.

Definition 1.2.1. A real-type D-root datum is a quadruple (X,R,Y,R∨), where X

and Y are D-lattices with subsets R⊂X and R∨ ⊂Y, together with

(a) a perfect bilinear pairing 〈·,·〉 :X×Y →D;

(b) a bijection R→R∨, β �→β∨;

such that

(1) We have 〈α,α∨〉= 2 for all α ∈R.

(2) If α∨ ∈R∨ and a ∈D, then aα∨ ∈R∨ if and only if a ∈D×.

(3) There are only finitely many D×-orbits in R∨.

(4) For each α ∈R, the reflection sα : λ �→ λ−〈α,λ〉α∨ in AutD(Y) preserves R∨.

(4’) For each α ∈R, the reflection sα : λ �→ λ−〈λ,α∨〉α in AutD(X) preserves R.

Note that 〈sα(λ),sα(μ)〉 = 〈λ,μ〉, for λ ∈X and μ ∈Y, with sα as defined in (4) and

(4’).
To a real-type root datum (X,R,Y ,R∨) over Z, we can define a real-type D-root datum

(D⊗X,D×R,D⊗Y ,D×R∨), with obvious bilinear pairing and bijection D×R→D×R∨

given by aλ �→ a−1λ∨.

Remark 1.2.2. For D = Z, Definition 1.2.1 is equivalent to the definition of a “donnée
radicielle réduite” in [De, §3.6]. We will show below in Lemma 1.2.5 that a real-type

D-root datum (X,R,Y,R∨) also satisfies the following:

(2’) If α ∈R and a ∈D, then aα ∈R if and only if a ∈D×.

(3’) There are only finitely many D×-orbits in R.

In particular, the definition of real-type root data is closed under duality.

Example 1.2.3. Consider a D-root datum (W,V ,{Pσ}). Take a reflection σ ∈W and a
generator v ∈ Pσ. By condition 1.1.1(2)(a), there exists (a unique) β ∈ V ∗ such that

σ(λ) = λ−β(λ)v, for all λ ∈ V. (1.2)
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We then define R∨ ⊂ V as the set of generators of the submodules {Pσ} and R⊂ V ∗ as

the set of elements β constructed by the above procedure. If we denote by S ⊂W the set

of reflections, then this procedure yields a surjective partially defined function

S×R∨ ⇀ R, (σ,v) �→ β. (1.3)

Theorem 1.2.4. Assume that for the D-root datum (W,V ,{Pσ}), every reflection in W

has order 2. Then (1.3) restricts to a bijection R∨ →R. The quadruple (V ∗,R,V ,R∨),
equipped with inverse bijection R→R∨ and evaluation pairing V ∗×V →D, is a real-type
D-root datum.

Proof. The assumption σ2 = 1 in (1.2) shows that β(v) = 2, for every pair (v,β) we
associate to a reflection in W via the procedure in 1.2.3. First, we observe that this

procedure yields a well-defined function R∨ →R, namely that β only depends on v and

not on σ. This is indeed the case since a given v ∈ V cannot be a generator in both

Pσ1
and Pσ2

for two distinct reflections σ1,σ2 ∈W , which follows from finiteness of W,
Lemma 1.1.5(2) and the fact that D is of characteristic 0. By definition of R, the function

R∨ →R is surjective. Next, we prove that this function is injective, and hence a bijection.

Assume, therefore, that for two generators v1 ∈ Pσ1
and v2 ∈ Pσ2

, we obtain the same
β ∈ V ∗. By finiteness of W and Lemma 1.1.5(1), we find v1 = v2.

By the above paragraph, 1.2.1(1) is satisfied. To establish 1.2.1(2), it suffices to show

that we cannot have non-trivial inclusions Pσ1
⊂Pσ2

. We can extend scalars alongD ↪→K,
with K the field of fractions. Now σ1σ2 acts as the identity on KPσ1

=KPσ2
, but also

as the identity on KV/KPσ1
. Since it has finite order and charK = 0, we find σ1σ2 = 1.

Property 1.2.1(3) follows immediately from the fact that W is finite. Property 1.2.1(4) is

an immediate consequence of 1.1.1(2)(b).
By letting w ∈W act on V ∗ by w(f) = f ◦w−1, we also have a reflection group (W,V ∗).

We can define Qσ :=Dβ ⊂ V ∗, for each reflection σ ∈W with β as in (1.2), since Qσ does

not depend on our choice of generator v ∈ Pσ. It follows immediately that (W,V ∗,{Qσ})
is a D-root datum. That 1.2.1(4’) is satisfied follows by applying the proof for (4) to

(W,V ∗,{Qσ}).

We conclude this section with some technical results needed later.

Lemma 1.2.5. Consider a real-type D-root datum (X,R,Y,R∨). For β ∈R and b ∈D,
we have bβ ∈ R if and only if b ∈ D× and then (bβ)∨ = b−1β∨. In particular, sbβ = sβ
and conditions (2’) and (3’) in 1.2.2 hold.

Proof. Assume first that b ∈ D×. We need to prove that (σ,b−1β∨) �→ bβ in (1.3), for
σ : λ �→ λ−β(λ)β∨, which is clearly true.

Conversely, assume that β1 := bβ ∈ R, for some b ∈ D, and set λ := bβ∨
1 − β∨ ∈ Y.

Lemma 1.1.5(1) for φ= 〈β,−〉 and κ1 = bβ∨
1 , κ2 = β∨ implies

b(sβ1
sβ)

j(β∨
1 ) = bβ∨

1 +2jλ, for all j ∈ N.

Conditions 1.2.1(3) and (4) thus imply λ=0. Finally, 1.2.1(2) then implies b is a unit.
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Lemma 1.2.6. Consider a real-type D-root datum (X,R,Y,R∨). If, for α,β,γ ∈R, we

have sβ(α
∨) = γ∨, then sβsαsβ = sγ and sβ(α) = γ.

Proof. A direct calculation shows that, for every λ ∈Y,

sβsαsβ(λ) = λ−〈sβ(α),λ〉sβ(α∨). (1.4)

Set γ1 = sβ(α)∈R. Then we can apply Lemma 1.1.5(1) to φ= 〈γ1,−〉 and κ1 = γ∨
1 , κ2 = γ∨

(so s1 = sγ1
and s2 = sβsαsβ). By 1.2.1(3) and (4), it thus follows that γ1 = γ.

1.3. Real reflection groups

1.3.1. Hypotheses Consider a finite-dimensional real vector space V (without fixed

inner product/Euclidean structure), a reflection group W < AutR(V ), in the sense of
Definition 1.1.1(1), and a fixed finite generating set T of reflections in W such that

• The map from T to the set of hyperplanes in V, s �→Hs := ker(1−s), is injective.
• We have wTw−1 ⊂ T for all w ∈W .

Theorem 1.3.2. Under the assumptions in 1.3.1, W is a finite group.

Remark 1.3.3. If a real reflection group (W,V ) is finite, by Weyl’s unitary trick, we can
assume it is Euclidean (meaning there is an inner product on V for which each reflection

in W is orthogonal).

The remainder of this section is devoted to the proof.

1.3.4. All topological references consider the Euclidean topology on V. Consider

H= ∪t∈THt ⊂ V

and refer to the connected components of the complement of H in V as chambers. We
say that Ht is a wall of a chamber A if the intersection of A0 and Ht cannot be contained

in a codimension 2 hyperplane. Fix one such chamber A0. Denote by S ⊂ T the set of

reflections s for which Hs is a wall of A0. Our assumptions in 1.3.1 imply that W acts
on the (finite) set of chambers.

Lemma 1.3.5. The set S is a set of generators for W.

Proof. Denote by WS ⊂ W the subgroup generated by S ⊂ T . We need to show that

WS =W , or equivalently, T ⊂WS .
First, we show that every WS-orbit in V intersects A0. By continuity, it suffices to

show that every WS-orbit in V \H intersects A0. For v ∈ V \H, there exists a sequence

A0,A1, · · · ,Al of distinct chambers where v ∈ Al, and for each 0 ≤ i < l, there is ti ∈ T
such that Hti is a wall of Ai and of Ai+1.

If l=0, there is nothing to prove, so assume l > 0. Then t0(A1)=A0, and by assumption,

t0 ∈ S. Now A0,A
′
1 = t0(A2),A

′
2 = t0(A3), · · ·A′

l−1 = t0(Al) forms a chain of distinct
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chambers as before and t0(v) ∈ A′
l−1. We can thus perform induction on l to deduce

the claim.

Now take an arbitrary t ∈ T and let A be a chamber which has Ht as a wall. By the
above, we know there exists w ∈WS with A= w(A0). This implies that

Ht = w(Hs) = Hwsw−1 .

By the first hypothesis in 1.3.1, this shows that t= wsw−1 ∈WS .

Precisely as in [Bo, V.§3.2 Theorem 1], we then find the following consequence.

Corollary 1.3.6. The pair (W,S) is a Coxeter system.

Proof of Theorem 1.3.2. The reflections in the Coxeter group (W,S) are by definition
the elements of the set ∪w∈WwSw−1, which by assumption is included in T and hence

finite. By [BB, Corollary 1.4.5], any Coxeter group (W,S) with finitely many reflections

is finite.

1.4. Equivalence of definitions

Theorem 1.4.1. If there exists an embedding D ↪→ R, then the map in Theorem 1.2.4

is a bijection between the sets of isomorphism classes of D-root data and real-type D-root
data.

Proof. Since we have D ⊂ R, the only roots of unity in D are ±1, and it follows that
every reflection of finite order must have order two. Hence, the map in Theorem 1.2.4 is

defined on every D-root datum.

To each real-type D-root datum (X,R,Y,R∨) we will now associate a D-root datum,
in a way which is easily seen to be the inverse of the above map. Define the D-reflection

group W < AutD(Y) generated by {sα |α ∈R}. To a reflection sγ , γ ∈R, we associate

the corresponding rank one submodule Dγ∨ ⊂Y.
We show that W is finite by considering the corresponding real reflection group acting

on Y⊗D R. By Lemma 1.2.5, W is generated by a finite (see 1.2.1(2)) set of reflections

{sα |α ∈ R}, such that the reflecting hyperplane ker(1− sα) = ker〈α,−〉 determines sα.

Moreover, we claim that for each α ∈ R and w ∈ W , we have wsαw
−1 = sγ for some

γ ∈R. Clearly, it suffices to consider the case w= sβ , which is Lemma 1.2.6. We can now

apply Theorem 1.3.2.

Now it follows that the triple (W,Y,{Dγ∨}) is a D-root datum. Indeed, by Remark
1.3.3 and [Hu, Proposition 1.14], every reflection in W is equal to sγ for some γ ∈R, and

property (a) in 1.1.1(2) is automatic, while (b) follows from Lemma 1.2.6.

Clearly, the bijection in Theorem 1.4.1 exchanges the two notions of extensions of scalars

of root data. We conclude this section with some examples of root data which become

isomorphic after extension of scalars.
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Example 1.4.2.

(1) The root datum of SO2n+1 becomes isomorphic to its dual (the root datum of Sp2n)

after extension of scalars to D if and only if 2 is invertible in D.

(2) The root datum of SLn becomes isomorphic to its dual (the root datum of PGLn)
after extension of scalars to D if and only if n is invertible in D.

1.5. Isogenies

We fix a prime p and define isogenies of Z[1/p]-root data. We will work with real-type

root data, but we refer to them simply as root data (this is justified by Theorem 1.4.1).

