
2 
Rela tivistic kinematics, electromagnetic 
fields and the method of virtual quanta 

The dynamics of the massless relativistic string (which we will meet at very 
many different places in this book) is a delightful theoretical laboratory to 
study the properties of the theory of special relativity. To make the book 
self-contained and also to define our notation we will briefly review in this 
chapter some properties of special relativity, in particular with respect to 
its implications for high-energy particle kinematics. 

We will also review some properties of electromagnetic fields with 
particular emphasis on the features we are going to make use of later in 
the book. We will end with a description of the interaction ability of an 
electrically charged particle. 

This is the first but not the last example in this book of the law of the 
conservation of useful dynamics. This says that every new generation of 
theoretical physicists tends to reinvent, reuse (and usually also rename) 
the most useful results of earlier generations. One reason is evidently that 
there are few situations where it is possible to find a closed mathematical 
expression for the solution to a dynamical problem. 

Here our basic aim is to describe the interactions between charged 
particles which are moving with very large velocities (as they do in high­
energy physics). As a charged particle interacts via its field the question 
can be reformulated into finding a way to describe the field of a charged 
particle which is moving very fast. To account for quantum mechanics we 
need a way to describe the quantum properties of the charged particle's 
field and this problem can be solved even at a semi-classical level. It is 
possible to obtain a closed formula for the flux of the field quanta in this 
case. 

Fermi addressed the problem in the 1920s, Weizsacker and Williams 
found the method independently of Fermi and each other in the 1930s. 
After that it became a standard tool in connection with QED in terms of 
the method of virtual quanta, the MVQ. Later again Feynman made use 
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2.1 The Lorentz boost 7 

of it in order to introduce the parton model. We will discuss that model 
repeatedly in this book, but it is useful to see how 'partons' emerge even 
at the semi-classical level in electromagnetism. 

2.1 The Lorentz boost 

Michelson and Morley demonstrated that the velocity of light, c, is inde­
pendent of the direction of a light beam. Einstein interpreted this finding 
to imply that the velocity c is independent of the relative motion of the 
light source and the detector. 

We are not going to dwell upon the many basic questions that are raised 
by this interpretation but simply accept that it has profound implications 
with respect to measurements of events in space and time. The resulting 
predictions have been tested repeatedly and always been found to be true. 
In this section we will briefly consider some of these predictions. 

I The Lorentz boost. Consider two observers A and B, moving with 
respect to each other. We will suppose that they have calibrated their 
watches and decided upon a common origin in space and time as well 
as the directions of the coordinate axes in space. The arrangement 
will be that they move along their common x-axis so that B has the 
velocity v with respect to A. We will for simplicity use units such that 
the velocity of light c = 1. Then an event (1) which for A occurs at 
the space-time coordinates 

(1) == (tlA,X1A,Y1A,ZlA) 

will for B, in his system, seem to occur at 
coordinates (with the corresponding index B): 

tlB = Y(V)(tlA - VX1A) 

X1B = Y(V)(X1A - vtlA) 

Y1B = Y1A 

ZlB = ZlA 

(2.1) 

the time and space 

(2.2) 

This transformation is termed a boost along the x-axis and y(v) = 
1/.J1 - v2. The time- and the (longitudinal) x-coordinates get mixed 
by the transformation but the transverse coordinates, i.e. the Y- and 
z-coordinates, are unaffected. Several boosts may be performed one 
after the other. It is easy to see that the final result does not depend 
upon the order and therefore the boosts along a single direction 
constitute a commutative (abelian) group. 

More complex transformations also include rotations of the coordinate 
systems. Note that such rotations in general do not commute with each 
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8 Relativistic kinematics 

other or with the boost transformations. This means that the outcome of 
the total transformation depends upon the order in which each one of the 
rotations and boosts is done. 

II The proper time. The coordinate and time values are all differences 
between the commonly agreed origin and the space-time point at 
which event (1) occurs. They are all relative coordinates. A and B will 
have different values for their measured t, x values for the event but 
there is one combination which they will agree upon, 

(2.3) 

The proper time of the event, 'q, is evidently an invariant with respect 
to all boosts along the x-axis. This means that it does not contain any 
reference to the relative velocity of the observers along the x-axis. 

