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Recent developments in experimental microscopy techniques have led to improvements in the way we 

visualize various biological phenomena. Presently, state-of-art microscopy involves cryogenic sample 

preparation, 3D correlative microscopy and milling, followed by tilt series acquisition of biological 

volumes leading to datasets with nanometer scale information. While this workflow is technically 

possible, it is still challenging to collect, process, and analyze these large datasets, especially when the 

workflow includes correlative imaging and segmentation steps. In the Artificial Intelligence and 

Informatics group (AI&I) at The Rosalind Franklin Institute we are automating these workflow steps to 

solve computationally difficult and time-intensives problems by developing open-source software tools. 

Here, we present some notable examples. 

 

RedLionfish [1,2] is a package for fast GPU/CPU accelerated Richardson-Lucy deconvolution of 3D 

optical images. This is useful for removing optical artifacts in 3D microscopy data, leading to clearer 

and sharper images. This software is available as a plugin for napari [3] (a 3D data visualization 

application) and it has been included in 3DCT [4] as a data processing tool for correlative microscopy, 

including speed improvements such that it can be used in real time alongside of focus ion beam (FIB) 

lamella preparation (Figure 1A). 

 

Ot2Rec [5,6] is a package for automating the tomographic reconstruction workflow. This software is a 

wrapper for the commonly used processing packages MotionCor2 (motion correction) [7], CTFFind4 

(CTF estimation) [8], IMOD [9] and Savu [10] (alignment and reconstruction). Although processing 

pipeline solutions already existed (EMAN2, tomoBEAR), this solution offers advantages through a more 

general, unified command-line syntax, flexibility for future expansion and a more portable codebase. In 

addition to the above processing packages, Ot2Rec also includes a tool for simulating CTF image stacks 

and generating 3D point spread functions (PSF) for deconvolution tasks (Figure 1B). 

 

SuRVoS2 [11-13] is a collection of tools to help accelerate annotation and segmentation of large 

volumetric bio-imaging workflows. It enables either shallow or deep machine learning approaches, 

using a suite of image processing filters, supervoxels (boundary adherent groupings of similar, adjacent 

voxels), and annotation hierarchies. SuRVoS2 also provides a set of tools to enable visualization and 

interaction with large numbers of distributed annotations (e.g. performed by multiple members of a 

group or citizen scientists). This application has been implemented both as a multi-platform napari 

plugin and as an API for generic programming usage. 

 

Unet+ [14,15] is a new approach to machine learning training and prediction for segmentation of large 

volume biological samples that uses the well-known UNet [16] neural network architecture for 2D 
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biological images, but expands to allow predictions of 3D volumes, using a multi-slicing, multi-axis and 

multi-rotation technique. Computational post-processing methods are currently being developed that 

combine the generated multi-predictions for optimized confidence metrics. 

 

As tomography experiments become increasingly more technically complex, future software 

development needs to follow up by aiming for improving data processing pipelining tasks and 

maintaining accessibility by being open-source and integration with commonly used visualization 

packages, as the ones presented here. 

 

This work was supported by Wellcome Trust grants 220526/Z/20/Z and 212980/Z/18/Z. 

 

 
Figure 1. (left) Redlionfish example in deconvolution of 3D fluorescence data of a beaded cell sample. 

The deconvolution allows for more precise targeting during FIB-milling. (B) Usage workflow of Ot2Rec 

wrapper for automated processing of tomographic data. 

 

 
Figure 2. (A) Summary of SuRVoS2 capabilities for shallow and deep learning implementations of 

semi-automatic  segmentation strategies, and distributed annotation tools for working with large 

numbers of annotations of biological data volumes. (B) Diagram of the Unet+ methodology for training 

and predictions augmentations, illustrating 2D slicing over different planes and different rotations. 
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