Definition 1.5.1. An isogeny (X,R,Y,R∨)→ (X1,R1,Y1,R
∨
1 ) of Z[1/p]-root data is an

injective morphism ϕ :X ↪→X1 of Z[1/p]-modules such that

(1) the induced ϕ∨ :Y1 →Y is also injective;

(2) ϕ restricts to a bijection R→R1;

(3) ϕ∨(ϕ(α)∨) = α∨, for all α ∈R.

Example 1.5.2. An isogeny of Z-root data, with respect to some prime p, is defined in
[St, §1]. It follows immediately that the induction to Z[1/p] of such an isogeny yields an

isogeny of Z[1/p]-root data. Note that Definition 1.5.1 is simpler than the definition in

[St, §1], as the powers of p present in [St, §1] are subsumed by (2), since multiplication
by p is invertible on Z[1/p]-root data.

Conversely, if for Z-root data RD1 and RD2, there exists an isogeny ϕ :Z[1/p]⊗RD1 →
Z[1/p]⊗RD2, then for some l ∈ N, the map pjϕ restricts to an isogeny RD1 → RD2 in

the sense of [St] for all j ≥ l.

2. Perfection of schemes

Fix a prime p.

2.1. Notation

We recall some basic set-up of algebraic geometry; see, for instance, [DG].

Fix a field k. Denote by Algk the category of commutative k -algebras. We consider the
categories (where the first two “inclusions” are fully-faithful embeddings)

Algopk ⊂ Schk ⊂ Faisk ⊂ Funk. (2.1)

Here, Schk is the category of k -schemes, and Funk is the category of functors Algk → Set.
The category Faisk stands for the full subcategory of such functors which are sheaves for

the fpqc topology. In other words, a functor F is in Faisk if and only if

F (A)→ F (B)⇒ F (B⊗AB)

is an equaliser for every faithfully flat A-algebra B, and F commutes with finite products.

When k is clear, we will usually leave out the subscript in the above categories.
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The inclusion I : Fais ↪→ Fun has a left adjoint

S : Fun→ Fais

which commutes with finite limits (as well as all colimits).

By a subgroup of an affine group scheme G, we understand a closed subscheme which
inherits a group structure, or in other words, an affine group scheme represented by a

quotient of the Hopf algebra representing G.

2.2. Perfection functors

2.2.1. Frobenius morphisms For a commutative Fp-algebra A, we have the p-th

power algebra morphism

Fr = FrA : A→A, a �→ ap.

For an Fp-scheme X, we have the morphism Fr : X → X, which is the identity on the

underlying topological space and given by the p-th power map on the sheaf of algebras.
For F ∈ FunFp

, we define the Frobenius morphism F → F as the natural transformation

given by letting F act on the p-th power morphism. Concretely, the evaluation of the

natural transformation at an arbitrary A ∈ Alg
Fp

is

F (A)
F (FrA)−−−−→ F (A).

These Frobenius morphisms are compatible with the inclusions (2.1).
For an object F of FunFp

or Alg
Fp
, the notation lim−→F or lim←−F will always be used for

the direct or inverse limit along the Frobenius morphism. For example, for an Fp-algebra

A, the algebra Aperf := lim−→A is the direct limit of the system

A
a �→ap

−−−−→A
a �→ap

−−−−→A
a �→ap

−−−−→A→ ·· · .

For F ∈ FunFp
, it follows directly that

(lim←−F )(A) = F (lim←−A) and (lim−→F )(A) = F (lim−→A).

An Fp-scheme (or an algebra or functor) is called perfect if the Frobenius map is an

isomorphism; see [BS, Definition 3.1].

Lemma 2.2.2. The endofunctor of FunFp

F �→ Fperf := lim←−F

restricts to endofunctors of Fais and Sch. Moreover, for A∈Alg
Fp
, we have (SpecA)perf =

Spec(Aperf).

Proof. It is a standard property that limits exist in a Grothendieck topos and can be

computed in the presheaf category, which shows that perfection restricts to Fais. The
remaining properties follow from the explicit realisation in Example 2.2.3 below.
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Example 2.2.3. For an Fp-algebra A, set (X,O) = SpecA. Using the basis of dis-

tinguished open subsets, it follows easily that Spec(Aperf) = (X,O′), with O′ the

sheafification of the presheaf U �→ O(U)perf .
It then follows that for an arbitrary Fp-scheme X = (X,O), the scheme Xperf can be

realised as (X,O′) with O′ the sheafification of the presheaf U �→ O(U)perf .

Remark 2.2.4. In 2.2.3, is essential to take O′ as the direct limit of O in the category

of sheaves (as opposed to presheaves). For example,

(1) For an infinite family of Fp-algebras Ai, consider the (non-affine) scheme (X,O) =

�iSpecAi. Then, for general Ai, we have, by the sheaf axioms and Lemma 2.2.2,

Γ(X,O′) =
∏
i

(Ai)perf �= Γ(X,O)perf =

(∏
i

Ai

)
perf

.

(2) Also for non-noetherian affine schemes, this phenomenon occurs. Consider A =

Fp[xi | i ∈ N]/(xixj,i �= j). Let Ui be the distinguished open corresponding to xi.
The (disjoint) union U = ∪iUi is the complement of the origin and, as in (1), we

find O(U)perf �=O′(U).

Remark 2.2.5. For Fp-algebras A,B, we have

Alg(Aperf,B)∼= lim←−Alg(A,B)∼= Alg(A, lim←−B).

In particular, if B is perfect, we have Alg(Aperf,B)∼= Alg(A,B).

Lemma 2.2.6. Let X be an Fp-scheme.

(1) We have dimX = dimXperf , and Xperf is quasi-compact (resp. connected) if and

only if X is quasi-compact (resp. connected).

(2) Any radical ideal I in a perfect Fp-algebra A satisfies I2 = I.

(3) If X is perfect, for x ∈ X, we have TX,x = 0.

(4) Perfect schemes are reduced. Moreover, −perf sends Xred → X to an isomorphism.

Proof. Part (1) follows immediately from the fact that the underlying topological spaces

of X and Xperf are the same; see Example 2.2.3. Part (2) is obvious. By (2), it is clear

that the Zariski cotangent space is zero, which proves (3). Alternatively, for (3), let A
be a perfect Fp-algebra and κ a field. Every algebra morphism A → κ[ε]/(ε2) factors

through κ↪→κ[ε]/(ε2). Applying this to Spec(κ(x)[ε]/(ε2))→ X shows the claim. Part (4)

is immediate.

2.3. Relative version

Fix a perfect field k of characteristic p for the remainder of the section.

2.3.1. For a fixed Fp-scheme T, perfection naturally yields a functor from the category

of T-schemes to the category of Tperf -schemes. Using the canonical morphism Tperf → T,

we can also interpret perfection as an endofunctor of the category of T-schemes. We will
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take the latter point of view for T= Speck (in which case Tperf → T is an isomorphism),

and we will henceforth interpret the perfection functor as an endofunctor of Schk.

2.3.2. Sometimes it will be beneficial to consider an alternative realisation of the

perfection of k -schemes, in which the morphisms in the chain of which we take the limit

are morphisms of k -schemes. For a k -scheme X, let X(1) denote the extension of scalars
of X along the Frobenius automorphism k → k. The morphism Fr : X→ X over Fp from

2.2.1 then lifts to a morphism Fr : X→ X(1) of k -schemes. For instance, for a k -algebra

A, this corresponds to the morphism

A(1) →A, λ⊗a �→ λap, (2.2)

with A(1) = k⊗A the extension of scalars along the Frobenius automorphism of k.

By taking iterates of the Frobenius automorphism and its inverse (k is perfect), we

define X(i) for i ∈ Z. Then we have (over k)

Xperf
∼= lim←−

i→∞
X(−i).

The advantage of the approach in this subsection is that it extends to Funk by setting

Fperf(A) := lim←−
i→∞

F (A(i)).

By construction, perfection commutes with limits – for instance, products – in Funk.

Proposition 2.3.3. Consider a morphism f in Faisk.

(1) If f is an epimorphism in Faisk, then so is fperf .

(2) If f is an monomorphism in Faisk, then so is fperf .

Proof. For part (1), we can use the criterion from [DG, Corollaire 2.8] to describe that

f is an epimorphism, which carries over to fperf by [BS, Lemma 3.4(xii)]. Part (2) is a
generality for limits of monomorphisms.

It is obvious that X �→ Xperf loses a lot of information. For instance,

(Xperf)perf ∼= Xperf
∼= (Xred)perf .

A more subtle example is given below.

Example 2.3.4. Assume p > 2. Consider the algebra A= k[x,y]/(yp−x2) with injective
algebra morphism A ↪→ k[z], given by x �→ zp, y �→ z2. Then X := SpecA is reduced, but

perfection sends A1
k → X to an isomorphism.

2.4. Perfect finite type

Recall that X ∈ Schk is of finite type (over k) if the underlying topological space is quasi-

compact, and for every x ∈ X, there exists an affine open neighbourhood isomorphic to

the spectrum of a finitely generated k -algebra.
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Lemma 2.4.1. For a perfect commutative k-algebra A, the following conditions are
equivalent:

(a) There is a finite subset S ⊂A such that the set

S′ = {x ∈A |xpn ∈ S for some n ∈ N}

generates A as a k-algebra;

(b) There exists a finitely generated k-algebra A0 with A∼= (A0)perf .

If the conditions are satisfied, we say that A is perfectly finitely generated.

Proof. Exercise.

Proposition 2.4.2. For a perfect k-scheme X, the following are equivalent:

(a) X is quasi-compact, and for every x ∈ X, there exists an affine open neighbourhood

corresponding to a perfectly finitely generated k-algebra;

(b) There exists a scheme Y of finite type over k with X∼=Yperf .

If the conditions are satisfied, we say that X is of perfect finite type (over k).

Proof. Clearly, (b) implies (a). That (a) implies (b) is proved in [BS,
Proposition 3.13].

2.5. Perfection of line bundle cohomology and quotients

All schemes and functors are assumed to be over k.

Lemma 2.5.1. Let X be a quasi-compact separated scheme over k and L a line bundle
on X. For the pullback p∗L along p : Xperf → X and i ∈ N, we have

Hi(Xperf,p
∗L) ∼= lim−→

j

Hi(X,L⊗pj

),

where the transition maps are induced from L⊗pj →L⊗pj+1

, f �→ f⊗p.

Proof. Since X is quasi-compact, we can take a finite cover U by affine opens and, since

X is separated, intersections of these opens are again affine. Moreover, the cohomology
groups Hi(X,−) are canonically isomorphic to the Čech cohomology groups Ȟi(U,−). It

follows that Hi(X,−) commutes with direct limits.

Now, for a line bundle, we have (as sheaves on the underlying topological space of Xperf

or X) isomorphisms

p∗L ∼= (lim−→OX)⊗OX
L ∼= lim−→L⊗pj

,

which follow easily from Remark 2.5.2 below.
The conclusion follows from the combination of the two paragraphs.
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Remark 2.5.2. In case X= SpecA for a commutative k -algebra A, Lemma 2.5.1 simply
states that

Aperf ⊗AL ∼= lim−→L⊗pj

,

for every invertible A-module L. To prove this isomorphism, we only need to observe that

the morphism

A⊗AL → L⊗p, a⊗v �→ av⊗p,

where the first module is the extension of scalars of L along the p-th power map, is

an isomorphism. Indeed, the morphism commutes with localisation and is obviously an
isomorphism when A is local.