The proper time is the value a watch would show if it started out from 
the origin (i.e. at t = 0, x = 0) in A's system and moved away with velocity 
VA = XIA/tIA. Then it will arrive at XIA at time tlA, just when the event 
(1) occurs. To see this imagine that observer B had chosen the velocity 
v = VA. It is therefore the time obtained in the rest frame of the watch. 
This is the frame in which both events occur at the same place, the space 
origin (make use of the second line in Eq. (2.2) !). 

IlIA Time dilation. The observer A will conclude that the time difference 
in his system that corresponds to the proper time 'rl would be (make 
use of the first line of Eq. (2.2)!) 

'rl 
tlA = (2.4) 

J1-v~ 
This means that to A it will seem that the time difference is larger, 
i.e. it will seem as if time is passing more slowly in the watch rest 
system. This effect is called time dilation. 

This is a noticeable effect for the fast-moving fragments of a collision 
between cosmic ray elements and the atoms of the upper atmosphere. 
There are e.g. the ,u-particles, very short-lived when we produce them 
basically at rest, in the laboratory on earth. The lifetime of a ,u-particle is 
around 2 x 10-6 seconds. Therefore even if it was moving with the velocity 
of light it would only be able to cover about 600 metres! 

Nevertheless the produced ,u-particles survive a sufficiently long time to 
be able to go all the way from the top of the atmosphere down to earth, 
where we can find them in abundance. 

To understand this effect we note that the decay time is related to the 
properties of the particle in its rest frame while the 'survival time' we 
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2.1 The Lorentz boost 9 

observe is the time it will take a fast-moving particle (with velocity close 
to c) to move the distance (j from the top of the atmosphere (at a height 
of around 2 x 104 meters) to the observation point on earth. According 
to Eq. (2.4) this survival time is much longer and therefore many of the 
Il-particles survive to reach the ground. 

IIIB Lorentz contraction. There is a corresponding effect for distances, 
which is called Lorentz contraction. For the surviving Il-particles, 
the distance (j, which to us is about 2 x 104 meters, will seem to be 
at most the 600 metres mentioned above. Considered from the rest 
system of the Il-particle the distance (jrest is the length that the earth 
and its atmosphere moves towards it during its lifetime! From the 
Eq. (2.4) we conclude for the Lorentz contraction effect 

(jrest = (j -J 1 - v2 (2.5) 

IV Covariance. The scalar product of two ordinary vectors a . b, written 
in terms of the coordinates as axbx + ayby + azbz, is an invariant 
with respect to rotations. It is possible to write the invariant 1:1 as a 
(generalised) scalar product. The quantity 

(2.6) 

will be invariant with respect to the general Lorentz transformations 
(i.e. boosts and rotations in any order) if the coordinates and times 
of the events (1) and (2) transform with respect to Lorentz boosts 
as in Eq. (2.2) (and (1) == (Xl,Yl,Zt) and similarly (2) transform as 
ordinary vectors under rotation). 

Such quantities as (1) in Eq. (2.1) are called four-vectors. They transform 
as vectors with respect to the Lorentz transformations, in particular as in 
Eq. (2.2) for boosts along an axis. Besides the invariants, in the same way 
called scalars under the Lorentz transformations, and the four-vectors it 
is possible to define four-tensors (the electromagnetic field tensor is an 
example of such a quantity). 

All these quantities are said to be covariant: they transform in a linear 
way with respect to the Lorentz transformations, i.e. the corresponding 
quantities in different Lorentz frames are related by means of linear 
equations. 

V The transformation of the velocity. As an example of a quantity with 
more complex properties with respect to the Lorentz transformations 
we consider the velocity. We have already mentioned the velocity VA 

measured in A's system. From B's point of view the corresponding 
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velocity will be (use both the first and the second line of Eq. (2.2)!) 

VA -v 
vB = (2.7) 

I-VAV 

It is not difficult to show that if the velocities VA, v do not exceed 
c = 1 then the velocity VB will have the same property. 

VI The energy-momentum Jour-vector. The classical (Newtonian) defini­
tion of momentum is the mass (m) times the velocity (vp) of the 
particle. But from Eq. (2.7) it is obvious that the transformation 
properties of the velocity are complex under a Lorentz boost. In 
order to generalise the definition of momentum Einstein made use 
of the proper time of the particle motion in the following way. 

The velocity of the particle is defined in terms of its trajectory r(t) (i.e. 
its space position r labelled by means of the time t) as 

dr 
vp = dt (2.8) 

For every (massive) particle it is possible to imagine a rest frame in which 
the particle is always at the (space) origin. In this way it is possible to 
define the proper time. for the particle's motion; it is the time in this, the 
particle's rest system. 