2.5.3. For X ∈ Fais and G a group object in Fais acting on X (on the right), we consider

the corresponding co-equalisers in Fun and Fais of X×G⇒X and denote them by X/0G

and X/1G. In particular, X/1G= S(X/0G), for the sheafification functor S : Fun→ Fais.
It follows from the definitions that Gperf is again a group object and acts on Xperf . We

create the following commutative diagram in Fun:

Xperf
�� Xperf/0Gperf

��

��

(X/0G)perf

��
Xperf/1Gperf

�� (X/1G)perf .

(2.3)

The vertical arrows are induced from the adjunction S � I (either directly or via the

action of the perfection functor). The left horizontal arrow is the defining one for the co-
equaliser. The remaining two arrows are uniquely defined from the co-equaliser properties

applied to the perfection of the morphisms X/1G←X →X/0G.

Theorem 2.5.4. Assume that the action of G on X is free. Then the morphism from

(2.3)

Xperf/1Gperf → (X/1G)perf

in Faisk is an isomorphism.

Proof. By Proposition 2.3.3(1), the composite morphism (from top left to bottom right)

in (2.3) is an epimorphism in Fais. In particular, the lower horizontal arrow is an

epimorphism. Since isomorphisms in Grothendiek topoi are precisely morphisms which
are both monomorphisms and epimorphisms, it now suffices to show this arrow is also a

monomorphism.

Since sheafification sends monomorphisms to monomorphisms, it actually suffices to
show that Xperf/0Gperf → (X/1G)perf is a monomorphism in Fun. Using the assumption

that the action is free, we can prove that Xperf/0Gperf → (X/0G)perf and (X/0G)perf →
(X/1G)perf are monomorphisms.
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Indeed, the first case follows from the fact that for an inverse system of sets Xi with
free actions of groups Gi,

lim←−Xi/ lim←−Gi → lim←−(Xi/Gi)

is injective. By Proposition 2.3.3(2), for the second morphism, it suffices to demonstrate

that X/0G→X/1G is a monomorphism. This is equivalent to the claim that the presheaf

X/0G is separated for the fpqc topology, meaning that

X(A)/G(A) → X(B)/G(B)

is an injection for every faithfully flat A-algebra B (and the same for finite products of

algebras). This is easily verified for free actions; see, for instance, [Ja, §I.5.5].

3. Perfection of group schemes

Let k be a perfect field of characteristic p > 0. All schemes are assumed to be over k.

3.1. Perfection

For an affine group scheme G over k, clearly Gperf is again an affine group scheme over

k. Note also that, since k is perfect, Gred is a subgroup of G.

3.1.1. The group pZ We denote by pZ <Z[1/p]× the group of powers of p, an infinite

cyclic group. Let G be an affine group scheme over k, which can be defined over Fp. Then

we can choose an isomorphism φ :G(1) ∼−→G, which yields an automorphism

Φ = φperf ◦Fr : Gperf
∼−→ G

(1)
perf

∼−→ Gperf,

and a corresponding group homomorphism pZ →Aut(Gperf), p �→ Φ. Examples are given
in 3.4.5.

Lemma 3.1.2. For a perfect group scheme G, we have LieG= 0 and DistG= k.

Proof. This is an immediate consequence of Lemma 2.2.6(2) and (3).

Theorem 3.1.3. Let G be a perfect affine group scheme over k. The following are
equivalent:

(a) The scheme G is of perfect finite type (i.e. k[G] is perfectly finitely generated);

(b) The group scheme G is a subgroup of GL(V )perf for a finite-dimensional vector

space V;

(c) There exists an affine group scheme G of finite type with G∼=Gperf ;

(d) There exists a reduced affine group scheme G of finite type with G∼=Gperf .

Proof. Clearly, (d) implies (c). Any affine group scheme G of finite type is a subgroup of
some GL(V ); see, for example, [DM, Corollary 2.5]. It follows immediately that Gperf <

GL(V )perf , so (c) implies (b). That (b) implies (a) follows by the observation that k[G]

is a quotient of the perfectly finitely generated algebra lim−→k[GL(V )].
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Finally, we prove that (a) implies (d). Let S be a finite set which perfectly generates

k[G] as in Lemma 2.4.1(a). It is possible to replace S by a finite set S1 ⊃ S such that

the subalgebra that is generated (in the ordinary, non-perfect sense) by S1 is actually a
Hopf subalgebra of k[G]; see [Ab, Lemma 3.4.5]. Let G be the corresponding affine group

scheme. By construction Gperf
∼=G and, since k[G] is a subalgebra of k[G], it follows that

G is reduced.

Lemma 3.1.4. Let G be a perfect affine group scheme and H an affine group scheme.

Then Hperf →H induces an isomorphism

Hom(G,Hperf)
∼−→ Hom(G,H),

with inverse given by perfection. Moreover, if H is of finite type and G an affine group

scheme, then

Hom(Gperf,Hperf)
∼−→ lim−→Hom(G(−i),H).

Proof. This is an immediate application of Remark 2.2.5, or the fact that the perfection
functor on Fp-schemes is right adjoint to the inclusion functor for perfect schemes.

3.1.5. For a subgroup H of an affine group scheme G, we denote by G/H, when it exists,

the equaliser of G×H ⇒G in Schk.
Recall from [DG, III, §3 Théorème 5.4] that for G of finite type, the quotient G/1H in

Faisk is a scheme and of finite type over k, and so in particular is equal to G/H.

Theorem 3.1.6. (1) For every perfect subgroup H of an affine group scheme G of
perfect finite type, the quotient G/H exists, is of perfect finite type and is isomorphic

to G/1H.

(2) For an affine group scheme G, every perfect subgroup of Gperf is the perfection of

a subgroup of G. More precisely, every perfect (normal) subgroup of Gperf is the
perfection of a reduced (normal) subgroup of Gred <G.

(3) For an affine group scheme G of finite type with subgroup H, the quotient

Gperf/Hperf exists and is isomorphic to (G/H)perf and Gperf/1Hperf .

Proof. We will freely use the results from [DG] recalled above. Part (1) is then an

immediate consequence of parts (2) and (3).

Now we prove part (2). Take a perfect subgroup H < Gperf . We have a commutative
square, where ↪→ denotes the inclusion of a subgroup and � denotes a faithfully flat

homomorphism

H � � ��

����

Gperf

����
L �
� �� Gred,

where L is just defined to be the image of the composite diagonal homomorphism. By

Lemma 3.1.4, perfecting the lower path in the square yields homomorphismsH�Lperf ↪→
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Gperf which compose to the original inclusion H→Gperf . Clearly, H� Lperf must be an
isomorphism. If H is a normal subgroup, it follows easily that so is L <Gred.

Part (3) is an application of Theorem 2.5.4.

Remark 3.1.7. A perfect group scheme can have non-perfect subgroups; for instance,

μp∞ := lim←−μpi, i.e. k[μp∞ ] = k[x1/p∞
]/(x−1)

is a subgroup of (Gm)perf . Here, we use the convention

k[x1/p∞
] = k[x,x1/p,x1/p2

, · · · ] = ∪ik[x
1/pi

].

Moreover, (Gm)perf/μp∞ ∼=Gm.

For our purposes, it is most convenient to define short exact sequences of affine group
schemes as those sequences N → G→ Q in which G→ Q is faithfully flat and N is the

kernel of the latter morphism.

Lemma 3.1.8. The perfection functor acting on a short exact sequence of affine group
schemes

1→N →G→Q→ 1

yields a short exact sequence

1→Nperf →Gperf →Qperf → 1.

Proof. Faithful flatness is preserved by perfection; see [BS, Lemma 3.4]. Taking inverse

limits of affine group schemes always respects kernels.

Corollary 3.1.9. A reduced affine group scheme G is solvable if and only if Gperf is
solvable.

Proof. Lemma 3.1.8 shows that for any solvable affine group scheme, its perfection is

again solvable. However, assume that Gperf is solvable and G reduced. Applying Theorem
3.1.6(2) iteratively allows us to construct a finite chain of reduced normal subgroups such

that the perfection of the quotients are abelian. A reduced affine group scheme with

abelian perfection is clearly abelian itself.

3.2. Isomorphic perfections

We gather some examples and results about affine group schemes with isomorphic

perfections.

Example 3.2.1. (1) Let G be a finite group scheme (i.e. k[G] is finite dimensional).

We have Gperf
∼=Gred, and so, in particular, G is infinitesimal if and only if Gperf

is trivial.

(2) Reduced affine group schemes can also become isomorphic after perfection. For

instance, if q is a power of p, then (SLq)perf ∼= (PGLq)perf . This is an example

of Lemma 3.2.2 below, or follows from 4.2.3 below and Example 1.4.2. Moreover,
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the latter results also show that, conversely, (SLn)perf ∼= (PGLn)perf implies that n

must be a power of p.

(3) As follows from Remark 2.2.5, a necessary condition for affine group schemes G,H
to have isomorphic perfections is that there exists an isomorphism G(k)∼=H(k) as

abstract groups.

Recall that an isogeny is a faithfully flat homomorphism of affine group schemes with

finite kernel N. An isogeny is infinitesimal if N is infinitesimal. An isogeny G → Q

between reduced and connected affine group schemes is purely inseparable if the

induced morphism k(Q) → k(G) between the fields of fractions is a purely inseparable
field extension.

Lemma 3.2.2. For an isogeny q :G→Q, the following conditions are equivalent:

(a) q is infinitesimal;

(b) The perfection of q is an isomorphism.

Moreover, if G,Q are reduced and connected, the above properties are equivalent to

(c) q is purely inseparable.

Proof. The equivalence between (a) and (b) is an immediate application of Example

3.2.1(1) and Lemma 3.1.8.
Condition (b) implies that for every a ∈ k[G], there is i ∈ N such that ap

i

is in the

image of k[Q] → k[G], from which (c) follows immediately. Conversely, that (c) implies

(b) follows similarly, by exploiting the equality

k[Q] = k(Q)∩k[G], inside k(G).

To prove the displayed equality (of which the inclusion is obvious), we consider one
f ∈ k(G) which belongs to k(Q) ⊂ k[G]. By viewing G as the inverse limit of quotient

group schemes of finite type lim←−Gα (which induces Q∼= lim←−Qα), we can easily reduce to

the case where G and Q are of finite type, by taking α for which f ∈ k[Gα]⊂ k[G] as well
as f ∈ k(Qα)⊂ k(Gα).

Assume thus that G is of finite type and consider the span S of {g(f) |g ∈G(k)}. This is
the G(k)-subrepresentation of the rational left regular representation k[G]; in particular,
S is finite dimensional. Clearly, the action of G(k) on f factors through the canonical

action of Q(k) on k(Q), and by our finite type assumption, we have G(k)�Q(k). Hence,

the elements h ∈ k[Q] for which hS ⊂ k[Q] form a non-zero (by finite dimensionality of

S ) Q(k)-invariant ideal I < k[Q], and hence, I = k[Q]. So f ∈ S ⊂ k[Q], as desired.
Note that an alternative argument considers the purely inseparable isogeny

G→G/(kerq)0, which is also étale and therefore an isomorphism.

Proposition 3.2.3. The following conditions are equivalent on two reduced affine group

schemes G,H of finite type.