Considered from any other Lorentz frame the proper time • will be 
related to the 'ordinary' time t by means of the differential equation 

d. = dtJl-v~ 
according to Eqs. (2.3), (2.4). 

(2.9) 

The proper time .(t) defined in this way is unique as soon as proper 
boundary conditions are given for the differential equation. (Its functional 
dependence upon the time t will in general be different in different Lorentz 
frames, however.) 

We conclude that the corresponding Jour-velocity u defined by 

( dt dr) 
u == d.' d. = y(vp)(I, vp) (2.10) 

will transform covariantly as a vector under the Lorentz transformations. 
(The third line of Eq. (2.10) is obtained from the differential equation 
(2.9).) Note that the corresponding invariant uu = u2 has the value u2 = l. 
Einstein defined the Jour-momentum p of a particle as 

p = (e,p) = mu = my(vp)(l, vp) (2.11) 

The space components p (from now on the momentum) of this four­
momentum (which we sometimes will call the energy-momentum vector) 
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have the property that for small velocities IVpl == IVpl (which should be 
interpreted to mean IVpl ~ c, of course) they coincide with the classical 
momentum components. 

The 'extra' component e = my(vp } can be identified with the energy of 
the particle because for small velocities we obtain by expanding the square 
root 

(2.12) 

The second term corresponds to the well-known expression for the kinetic 
energy of a (nonrelativistic) particle. The first term, the rest energy, cor­
responds to the famous Einstein conclusion that the mass content of a 
particle is related to a stored energy, es 

as 

2 es = me (2.13) 

The ordinary vector velocity vp can according to Eq. (2.11) be expressed 

p 
vp =­

e 

2.2 Particle kinematics 

(2.14) 

The invariance equation for the energy-momentum vector p = (e, p), if we 
consider a particle moving along a fixed direction p = pn, described by 
the unit vector n is 

(2.15) 

This means that the energy (which always is positive for a particle) can 
be expressed as e = J p2 + m2. 

VII The rapidity variable. According to Eq. (2.15) a particle with a fixed 
mass has a four-momentum which lies on a hyperbola in the ep­
plane. It is possible to introduce a hyperbolic angle YP to describe 
any particular point on the hyperbola: 

e = mcoshyp 

p = msinhyp 
(2.16) 

This hyperbolic angle is called the rapidity, and we note from the 
relationship between (e,p) and the ordinary velocity vp in Eq. (2.11) 
that 

Vp = tanhyp ~ YP (2.17) 

with the last line valid for small values of vp and yp. We also note 
that y(vp} = coshyp. 
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12 Relativistic kinematics 

For a Lorentz boost along the direction n we obtain, using the first 
two lines of Eq. (2.2), with a boost velocity v = tanh y and using the 
notation (eB,PB) for the energy-momentum components in the new 
frame, 

eB = y(v)(e - vp) 

= m( cosh YP cosh y - sinh yp sinh y) = m cosh(yp - y) 

PB = y(v)(p - vE) (2.18) 

= m( sinh YP cosh y - cosh yp sinh y) = m sinh(yp - y) 

This means that Lorentz boosts along n will move us along the 
hyperbola of Eq. (2.15). In particular any value of the energy­
momentum can be obtained by a suitable boost from the rest system 
YP = O. In other words the rapidity variable is additive. 

This also comes out of the relation for adding ordinary velocities, Eq. 
(2.7), if we express the velocities in terms of rapidities: 

VA -v 
VB::::: tanhYB = 1 = tanh(YA - y) (2.19) 

-VAV 

If the rapidity is expressed in terms of the corresponding velocity v we 
obtain 

y = ! In (~) = ! In (e + P) 
2 1-v 2 e-p 

(2.20) 

It often occurs that in a given dynamical situation there may be a direction 
which is of particular importance. It is then useful to describe the particles 
under investigation in terms of their rapidities defined with respect to that 
direction (even if some or all of the particles move in somewhat different 
directions). This corresponds to using the velocity component, Vt, along 
that (longitudinal) direction; we then obtain 

Yt:::::!ln(l+Vt ) =!In(e+ pt ) (2.21) 
2 1- Vt 2 e - Pt 

with Pt the corresponding momentum component. 