(a) Gperf
∼=Hperf ;

(b) There exists j ∈ N and an infinitesimal isogeny G→H(j);
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(c) There are i,j ∈ N and homomorphims φ : G → H(j), ψ : H → G(i) for which the
following triangles are commutative:

G
φ ��

Fri+j
���

��
��

��
� H(j)

ψ(j)

��

H
ψ ��

Fri+j
���

��
��

��
� G(i)

φ(i)

��
G(i+j) H(i+j).

Proof. That (b) implies (a) is a special case of Lemma 3.2.2.

Now we prove that (c) implies (b). The kernel of the Frobenius homomorphism is
infinitesimal; hence, the left diagram shows that the kernel of φ is infinitesimal. Since we

assume that G and H are reduced, the Frobenius homomorphism is faithfully flat. The

right diagram thus proves that φ is faithfully flat.
Applying Lemma 3.1.4 to the isomorphism in (a) yields morphisms φ :G(−j) →H and

ψ : H(−i) → G. Expressing that these induce mutually inverse homomorphisms on the

perfected groups then states that there exists l ∈ N such that the composition

H(−i−j−l) Frl−−→H(−i−j) ψ(−j)

−−−→G(−j) φ−→H

is Fri+j+l. Since Frl is faithfully flat, we arrive precisely at the conditions in (c), so (a)
implies (c).

3.3. Tannakian point of view

For an affine group scheme G, we denote by RepG its category of (rational) representations

which are finite dimensional over k. Its category of all representations will be denoted by

Rep∞G∼= IndRepG.

3.3.1. Let us interpret Gperf as lim←−G(−i) as in 2.3.2. We refer to [CEO, §6] for an
overview of the notion of the direct limit of (tensor) categories. In particular, we have

Rep(Gperf) ∼= lim−→RepG(−i), (3.1)

where the k -linear (exact) tensor functors in the chain are given by the pullback along

G(−i−1) →G(−i). These functors fit into commutative diagrams:

RepG ��

−(1)

����
��

��
��

��
RepG(−1)

∼
��

(V → V ⊗k[G]) � ��
�

�����
����

����
���

(V → V ⊗k[G](−1))
�

��
RepG (V (1) → V (1)⊗k[G]).

(3.2)

The non-horizontal arrows are only k -linear up to twist. By definition, V → V ⊗k[G](−1)

comes from k[G] → k[G](−1) in (2.2). The downwards arrow is given by applying −(1)

to both vector space and co-action. Note that we can equivalently realise the
G-representation V (1) from the bottom right in (3.2) as the subquotient of ⊗pV given by

the image of ΓpV → SpV . This gives a more palatable definition of the Frobenius twist

from the Tannakian point of view.
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Diagram (3.2) allows us to realise RepGperf alternatively as

Rep(Gperf) ∼= lim−→RepG, (3.3)

in the sprit of interpretation 2.3.1. Compared to (3.1), we no longer have to work with

twists of G, but we do have the drawback that the the defining functors are not k -linear.

3.3.2. Notation For M ∈ RepG, we denote by M [i] the object of lim−→RepG where M
is placed in the i -th copy of RepG in the chain, and we use the same notation for the

corresponding object in Rep(Gperf), via (3.3). Note that every object in Rep(Gperf) is of

this form, and furthermore, M [i]∼=M (1)[i+1].

Lemma 3.3.3. [CEO, Remark 6.5] Let G be an affine group scheme over k.

(1) G is reduced if and only if −(1) : RepG→ RepG is full.

(2) G is perfect if and only if −(1) : RepG→ RepG is an equivalence.

Proof. If G is reduced, the p-th power map is injective on k[G], and the fullness

in (1) follows. However, if −(1) is not full, then (by applying adjunction) there is a

G-representation V with a vector v ∈ V which is not G-invariant, but for which
1⊗v ∈ V (1) is G-invariant. Looking at the k[G] coaction then provides a non-zero f ∈ k[G]

with fp = 0.

Via diagram (3.2), the functor is an equivalence if and only if G(−1) → G is an
isomorphism, which is equivalent to G being perfect.

Remark 3.3.4. As for any direct limit of abelian categories, for objects M [i],N [i] ∈
Rep(Gperf), using notation from 3.3.2, we have

lim−→
j

ExtlG(M
(j),N (j))∼= ExtlGperf

(M [i],N [i]).

3.4. Additive, multiplicative and unipotent groups

For convenience, we let k be algebraically closed in this section.

3.4.1. To lighten expressions, we introduce the following notation:

Ga := (Ga)perf and Gm := (Gm)perf

for the perfection of the additive and multiplicative group of k.

Proposition 3.4.2. Assume that k is algebraically closed.

(1) Let G be a connected affine group scheme of perfect finite type and of dimension 1;

then either G∼=Ga or G∼=Gm.

(2) Let G be a reduced affine group scheme of finite type with Gperf
∼=Ga (resp. Gperf

∼=
Gm); then G∼=Ga (resp. G∼=Gm).

Proof. By [Sp, Theorem 3.4.9], for any connected reduced affine group scheme G of finite

type and of dimension 1, we must have G ∼= Ga or G ∼= Gm. This implies part (2), by

Lemma 2.2.6(1). Part (1) follows similarly, using characterisation 3.1.3(d).
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By a torus we mean an affine group scheme isomorphic to G×n
m for some n∈N. Similarly,

perfect tori are the affine group schemes isomorphic to G×n
m for some n ∈ N.

Lemma 3.4.3. For a connected reduced affine group scheme G of finite type, the following

are equivalent:

(a) G is a torus;

(b) Gperf is a perfect torus.

Proof. Clearly, (a) implies (b). However, (b) implies that G is connected and, since

RepG→ RepGperf

is exact and fully faithful, see Lemma 3.3.3(1), it follows that RepG is semisimple and

pointed (every simple representation has dimension one). That G is a torus then follows

from [Sp, 3.2.3 and 3.2.7(ii)].

Recall that an affine group scheme G is unipotent if and only if every representation

has an invariant vector (equivalently every simple object in RepG is trivial).

Lemma 3.4.4. For an affine group scheme G over k, Gperf is unipotent if and only if
Gred is unipotent.

Proof. By equivalence (3.1), if G (or Gred) is unipotent, then so is Gperf . However, if

Gperf is unipotent, then the fully faithful exact functor from RepGred to RepGperf shows

that also Gred is unipotent.

3.4.5. We have a ring isomorphism

Z[1/p]
∼−→ End(Gm), a �→ {λ �→ λa}, (3.4)

where λ stands for an element of Gm(A) = lim←−A× for a commutative k -algebra A. The

restriction to pZ ↪→Aut(Gm) is the homomorphism from 3.1.1.
For Ga, the latter homomorphism extends to an isomorphism

k×�pZ
∼−→ Aut(Ga), (κ,n) �→ {θnκ : λ �→ κλn}. (3.5)

3.4.6. For a perfect affine group scheme G, Lemma 3.1.4 shows that characters of G

correspond to homomorphismsG→Gm. As the latter formulation carries more structure,
we define

X(G) := Hom(G,Gm) ∼= Hom(G,Gm) =X(G).

This is a Z[1/p]-module via (3.4). Consequently, we will define cocharacters of G to be
the Z[1/p]-module

Y(G) := Hom(Gm,G).
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We have the obvious bilinear pairing

X(G)×Y(G)→ Z[1/p]. (3.6)

It is non-degenerate if G is a perfect torus.

3.5. Induction

3.5.1. For a homomorphism f : H → G of affine group schemes, we will sometimes
abbreviate f∗ := IndGH and f∗ := ResGH . This gives an adjoint pair f∗ � f∗ of functors

between Rep∞G and Rep∞H.

3.5.2. For a commutative square of group homomorphisms

H
f ��

a

��

G

b

��
A

g �� B,

the adjunction morphisms yield a natural transformation

ξ : b∗g∗ ⇒ f∗a
∗.

In particular, for M ∈ Rep∞A, the morphism ξM is zero if and only if the composite

g∗g∗M → M → a∗a
∗M

is zero.

3.5.3. Now we consider two affine group schemes of the form A= lim←−Ai and B = lim←−Bi

for inverse systems of affine group schemes (Ai | i ∈ N) and (Bi | i ∈ N). We label the

homomorphisms pi :A→Ai, qi :B →Bi and a[i,j] :Ai →Aj for i > j. Assume also given
homomorphisms Ai →Bi, leading to A→B.

Proposition 3.5.4. (1) For Mi ∈ Rep∞Ai and morphisms a∗[i+1,i]Mi → Mi+1, the

evaluations at Mi of the natural transformations in 3.5.2 lead to an isomorphism

lim−→q∗i Ind
Bi

Ai
Mi

∼−→ IndBA lim−→p∗iMi.

(2) For M ∈ Rep∞Aj and n ∈ N, we have a canonical isomorphism

lim−→q∗i (R
nIndBi

Ai
(a∗[i,j]M))

∼−→ RnIndBA(p
∗
jM).

Proof. The right-hand side in part (1) is given by the A-invariants in the vector space

lim−→(Mi⊗k[Bi]).

Since direct limits commute with co-equalisers, this is isomorphic to the direct limit of

Ai-invariants in the above spaces. This proves part (1).
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Note that the case n= 0 in part (2) is the special case of part (1) where we set Mi :=

a∗[i,j]M . We can prove the analogue of part (1) for derived functors, which similarly

specialises to part (2), as follows. For a chain {Mi} as in part (1), we consider injective
hulls in Rep∞Ai, yielding short exact sequences

0→Mi → Ii →Qi → 0.

The defining property of injective modules gives a chain map from the action of a∗[i+1,i]

on the above sequence and the corresponding sequence for i+1. In particular, this makes

{Ii} and {Qi} into chains of representations as in part (1), and we have a short exact
sequence

0→ lim−→p∗iMi → lim−→p∗i Ii → lim−→p∗iQi → 0

in Rep∞A. The claim now follows by induction on n, using long exact sequences in

homology if we observe that I := lim−→p∗i Ii is injective in Rep∞A. Exactness of

HomA(−,I) : RepA→Vec∞

follows from the observation RepA ∼= lim−→RepAi. The latter exactness is sufficient to

conclude that I is injective. Indeed, we can consider an injective hull I ⊂ I ′ and an
intermediate module I ⊂ I ′′ ⊂ I ′ for which I ′′/I is finite dimensional. Now we must have

I ′′ ∼= I⊕I ′′/I (apply Hom(−,I) to a finite submodule of I ′′ which still surjects onto I ′′/I),
which violates socI = socI ′ unless I ′′ = I.

Corollary 3.5.5. Let G be an affine group scheme with subgroup H. Set G=Hperf , set

H =Hperf and take n ∈ N. For M ∈ RepH such that RnIndGHM (i) is finite dimensional
for each i ∈ N. For each j ∈ N, we have an isomorphism

lim−→
i≥j

(
RnIndGH(M (i−j))[i]

)
∼−→ RnIndGH(M [j]),

with notation as in 3.3.2.

Proof. We start by applying Proposition 3.5.4(2), using the interpretation Gperf =
lim←−G(−i), applied to M (−j) ∈RepH(−j). By assumption, all the representations appearing

in the direct limit in 3.5.4(2) are finite dimensional. After passing from (3.1) to (3.3),

this allows us to use the notation from 3.3.2 to rewrite the isomorphism in the desired
form.

Remark 3.5.6. (1) For group schemes of finite type, we can prove Corollary 3.5.5

alternatively using Theorem 3.1.6(3) and (a generalisation from line bundles to

general quasi-coherent sheaves with identical proof of) Lemma 2.5.1.

(2) Assume that M is one-dimensional, and IndGH(M (j)) �= 0 for all j. It follows from

3.5.2 that the morphisms in the directed system for the left-hand side in Corollary

3.5.5 for n= 0 are all non-zero.
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4. Perfectly reductive groups

In this section, we assume that k is algebraically closed of characteristic p > 0.

4.1. Definition

Recall that a reductive group over k is a connected reduced (smooth) affine group scheme
of finite type which has no non-trivial normal reduced unipotent subgroup.

Theorem 4.1.1. (1) For an affine group scheme G, the following are equivalent:

(a) G is a connected affine group scheme of perfect finite type and has no non-trivial
perfect normal unipotent subgroups;

(b) G∼=Gperf for a reductive group G;

(c) G is an affine group scheme of perfect finite type and, whenever G∼=Hperf for

a reduced affine group scheme of finite type H, then H must be reductive.
If these conditions are satisfied, we call G perfectly reductive.

(2) For every connected affine group scheme of perfect finite type H, there exists a short

exact sequence of perfect affine group schemes

1→U→H→Q→ 1,

where U is unipotent and Q is perfectly reductive.

Proof. First we show that 1(b) implies 1(a). Set G=Gperf for a reductive group G. Let
U�G be a perfect normal unipotent subgroup. Then by Theorem 3.1.6(2), there exists

a reduced normal subgroup U �G with Uperf =U. By Lemma 3.4.4, U is unipotent, so

U is trivial. Consequently, U is trivial.
That 1(c) implies 1(b) follows from Theorem 3.1.3.

For H as in (2), we know that H=Hperf for a connected reduced affine group scheme

of finite type H by Theorem 3.1.3. By taking the perfection of the short exact sequence
corresponding to the unipotent radical RuH�H (see [Mi, §6.4.6]), we get a short exact

sequence as desired in (2) (provided we define, for now, perfectly reductive groups as the

perfections of reductive groups), with U := (RuH)perf , by Lemma 3.1.8.

Since RuH is reduced, U is trivial if and only if RuH is trivial, which shows that 1(a)
implies 1(c).

Remark 4.1.2. In addition to Theorem 4.1.1(2), we can also observe that every affine

group scheme of perfect finite type G admits a short exact sequence H→G→Q where

Q is a finite abstract group and H is a connected affine group scheme of perfect finite

type. This follows from perfecting the classical theory; see [Mi, §2.g].

4.1.3. A perfect Borel subgroup B of a perfectly reductive group is a maximal solvable
perfect subgroup. For a reductive group G, every perfect Borel subgroup of Gperf is the

perfection of a Borel subgroup ofG by Theorem 3.1.6(2) and Corollary 3.1.9. In particular,

every two perfect Borel subgroups are conjugate.
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Similarly, by Theorem 3.1.6(2) and Lemma 3.4.3, every maximal perfect torus T in

Gperf is the perfection of a maximal torus T <G, and so maximal perfect tori are unique

up to conjugation.
We henceforth use freely that every such choice T<B<Gperf , for a reductive group G,

can be obtained as the perfection of a corresponding choice T <B <G of Borel subgroup

and maximal torus in G.

4.2. Classification

We freely use the equivalence between D-root data and real-type D-root data for D = Z

and D = Z[1/p] from Theorem 1.4.1.

Theorem 4.2.1. There is a canonical bijection between the set of isomorphism classes of
perfectly reductive groups over k and the set of isomorphism classes of Z[1/p]-root data.

Remark 4.2.2. (1) As in the classical case, this theorem can be extended to cover
isogenies. We do this in 4.3 below.

(2) Theorem 4.2.1 implies in particular that for two reductive groups to have isomorphic

perfections, they must have Weyl groups that are isomorphic as Coxeter groups.

Slightly more restrictive, they must have the same Dynkin diagram, except that we
can have perfected isomorphisms between types B and C when p= 2.

4.2.3. Idea of the proof We will prove that, when characterising a reductive group

in terms of its root datum, two reductive groups become isomorphic after perfection if

and only if their root data become isomorphic after extension of scalars to Z[1/p].
More explicitly, denote by D-RD the set of isomorphism classes of D-root data.

Furthermore, we let ReGr, resp. PeReGr, denote the set of isomorphism classes of

reductive groups, resp. perfectly reductive groups, over k. We can exploit the classical

bijection between Z-RD and ReGr (see, for instance, [De]) and include it in the following
(commutative) diagram:

ReGr
−perf �� ��

1:1

��

PeReGr

��

	
�



Z-RD Z[1/p]⊗− �� ��

		

Z[1/p]-RD.





	
� 


(4.1)

The upper surjection is given by the definition in 4.1.1(1)(b) of perfectly reductive

groups. The lower surjection comes from Lemma 1.1.3. To prove Theorem 4.2.1, it
suffices to show the dashed arrows in (4.1) exist. This is established in the following

two propositions.

Proposition 4.2.4. If the root data of two reductive groups G1,G2 extend to isomorphic

root data over Z[1/p], then (G1)perf and (G2)perf are isomorphic. In particular, the

upwards dashed arrow in (4.1) exists.
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Proof. Let (Xi,Ri,Yi,R
∨
i ), with i ∈ {1,2}, denote the root datum of Gi. Consider an

isomorphism of root data given by ψ : Z[1/p]⊗X1
∼−→ Z[1/p]⊗X2. Replacing ψ by plψ if

necessary (as is allowed by Lemma 1.2.5), we can assume that ψ restricts to an embedding
X1 ↪→X2. Furthermore, we get a bijection R1 →R2, by associating to α ∈R1 the unique

element α′ ∈R2 for which ψ(α) = pjα′ for some j ∈ Z. Again, after replacing ψ by plψ if

necessary, we can assume j ∈ N. Now it follows quickly that this X1 ↪→X2 satisfies the
requirements to apply [St, Theorem 1.5], which yields an isogeny G1 →G2.

We can apply the same procedure to ψ−1 to obtain an isogeny G2 →G1. As we might

need to replace ψ−1 again by a composition with multiplication by a power of p, our
two isogenies will not necessarily be induced by mutually inverse maps X1 ↔X2, but by

maps which compose to pl times the identity for some l ∈ N. Uniqueness of isogenies in

[St, Theorem 1.5] then states that composition of the isogenies between G1 and G2 yields

morphisms φl ◦Frl, for isomorphisms φ :G
(1)
i →Gi as in 3.1.1 (up to possible composition

with inner automorphisms). That (G1)perf and (G2)perf are isomorphic now follows from

Proposition 3.2.3.

Establishing the existence of the downwards dashed arrow will take more work. Note

that an alternative proof of this fact will be given in Section 6. As that proof moves via

topology, it seems preferable to have this direct algebraic proof too. The following lemma

can be proved by looking at the Hopf algebra morphisms.

Lemma 4.2.5. Consider a reduced affine group scheme H with a homomorphism φ :
H(−i) →Gm, such that the diagram

Gm×Ga
(λ,μ) �→λμ �� Ga

H(−i)×Ga
Fri×id ��

φ×id

		

H×Ga

		�
�
�

can be completed with dashed arrow to a commutative square. Then φ factors through
Fri :H(−i) →H.

Definition 4.2.6. Let G be a perfectly reductive group with maximal perfect torus T.
An rt-pair is a pair (x,α) of a subgroup inclusion x :Ga →G and α∈X (i.e. α :T→Gm),

for which the following square is commutative:

Gm×Ga

(λ,μ) �→λμ �� Ga� �

x

��
T×Ga

(t,μ) �→tx(μ)t−1

��

α×id

		

G.

(4.2)

If we apply this definition to ordinary reductive groups (we replace every perfect group
in (4.2) by its finite type analogue), we get precisely the pairs of inclusions of root

subgroups and their corresponding root. Since root subgroups are unique, the inclusion

of the root subgroup is unique up to scalar in k× ∼=Aut(Ga).
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Lemma 4.2.7. Let G be a perfectly reductive group with maximal perfect torus T.

(1) The group k×�pZ acts on the set of rt-pairs as

(x,α)
(κ,n)�−→ (x◦ (θnκ)−1, nα), for all (κ,n) ∈ k×�pZ.

(See 3.4.5 for the definition of θnκ and 3.4.6 for the action of n ∈ Z[1/p] on X.)

(2) If for one α : T → Gm we have two rt-pairs (x,α) and (z,α), then z = x ◦ θ1κ for

some κ ∈ k×.

(3) Consider a reductive group G with Gperf
∼=G, with maximal torus T which perfects

to T. Consider an rt-pair (x,α) for which x is the perfection of some x0 :Ga ↪→G;

then α is the perfection of a root homomorphism T → Gm and x0 is an inclusion
of the corresponding root subgroup.

(4) For every rt-pair (x,α), there exists n ∈ pZ such that x◦ θn1 is the perfection of the

inclusion of a root subgroup Ga ↪→G and n−1α is the perfection of the corresponding

root homomorphism T →Gm.

Proof. Part (1) follows from a direct calculation.

For part (3), the homomorphism α : T → Gm is induced from T (−i) → Gm for some

i ∈ N, as in Lemma 3.1.4. We find a diagram

Gm×Ga
�� Ga� �

��
T (−i)×Ga

Fri×id ��

		

T ×Ga
�� G

which “perfects” to diagram (4.2). More precisely, after perfecting the above diagram
and removing the automorphism which is the perfection of Fri× id, we recover (4.2). In

particular, we find that the above diagram is commutative. It now follows from Lemma

4.2.5 that α comes from α0 : T →Gm, and it follows immediately that α0 is a root.
Now we prove part (4). By Theorem 3.1.6(2) and Proposition 3.4.2(2), there exists

a group monomorphism Ga ↪→ G which perfects to x ◦φn
κ for some n ∈ pZ,κ ∈ k×. By

identifying k× with Aut(Ga), we might as well take κ= 1. The claim about α now follows
from parts (1) and (3).

Finally, we prove part (2). Since roots of reductive groups cannot be multiples of one

another, part (4) implies that there is n ∈ pZ for which both x ◦ θn1 and z ◦ θn1 are the

perfections of inclusions of the same root subgroup. Those inclusions must be the same,
up to a scalar in k× ∼=Aut(Ga), from which the claim follows.

Proposition 4.2.8. Consider a reductive group G corresponding to a root datum RD.
One can extract Z[1/p]⊗RD from the group Gperf . In particular, the downwards dashed

arrow in (4.1) exists.

Proof. We construct a Z[1/p]-root datum (X,R,Y,R∨) from G := Gperf . It will follow
from the construction that (X,R,Y,R∨) is isomorphic to Z[1/p]⊗RD.

First, we let T be a maximal perfect torus in G. Recall T is the perfection of a maximal

torus T <G (and hence unique up to conjugation). We choose such a T. We set X=X(T)
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and Y = Y(T), with (non-degenerate) pairing (3.6). We denote the root datum of G

corresponding to T by (X,R,Y ,R∨)∼=RD.

Following Lemma 3.1.4, we find

Z[1/p]⊗X = Z[1/p]⊗Hom(T,Gm))
∼−→ lim−→Hom(T (−i),Gm))

∼−→Hom(T,Gm) =X.