VIn The lightcone components. It is often useful to describe the energy­
momentum vector with respect to the direction n in terms of the 
components 

P+ = e + p = mexpyp, p_ = e - p = mexp(-yp) (2.22) 

For a boost with rapidity y along n these quantities transform as 

p+ ---+ p+exp(-y), p_ ---+ p_expy (2.23) 

It is of course natural that their product is a constant, equal to 
the invariant in Eq. (2.15). For the case in Eq. (2.21) one defines 
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the lightcone components (e ± Pt). They can then be described with 
respect to the rapidity Yt in the same way as in Eq. (2.22) except that 
the mass m is exchanged for the transverse mass mt. This quantity is 
defined by 

(2.24) 

in terms of the transverse momentum vector Pt, corresponding to the 
two components of the momentum that are transverse to the chosen 
longitudinal direction. 

We will at this point briefly consider Heisenberg's indeterminacy rela­
tions and indicate that although the position and the conjugate momentum 
of a particle cannot be determined simultaneously it is possible to deter­
mine the rapidity and the position for a high-energy particle simultaneously 
with any degree of exactness, [66]. 

The indeterminacy relations mean that owing to the commutation rela­
tion 

[P,x] =-i (2.25) 

it is necessary that the width of a wave-packet in position x, ~x, is related 
to the corresponding width in momentum p, ~p by 

~x~p ~ 1/2 (2.26) 

Merzbacher shows, by defining the mean and the width in the state with 
the wave function lp as 

(x) = J dxlp*(x)Xlp(x) 

(~x)2 = \(x - (x))2) = J dxlp*(x)(x - (x))2lp(x) 
(2.27) 

with a similar relationship for p that there is a single kind of state, the 
Gaussian wave packet, for which Eq. (2.26) is an equality. 

We can rewrite Eq. (2.26) in the following way for a particle with 
energy-momentum (e, p) with rapidity according to Eq. (2.16): 

~p 1 
~x- == ~x~y > - ---+ 0 (2.28) 

e - 2e 

when e is very large. Note that Eq. (2.16) implies that dp/e = dy. 
Relation (2.28) is shown for a free particle, in [66], by actual construction 

of the necessary wave-packets. It implies that, although you can never fool 
Heisenberg, you are allowed to choose your variables in such a way that 
quantum mechanical effects can be small or negligible. 

As you will find in connection with the Lund model, when we are 
concerned with the longitudinal dynamics we shall use the freedom to 
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present semi-classical pictures, in which we go between coordinate- and 
rapidity-space descriptions. This cannot be done in the same cavalier way 
in connection with the transverse dynamics, because transverse momenta 
are in general very limited in size in high-energy physics. 

2.3 Timelike, Iightlike and spacelike vectors in Minkowski space 

Up to now we have neglected the fact that the invariant size of a four­
vector, like the squared proper time in Eq. (2.3), is not positive definite 
as is the corresponding length of an ordinary vector. This means that it 
is possible to find space-time points for which the proper time squared is 
vanishing or negative. 

In both these cases the interpretation of proper time discussed above is 
no longer valid. There is no (proper) Lorentz frame that is a rest frame 
for an observer, in which both the start (at the origin) and the event itself 
occur at the same point in space. 

Those points for which the proper-time interpretation is valid are called 
time like and we note that they fulfil 

ItlAI > IrIAI == a (2.29) 

This is evidently a Lorentz-covariant definition. 
All energy-momentum vectors for massive particles are also in the same 

way called timelike. 

1 Lightlike Jour-vectors 

In the case when the proper time squared vanishes it is possible to send 
a light signal directly from the origin to the event point and we therefore 
refer to this situation as a lightlike space-time vector difference. 

There are other cases for which we will meet such lightlike vectors, e.g. 
when we want to describe massless particles such as the quanta of the 
electromagnetic field, photons. For them the energy (cf. Eq. (2.15)) is equal 
to the total momentum, i.e. e = Ikl = Ikl. The corresponding rapidity Yt 
as defined in Eq. (2.21) is directly expressible in terms of the angle, e, 
between a given axis and the photon direction: 

kt = Ikl cos e 

Yt=~ln(~~~:::) =lncot(~) ~-ln(~) (2.30) 

The last statement is an approximation valid for small angles. 
Although Eq. (2.30) is strictly valid only for massless particles it is 

often a very good approximation (and then the variable is called the 
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pseudo-rapidity) for other particles, those whose mass is small compared 
to their energy. In this way we obtain another intuitive way to look at 
the rapidity; it is directly related to the angle with respect to the chosen 
longitudinal direction. 