(4.3)

We define R⊂X as the set of α for which there exists an rt-pair (x,α). It follows from

Lemma 4.2.7(1) and (4) that R ⊂ pZR, under R ⊂ X ⊂ X from (4.3). That R ⊂ R, so
pZR⊂R by Lemma 4.2.7(1), follows from perfecting the root homomorphisms into G. In

conclusion, R= pZR.

Having defined (X,R,Y), we now define the injection −∨ : R → Y completing the

root datum. Choose α ∈R⊂R. Denote by H the minimal perfect subgroup of G which
contains the images of the two morphisms Ga → G corresponding to α,−α. That the

images only depend on α, − α follows from Lemma 4.2.7(2). That there exists such

a minimal H < G follows from the noetherian property of G and Theorem 3.1.6(2).
The latter also shows that H must be isomorphic to (SL2)perf or (PGL2)perf and that

T∩H is a (maximal) torus in H. We use this to define Gm → T, determined up to

Aut(Gm) = Z[1/p]×, either as the inclusion of this maximal torus of (SL2)perf or by
similarly restricting the homomorphism (SL2)perf � (PGL2)perf ↪→ G. Finally, we can

then define α∨ : Gm → T as the unique such morphism for which composition with

α :T→Gm yields 2 ∈ End(Gm). By construction, α∨ is defined independently of G but

clearly corresponds to the direct definition via G=Gperf . For p
iα, we set (piα)∨ = p−iα∨,

which extends the definition to R= pZR.

Remark 4.2.9. An alternative to the proof of Proposition 4.2.8 is given by the proof of

(a)⇒ (b)⇒ (c) in Theorem 6.1.1. However, the latter uses deep results about 2-compact
groups and étale homotopy types of reductive groups; hence, it is preferable to have this

direct proof.

4.3. Isogenies

We establish a connection between isogenies of perfectly reductive groups and our notion

of isogenies of Z[1/p]-root data from Section 1.5.

Theorem 4.3.1. Consider two perfectly reductive groups G1 and G with perfect maximal
tori T1,T and the corresponding Z[1/p]-root data (X1,R1,Y1,R

∨
1 ) and (X,R,Y,R∨).

There is a bijection between the sets of

(a) Isogenies (X,R,Y,R∨)→ (X1,R1,Y1,R
∨
1 );

(b) Equivalence classes of isogenies G1 →G which send T1 to T, where two isogenies
are equivalent if one is obtained from the other by composition with an inner

automorphism affected by an element of T1(k) = T1(k).

Proof. Let G,G1 denote reductive groups which perfect to G,G1, with maximal tori T,T1

which perfect to T,T1, and denote their root data by (X,R,Y ,R∨) and (X1,R1,Y1,R
∨
1 ).
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We will prove both sets (a) and (b) are in bijection with the set of

(c) Equivalence classes of pairs (θ,i) of an isogeny θ : (X,R,Y ,R∨) → (X1,R1,Y1,R
∨
1 )

(in the sense of [St, §1]) and i ∈ Z, where the equivalence relation is generated by
(θ,i)∼ (pθ,i−1).

That sending a pair (θ,i) to the extension of scalars along Z→ Z[1/p] of piθ yields a

bijection between (c) and (a) can be easily derived from Remark 1.5.2.

An isogeny G1 →G yields a faithfully flat morphism G
(−i)
1 →G for high enough i, via

Lemma 3.1.4. Its kernel is an affine group scheme of finite type which perfects to a finite

group scheme. It must therefore be a finite group scheme and G
(−i)
1 → G is an isogeny.

This principle allows us to establish a bijection between the set of isogenies G1 →G and
the set of equivalence classes of isogenies G

(−i)
1 →G, with equivalence generated by the

condition that φ :G
(−i)
1 →G be equivalent to φ◦Fr :G(−i−1)

1 →G.

The above connection between isogenies G1 →G and equivalence classes of isogenies

G1 →G allows us to use the classical Isogeny Theorem [St, 1.5] to establish the bijection

between (b) and (c).

5. Perfected representation theory

Let k be an algebraically closed field of characteristic p.

5.1. Simple and induced modules and block structure

Let G be a perfectly reductive group, B a perfect Borel subgroup and T<B a maximal

perfect torus. We consider the set R+ ⊂R of positive roots, which are the ones for which

the corresponding Ga →G does not land in B (i.e. we let B be the negative Borel).
We set X = X(T) and X+ ⊂ X the subset of λ ∈ X which satisfy 〈λ,α∨〉 ≥ 0 for all

α ∈R+. We have a canonical bijection {λ �→ kλ} between X and the set of isomorphism

classes of simple B-representations (which are all one-dimensional).

Theorem 5.1.1. (1) The representation

∇(λ) := IndGBkλ ∈ Rep∞G

is zero if λ �∈X+. If λ ∈X+, it has simple socle, which we denote by L(λ).

(2) The above association λ �→ L(λ) is a bijection between X+ and the set of
isomorphism classes of simple representations in RepG.

Proof. We choose a reductive group G with Gperf
∼= G and maximal torus and Borel

subgroup T < B < G which perfect to T and B. We will use the notation in 3.3.2. By

equivalence (3.3), every simple object in RepG is of the form L(μ)[i] for some μ ∈ X+

and i ∈N. Since L(μ)(1) ∼= L(pμ) (see [Ja, II.3]), we can define unambiguously the simple

object L̃(p−iμ) := L(μ)[i] for i ∈ N and μ ∈ X+. This clearly gives a bijection between
X+ and the set of isomorphism classes of simple objects in RepG.

By Corollary 3.5.5, we have

∇(λ) ∼= lim−→∇(piλ)[i], (5.1)
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where the chain of which we take the limit starts at i where piλ ∈X ⊂X. It follows now

from [Ja, II.2] that ∇(λ) = 0 whenever λ �∈X+.

Now consider λ ∈ X+. The morphisms in the direct system for (5.1) are not zero by
Remark 3.5.6(2). Hence, the defining morphisms ∇(piλ)(1) →∇(pi+1λ) are unique (up

to scalar) and injective since ∇(piλ)(1) has socle L(pi+1λ) by Remark 5.1.4 below and

∇(pi+1λ) is the injective hull of this socle in a Serre subcategory containing ∇(piλ)(1).

In particular, for λ,μ ∈X+, we have

HomG(L̃(μ),∇(λ))∼= lim−→HomG(L(p
iμ),∇(piλ))∼= kδλ,μ.

We can therefore identify L̃(μ) with the socle of ∇(μ).

Remark 5.1.2. (1) We can alternatively construct the modules ∇(λ) as the global

sections of line bundles on G/B∼= (G/B)perf .

(2) It follows, for instance, from the proof of Theorem 5.1.1 that

[∇(λ) : L(μ)] = [∇(pjλ) : L(pjμ)], for all λ,μ ∈X+ and j ∈ Z.

In fact, the proof even shows that

[∇(λ) : L(μ)] = lim
m→∞

[∇(pmλ) : L(pmμ)]. (5.2)

The sequence on the right-hand side in equation (5.2) is monotone increasing, and one

can ask when it is bounded. For G of rank 1, it is clearly bounded, but the following rank

2 example was communicated to us by Stephen Donkin.

Example 5.1.3 (Donkin). Set p= 2 and let E be a 4-dimensional space with symplectic

form, so that E is the natural representation of Sp(E)�Sp4. Let λ be such that E �L(λ).

Then

[∇(2mλ) : L(0)] = 2m−1+1, so [∇(λ) : L(0)] = ∞.

Indeed, more generally, ∇(mλ) is the symmetric power SmE, and by [EK, Lemma 4.6],

we have

[S2mE : L(0)] = [(Sm−2E)(1) : L(0)]+ [(SmE)(1) : L(0)]+ [∧2E⊗ (Sm−1E)(1) : L(0)]

= [Sm−2E : L(0)]+ [SmE : L(0)]+2[Sm−1E : L(0)],

where we used that [∧2E] = 2[L(0)]+ [L(ω)], with ω the second fundamental weight, so

that [L(ω)⊗M (1) : L(0)] = 0 for all representations M. It follows by induction on m that

[S2mE : L(0)] = m+1.

Remark 5.1.4. Let G be a reductive group. The canonical morphism

Ext∗G(M,N)→ Ext∗G(M
(1),N (1))

is injective. This is proved in [Ja, II.10.14] if (p−1)ρ ∈X (e.g. p �= 2).

If ρ �∈X, we can extend X ⊂X ′ ⊂ Q⊗X by taking the lattice maximal X ′ for which

〈−,α∨〉 still takes values in Z for every α∨ ∈ R∨. In particular, ρ ∈ X ′. Taking the
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appropriate Y ′ ⊂ Y yields a new root datum (X ′,R,Y ′,R∨) corresponding to a reductive

group G′. By [St, Theorem 1.5], there is an isogeny G′ → G. The claim then reduces to

the previous case via an obvious commutative square.

As in any category of finite dimensional modules over a coalgebra over a field, the blocks
in RepG are determined by the first extensions between simple objects; see [Ja, §ii.7.1].

Theorem 5.1.5. For λ,μ ∈ X+, the simple representations L(λ) and L(μ) are in the

same block of RepG if and only if λ−μ ∈ Z[1/p]R= ZR.

Proof. We resume the notation and conventions from the proof of Theorem 5.1.1. By

Remarks 3.3.4 and 5.1.4, L(λ) and L(μ) are in the same block if and only if there exists
j ∈ N for which pjλ,pjμ ∈X and L(pjλ) and L(pjμ) are in the same block of RepG.

Assume first that L(λ) and L(μ) are in the same block. By the above, pjλ−pjμ ∈ ZR

for some j, from which λ−μ ∈ Z[1/p]R= Z[1/p]R follows.
Now assume that λ−μ ∈ Z[1/p]R. Then there exists j ∈ N such that

(i) pjλ,pjμ ∈X,

(ii) pjλ−pjμ ∈ pZR,

(iii) 〈α∨,pjλ+ρ〉 �∈ pZ for some α ∈R.

Indeed, for (iii), it suffices to take α simple and j such that pjλ ∈ pX.

From (ii), it follows that pjλ and pjμ are in the same (ρ-shifted) orbit of pZR�W , so

by (iii) and [Ja, II.7.2(2)], L(pjλ) and L(pjμ) are in the same block of RepG from which
the conclusion follows.

Remark 5.1.6. Theorem 5.1.5 can be explained by the observation that the orbits of

the affine Weyl group W �pZR on X describe most of the block decomposition in RepG,

and the orbits of W �pZ[1/p]R on X coincide with those of Z[1/p]R.

5.1.7. Let n be the length of the longest element w0 of the Weyl group (i.e. the dimension

of G/B). We also set

X++ = {λ ∈X | 〈λ,α∨〉> 0 for all α ∈R+} ⊂X+.

Another class of G-representations which seems of interest is

W(λ) := RnIndGBkw0(λ)
∼= lim−→

i

Δ(piλ−2ρ)[i], λ ∈X++

where the isomorphism is an instance of Corollary 3.5.5, using [Ja, II.5.11, Remark (1)].
Note that we do not use the notation Δ(λ) for the module W(λ), as the former would

more logically be reserved for a pro-object dual to the ind-object ∇(λ).

5.2. Generic cohomology

In this section, we show how the result from [CPSV] can be formulated very elegantly in

terms of perfected groups. We also refer to [BNP] for a more modern treatment of generic

cohomology with sharper bounds.
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5.2.1. Let G be an affine group scheme over k, which is the extension of scalars of an
affine group scheme over Fp, which we also denote by G. Set F = Fp. We can consider

the forgetful functor from rational G-representations to representations over k of the

abstract group G(F) (for instance, using the homomorphism G(F)→G(k)), which induces
comparison morphisms

ExtiG(M,N) → ExtikG(F)(M,N).

Theorem 5.2.2. Let G be a perfectly reductive group; then the morphism

ExtiG(M,N) → ExtikG(F)(M,N)

is an isomorphism for all M,N ∈ RepG and i ∈ N.

We start the proof by pointing out a technical generality.

Remark 5.2.3. Consider a chain of finite abstract groups {Hn |n ∈ N} and set H =

lim−→Hn. For two finite dimensional H -representations M,N , the canonical morphism

ExtikH(M,N) → lim←−ExtikHn
(M,N)

is an isomorphism. Indeed, using group cohomology, ExtikH(M,N) is the cohomology
of the inverse limit of chain complexes with cohomology ExtikHn

(M,N). Since all vector

spaces involved are finite-dimensional, the Mittag-Leffler property leads to the conclusion.

Proof of Theorem 5.2.2. Let G be a reductive group with perfection G and recall

that G(F) = G(F) and RepG ∼= lim−→RepG. Without loss of generality, we assume that
M,N factor over the natural map G→G. By Remark 3.3.4, we have

ExtiG(M,N) ∼= lim−→
a

ExtiG(M
(a),N (a)).

It is proved in [CPSV] that the directed system in the above limit stabilises, and moreover,
for fixed M,N , for large enough a and q, all morphisms

ExtiG(M
(a),N (a))→ ExtikG(Fq)(M

(a),N (a))

are isomorphisms. Note that G(Fq), being a finite abstract group, is perfect in the group

scheme sense. Hence, for large enough q, we find the composite isomorphism

lim−→
a

ExtiG(M
(a),N (a))

∼−→ lim−→
a

ExtikG(Fq)(M
(a),N (a))

∼←− ExtikG(Fq)(M,N).

Hence, also the inverse system in

lim←−ExtikG(Fpn )(M,N) ∼= ExtikG(F)(M,N)

stabilises, and we find the isomorphism in the theorem.

Strictly speaking, [CPSV] only deals with semisimple groups. However, for a general

reductive group G, we have a short exact sequence N →G→G/N with G/N semisimple
and N a torus. Since both N and N(Fq) ∼= C×r

q−1 have semisimple representation theory

over k, the result extends easily – for instance, via a collapsing Hochschild-Serre spectral

sequence.
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Remark 5.2.4. The comparison morphism in Theorem 5.2.2 is not always an isomor-
phism for arbitrary perfect groups; for instance,

Ext1Ga
(k,k) → Ext1kF+(k,k)

is the canonical inclusion

kZ ↪→ kẐ∼= kGal(F : Fp) ↪→ lim←−kGal(Fq : Fp),

where we used Remark 5.2.3 and the linear isomorphism (with ι : Fq ↪→ k)

kGal(Fq : Fp)
θ �→ι◦θ−−−−→Hom(F+

q ,k
+)∼=H1(F+

q ,k).

Question 5.2.5. The formulation of Theorem 5.2.2 suggests the question of whether the

monomorphism (by Theorem 5.2.2)

ExtiG(M,N) → ExtikG(k)(M,N)

is also an isomorphism. This is equivalent to the question of whether the epimorphism

ExtikG(k)(M,N) → ExtikG(F)(M,N) (5.3)

is an isomorphism for all M,N ∈ RepG and i ∈ N. Note that (5.3) does not involve any

perfection.

Example 5.2.6. The question in 5.2.5 has an affirmative answer for G=Gm. Consider

the short exact sequence

1→Gm(F)→Gm(k)→Q→ 1.

By the Lyndon-Hochschild-Serre spectral sequence, showing (5.3) is an isomorphism can

be quickly reduced to showing the group cohomology Hi(Q,k) is zero for i > 0. Now the
group structure on Q extends (uniquely) to a Q-vector space (since Gm(F)<Gm(k) is the

group of roots of unity and k is algebraically closed), so we only need to show Hi(Q,k) = 0

for i > 0. The case i= 1 is obvious. One can compute directly that Hi(Q,−) = 0 for i > 1
(or via BQ; see [Su, (10) on p42]). Hence, Hi(Q,−) = 0 for i > 2. Finally,

H2(Q,k) ∼= Ext1
Z
(Q,k)

must be an abelian group admitting both the structure of a Q-vector space as well as a
k -vector space; hence, it is zero.

We conclude with an example showing that (5.3) being an isomorphism is also

something which should not be expected to hold outside of reductive groups.

Example 5.2.7. If instead of a reductive group, we consider G = Ga, as well as i = 1,

M =N = k in (5.3), we obtain the morphism between spaces of group homomorphisms

End(k+)→Hom(F+,k+),

induced by restriction along F ↪→ k. This is not a bijection as soon as F �= k.
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6. Localisation of classifying spaces

Fix a prime p.

6.1. Main result

Following [Su], by a simple space we mean a connected topological space having the

homotopy type of a CW complex and abelian fundamental group which acts trivially
on the homotopy and homology of the universal covering space. Let F be a connected

topological group of homotopy type of a CW complex (below we will consider more

specifically complex Lie groups). Then its classifying space BF is a simple space (note

that π1(BF ) = π0(F ) is trivial). Following [Su, Chapter 2], to each simple space X we
can associate a (simple) space X 1

p
, the localisation of X away from p. Note that loc. cit.

X 1
p
is denoted by X where � is the set of all primes different from p.

Theorem 6.1.1. Let G,H be split (connected) reductive groups over Z. The following
are equivalent:

(a) The perfections of Gk and Hk are isomorphic for k = Fp;

(b) The localisations BG(C) 1
p
and BH(C) 1

p
are homotopy equivalent;

(c) The root data of G and H become isomorphic after extension to Z[1/p].

Proof of (c)⇔ (a)⇒ (b). The equivalence of (a) and (c) is already established in 4.2.3.
Assume that the perfections of Gk and Hk are isomorphic. By Proposition 3.2.3, after

replacing Hk with an (isomorphic) Frobenius twisted version, there is an infinitesimal

isogeny Gk → Hk. By Lemma 3.2.2, this isogeny is purely inseparable. It then follows
from [Fr, Theorem 1.6] that BG(C) 1

p
and BH(C) 1

p
are homotopy equivalent.

The rest of this chapter is devoted to the proof of (b)⇒ (c).

6.2. Some useful facts

(a) For a complex reductive group F and a maximal compact subgroup K < F (the

corresponding compact connected Lie group), the homomorphism K → F is a

homotopy equivalence, and hence, BK �BF . We will therefore henceforth replace
BF by BK.

(b) For a simple space X, the defining map X →X 1
p
(see [Su, Chapter 2]) induces an

isomorphism

H∗(X;Z)⊗Z[1/p]
∼−→H∗(X 1

p
;Z).

(c) For a commutative ring D in which p is invertible, by (b) and the universal

coefficient theorem, we have a natural isomorphism H∗(X 1
p
;D) ∼= H∗(X;D). In

particular, a map X 1
p
→ Y 1

p
induces a graded algebra morphism H∗(Y ;D) →

H∗(X;D).
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(d) For a flat morphism A → B of commutative algebras and a topological space X

for which Hi(X;Z) are all finitely generated, H∗(X;A)⊗A B → H∗(X;B) is an

isomorphism.

(e) For a torus T ∼= (S1)×r, H∗(BT ;Z) is a polynomial ring with r generators in

degree 2. Consequently, for any commutative ring R, H∗(BT ;R)∼=H∗(BT ;Z)⊗R

is a polynomial ring and we have a bijection between R-linear morphisms θ :
H2(BT ′;R) → H2(BT ;R) and graded R-algebra morphisms θ̃ : H∗(BT ′;R) →
H∗(BT ;R).

(f) For a compact connected Lie group G, with maximal torus T, and a commutative

ring R, consider canonical isomorphisms

R⊗X(T )∼=R⊗H1(T ;Z)∼=R⊗H2(BT ;Z)∼=H2(BT ;R).

The Weyl group W thus acts R-linearly on H2(BT,R). Moreover, the image of

H∗(BG;R)→H∗(BT ;R)

takes values in the algebra of W -invariants; see [Bor, §27].
(g) For a prime q and a connected CW complex Y, we denote by Yq̂ the profinite

completion at q of Y ; see [Su, Chapter 3]. If q �= p, then the universality of X →X 1
p

in the definition in [Su, Chapter 2] shows that the latter map induces a homotopy

equivalence Xq̂ � (X 1
p
)q̂.

(h) For G a compact connected Lie group, BG satisfies the requirement in (c) (i.e.

the homology groups Hi(BG;Z) are finitely generated). One can observe this, for
instance, via induction on i using the Serre fibration G→EG→BG. Note that EG

is contractible, BG is simply connected and G is a finite cell complex. The Leray-

Serre spectral sequence thus implies that the trivial group can be obtained, starting
from Hi(BG;Z) by a finite iteration of taking kernels of morphisms to finitely

generated groups (subquotients of Ha(BG;Hb(G)), with a < i). Consequently,

Hi(BG;Z) must also be finitely generated.

6.3. Some results of Adams and Mahmud

We reformulate some results of Adams and Mahmud in the form we will need.

Theorem 6.3.1 (Adams - Mahmud). Let G and G′ be two compact connected Lie groups,

with maximal tori T,T ′ and Weyl groups W,W ′.

(1) For a map f : (BG) 1
p
→ (BG′) 1

p
, there exists a Z[1/p]-linear morphism

θ :H2(BT ′;Z[1/p])→H2(BT ;Z[1/p])
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yielding a commutative diagram of graded algebra homomorphisms

H∗(BG;Z[1/p])

��

H∗(BG′;Z[1/p])��

��
H∗(BT ;Z[1/p]) H∗(BT ′;Z[1/p]),

˜θ��

where the upper horizontal arrow is induced from f as in (c) and θ̃ is as in (e).

Moreover, for every w ∈W , there exists x ∈W ′ with wθ = θx.

(2) Let D be an integral domain of characteristic zero and consider two D-linear
morphisms

θ1,θ2 : H
2(BT ′;D)→H2(BT ;D)

for which the following composite is equal:

H∗(BG′;D)

��
H∗(BT ;D) H∗(BT ′;D).

˜θ1��
˜θ2

��

Then there exists x ∈W ′ such that θ2 = θ1x.

Proof. For the first statement of part (1), consider the morphism H∗(BG′;Q) →
H∗(BG;Q) obtained from f via (c), or equivalently, via (d) from the map displayed in
part (1). Then [AM, Theorem 1.5(a)] implies the existence of a morphism H2(BT ′;Q)→
H2(BT ;Q) yielding the commutative diagram in part (1) with Z[1/p] replaced by Q.

That the latter is induced from a morphism H2(BT ′;Z[1/p])→H2(BT ;Z[1/p]) follows
from [AM, Theorem 1.5(b)] and the discussion after [AM, Lemma 1.2]. That the diagram

over Z[1/p] is commutative follows from faithful flatness of Z[1/p]→Q.

The case D = Q of part (2) is a reformulation of [AM, Theorem 1.7]. The proof loc.

cit. works for any field of characteristic zero. The case of integral domains follows from
extension of scalars to the field of fractions, using (d).

The second statement of part (1) now follows from part (2) and fact (f), by using θ1 = θ

and θ2 = wθ.

Corollary 6.3.2. With notation as in Theorem 6.3.1, assume that f is a homotopy

equivalence. Then the morphism

t : Z[1/p]⊗X(T ′) → Z[1/p]⊗X(T ),

obtained from θ via the isomorphisms in (f), induces an isomorphism of Z[1/p]-reflection

groups (W ′,Z[1/p]⊗X(T ′))→ (W,Z[1/p]⊗X(T )).

6.4. Conclusion of the proof of Theorem 6.1.1

Proof of (b)⇒ (c). Assume first that p= 2. Then the result follows from Corollary 6.3.2

and Lemma 1.1.6(1). Similarly, for p > 2, by Lemma 1.1.6(2) it is sufficient to prove that
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the extension of scalars along Z[1/p] → Z2 of t yields an isomorphism of Z2-root data.

This allows us to resort to the established theory of 2-compact groups; see [AG].

Starting from a homotopy equivalence f as in Theorem 6.3.1, we have our θ from
6.3.1(1) which induces the isomorphism of reflection groups in Corollary 6.3.2, and using

(g), we have a homotopy equivalence f
̂2. We consider the diagram

(BG)
̂2

f
̂2 �� (BG′)

̂2

(BT )
̂2

��������

		

(BT ′)
̂2.

		

Now (BT )
̂2 → (BG)

̂2 is a maximal torus of the 2-compact group (BG)
̂2, in the sense

of [Gr, Theorem 2.2]. By uniqueness of such maximal tori, see loc. cit., there exists a
homotopy equivalence corresponding to the dashed arrow in the above diagram so that

the diagram is commutative up to homotopy.

By [Su, Theorem 3.9], this induces

φ :H2(BT ′;Z2)→H2(BT ;Z2),

yielding a commutative diagram

H∗(BG;Z2)

��

H∗(BG′;Z2)��

��
H∗(BT ;Z2) H∗(BT ′;Z2).

˜φ��

By uniqueness in Theorem 6.3.1(2) applied to D = Z2, we may assume that φ is actually

induced from θ by extension of scalars Z[1/p]→ Z2. Finally, the Z2-root data of the 2-

compact group (BG)
̂2, as defined in [AG], is obtained from the map BT

̂2 → BG
̂2 and

by construction yields the extension of scalars along Z2 of the classical root datum of G.

The homotopy equivalence (BG)
̂2 � (BG′)

̂2 with commutative diagram therefore indeed

implies that our isomorphism of Z[1/p]-reflection groups extends to an isomorphism of
Z2-root data.

7. Perfected SL2

Let k be an algebraically closed field of characteristic p. For λ in N or N[1/p] := Z[1/p]∩
R≥0, we consider its p-adic expansion λ=

∑
iλip

i with 0≤ λi < p.

7.1. Fractal

7.1.1. For i,j ∈ N, denote by
(
i
j

)
0
the zero coefficient of the p-adic expansion of the

binomial coefficient. By convention,
(
i
j

)
0
= 0 if j > i. For i,j ∈ N[1/p], we set(

i

j

)
0

:=

(
pli

plj

)
0

∈ {0,1, · · · ,p−1},
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for some l ∈ N for which pli,plj ∈ N. By Lucas’ theorem, this definition does not depend
on the choice of l.

7.1.2. We can describe the weight spaces in simple (SL2)perf -modules by

dimkL(n)n−2j =

{
1 if

(
n
j

)
0
�= 0

0 if
(
n
j

)
0
= 0,

for n,j ∈ N[1/p]. In particular, the set

F := {(n,i) | dimkL(n)i �= 0} ⊂ Z[1/p]2 ⊂ R2

is a fractal. Concretely, (a,b) ∈ F if and only if (pla,plb) ∈ F for all l ∈ Z.

The integer points of the fractal F for p= 3 are displayed in Figure 1.

7.2. First extensions

In this section and the next, we will apply the short exact sequence

∇(κ)(1) ↪→∇(pκ)�∇(κ−1)(1)⊗L(p−2), κ ∈ N=X+ (7.1)

(see [Pa, equation (3)]), as well as the isomorphism

∇(pκ−1)∼=∇(κ−1)(1)⊗L(p−1), κ ∈ Z>0. (7.2)

Proposition 7.2.1. For λ,μ ∈X+ = N[1/p], we have

dimExt1(L(λ),∇(μ)) =

⎧⎪⎨⎪⎩
1 if there is i ∈ Z with λi+μi = p−2 and

λ−piλi = μ−piμi+pi+1,

0 otherwise,

and

dimExt1(L(λ),L(μ)) =

⎧⎪⎨⎪⎩
1 if there is i ∈ Z with λi+μi = p−2,

|λi+1−μi+1|= 1 and λj = μj for j �∈ {i,i+1},
0 otherwise.

Proof. Recall from equation (5.1) that ∇(λ) is a direct limit of pullbacks to Gperf of

costandard G-modules. Since Ext1(L(λ),−) commutes with direct limits in the second

argument, we can use Remark 3.3.4 to conclude

Ext1(L(λ),∇(μ)) = lim−→Ext1(L(plλ),∇(plμ)).

The transition maps are given by the composite

Ext1(L(plλ),∇(plμ)) → Ext1(L(plλ)(1),∇(plμ)(1))→ Ext1(L(pl+1λ),∇(pl+1μ)).

Here, the first map is given by the action of the Frobenius twist, so it is injective by

Remark 5.1.4. The second map comes from the inclusion ∇(plμ)(1) ↪→ ∇(pl+1μ). From

the description of the cokernel of the inclusion in (7.1), it follows that the second map is
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also injective for p > 2. For p = 2, the second map need not be injective, but one shows
easily that the composite is still injective.

Assume p > 2. The case p = 2 can be proved similarly. It follows quickly from [Pa,

Corollary 6.2] that for 0≤ i < p,

Ext1(L(pa+ i),∇(pb+ i))∼= Ext1(L(a),∇(b)),

while for 0≤ i < p−1,

dimExt1(L(pa+p−2− i),∇(pb+ i)) = δb+1,a.

Together with the block decomposition, this allows us, by iteration, to calculate the first
set of extensions.

It follows from Remark 3.3.4 that

Ext1(L(λ),L(μ)) = lim−→Ext1(L(plλ),L(plμ)),

where the transition maps are injective by Remark 5.1.4.

Assume p > 2. The case p= 2 can be proved similarly. By [Pa, Theorem 4.3], we have

for 0≤ i < p,

Ext1(L(pa+ i),L(pb+ i))∼= Ext1(L(a),L(b)), (7.3)

while for 0≤ i < p−1

Ext1(L(pa+ i),L(pb+p−2− i))∼=Hom(L(a),L(b)⊗L(1)).

However, we have

dimHom(L(a),L(b)⊗L(1)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if b0 = 0 and a= b+1

1 if 0< b0 < p−1 and a= b±1

1 if b0 = p−1 and a= b−1

0 otherwise.

The cases b0 < p− 1 follow immediately from the Steinberg tensor product theorem. If
b0 = p− 1, we know by parity that the space is zero unless a0 < p− 1, in which case we

can use symmetry between a and b to reduce to the already known cases.

Remark 7.2.2. Equation (7.3) shows that RepSL2 → Rep(SL2)perf yields isomorphisms

on first extensions between simple objects for p > 2. This is not true for p= 2.

7.3. Costandard modules

We describe the multiplicities of the simple modules in ∇(λ). By Remark 5.1.2(2), it is

sufficient to consider λ ∈ N (with the case λ= 0 trivial).

Proposition 7.3.1. For λ ∈ Z>0, consider the finite sets

E0(λ) := {ν ∈ N | [∇(λ) : L(ν)] �= 0} and E∞(λ) := {ν ∈ Z>0 | [∇(λ−1) : L(ν−1)] �= 0}.
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Then, for all μ ∈ N[1/p], we have

[∇(λ) : L(μ)] =

⎧⎪⎨⎪⎩
1 if μ ∈ E0(λ)

1 if μ= ν− 2
pi with ν ∈ E∞(λ) and i > 0

0 otherwise.

More precisely, ∇(λ) has a filtration 0 =M0 ⊂M1 ⊂M2 ⊂ ·· · with ∪iMi =∇(λ) and

M1 =∇(λ)[0] and Mi+1/Mi
∼=
(
∇(λ−1)(i)⊗L(pi−2)

)
[i], for i > 0.

Proof. Recall from the proof of Theorem 5.1.1 that ∇(λ) = lim−→∇(piλ)[i], where every

morphism in the chain is injective. The corresponding filtration is the desired one. Indeed,

the subquotients are given by the cokernel in (7.1) for κ = piλ on which we can apply

iteratively (7.2) and the Steinberg tensor product theorem.

Example 7.3.2. Combining Propositions 7.2.1 and 7.3.1 shows the following:

(1) Consider 0 < λ < p. Then the socle filtration of ∇(λ) is given by soc∇(λ) = L(λ)
and

soci∇(λ) = L(λ− 2

pi
), i > 0.

(2) The socle filtration of ∇(2p−1) is given by soc∇(2p−1) = L(2p−1), soc1∇(2p−
1) = L(2p−1−2/p) and

soci+1∇(2p−1)∼= L(2p−1− 2

pi+1
)⊕L(1− 2

pi
), i > 0.

Remark 7.3.3. We can explicitly realise ∇(λ) as the space of “degree λ” elements in
k[x1/p∞

,y1/p
∞
] – that is, the span of {xμyν |μ,ν ∈ N[1/p], μ+ν = λ}.

7.4. Line bundle cohomology

We consider the representations W(λ), λ ∈ N[1/p]\{0}=X++, from 5.1.7.

Proposition 7.4.1. Recall the finite sets E0,E∞ from Proposition 7.3.1. For λ ∈ Z>0

and μ ∈ N[1/p], we have

[W(λ) : L(μ)] =

⎧⎪⎨⎪⎩
1 if μ ∈ E0(λ−2), (with E0(−1) :=∅)

1 if μ= ν− 2
pi with ν ∈ E∞(λ) and i > 0

0 otherwise.

More precisely, W(λ) has a filtration 0 =M0 ⊂M1 ⊂M2 ⊂ ·· · with ∪iMi =W(λ) and
(with convention Δ(−1) = 0)

M1 =Δ(λ−2)[0] and Mi+1/Mi
∼=
(
Δ(λ−1)(i)⊗L(pi−2)

)
[i], for i > 0.

Proof. Using Čech cohomology (see proof of Lemma 2.5.1), it follows easily that the

morphisms in the directed system in 5.1.7 are injective. The result then follows as in the

proof of Proposition 7.3.1, by now using [Pa, (3)] for i= p−2.
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Remark 7.4.2. It follows that in the Grothendieck group of Rep(SL2)perf , we have

[∇(λ)]− [W(λ)] = [Δ(λ)[0]]− [Δ(λ−2)[0]].

Example 7.4.3. We have a short exact sequence

0→ L(1)→∇(1)→W(1)→ 0.

For 1< λ < p−1, we have

∇(λ)/L(λ) ∼= W(λ)/L(λ−2).
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[De] M. Demazure, Schémas en groupes réductifs, Bull. Soc. Math. France 93 (1965),

369–413.

https://doi.org/10.1017/S1474748024000033 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748024000033


Perfecting group schemes 2591

[DG] M. Demazure and P. Gabriel, Groupes algébriques, Tome I: Géométrie algébrique,
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