While both the individual masses of two lightlike particles vanish, the 
sum of their energy-momenta is in general no longer lightlike but timelike: 

kjkj == k; = e; - (kj )2 = 0 

S12 == (kl + k2)2 = 2klk2 = 2ele2(1 - cos 8d = 4ele2 sin2 812/2> 0 
(2.31) 

unless the two lightlike vectors are parallel, which means that the angle 
between them 812 = o. 

It is always possible by means of a Lorentz boost to go to the centre­
oj-mass system (from now on the ems) of two lightlike or timelike vectors. 
This system is defined so that the total momentum vector vanishes. If the 
mass of the four-vector sum JS1i. from Eq. (2.31) is nonvanishing, the size 
of the velocity of the sum is less than c: 

kl +k2 
V12 = Ikll + Ik21 (2.32) 

It is a useful exercise to prove to oneself that by a boost of V12 one reaches 
a Lorentz frame in which the two vectors in Eq. (2.31) have after the 
boost, the components 

k~l = k~2 = JSU; k~l = k~2 = 0; k~l = k~2 = 0 (2.33) 

Thus they have 'oppositely' directed lightcone components in the ems. 
Another way to formulate this is to note that a time like vector may be 
uniquely partitioned into two light like vectors (oppositely directed in space 
in the restframe of the time like vector). 

2 Space like Jour-vectors 

If the invariant length in Eq. (2.3) (generalised possibly by means of Eq. 
(2.6)) is negative then the four-vector is called space like. An example of a 
spacelike vector in space-time is the difference vector between two points 
in space measured at the same time. 

Actually, it is always possible for a spacelike vector in space-time, to 
find a frame such that the time component vanishes. To see this let us 
assume that in the situation described above involving the two observers 
A and B event (1) has a spacelike difference vector with respect to the 
origin, e.g. 

o < tlA < XIA and YIA = ZlA = 0 (2.34) 
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(the sign choice of (tIA,XIA) being made for convenience). Then if the 
observer B moves at a velocity of size v = tIA/XIA (although it appears to 
be a rather peculiar 'velocity' it is evidently smaller than c = 1) we obtain 
directly from (the first line of) Eq. (2.2) that event (1) will occur for B at 
the same time as he starts out from the origin. 

For the observer B there is, however, a (space) distance between the 
origin and (1), that can be obtained from (the second line of) Eq. (2.2), 

(2.35) 

i.e. the invariant length, as expected. 
When the difference vector between two space-time points is spacelike 

then it is impossible to send any kind of signal between them. Therefore, 
it is impossible for two physical events occurring at the two points to be 
causally connected. The occurrence of one of the events cannot affect the 
occurrence of the other. We will in the course of this book have many 
occasions to come back to such situations. 

The typical spacelike vectors in energy-momentum space correspond 
to momentum transfers. If two particles with rest masses mi and m2 are 
scattered elastically from each other then in general there is a momentum 
transfer between them. Elastic scattering means that the same kinds of 
particle occur in the initial state and in the final state. 

The energy-momentum vectors in the initial state, Pji, and in the final 
state, Pj!, of the particles indexed j = 1,2 are, however, in general different. 
Energy-momentum conservation means that 

2 2 

LPji = LPjf (2.36) 
j=1 j=1 

This implies that the difference vector, q, i.e. the momentum transfer 
between the two particles during the scattering, fulfils 

q = PI! - Pli = -(p2! - P2d (2.37) 

If we analyse the situation in the cms, with the two particles approaching 
each other along the x-axis with Pli = pOx = -P2i (see Fig. 2.1) we 
conclude that 

I The absolute sizes of the momenta of the final-state particles are the 
same as for the initial-state particles. To see this we note that 

1 The total momentum in the cms vanishes also in the final state. 
Therefore the two final-state particles must have oppositely 
directed momentum vectors of equal size also. 
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Fig. 2.1. Two particles experience elastic scattering against each other with 
notation described in the text. 

2 Each of the particle energies is given by the momentum size, 
e.g. e ji = J p2 + my and in order to conserve the total energy, cf. 
(2.36), the final-state momentum sizes therefore must be p, too. 

n In the ems the momentum transfer four-vector, q, has no energy 
component, and we obtain for the invariant momentum transfer 
(conventionally called t or _Q2) 

_Q2 = t == q2 = _4p2 sin2(Oj2) ~ -p; (2.38) 

in terms of the scattering angle 0 (see Fig. 2.1) and in the small 
angle limit, sin(Oj2) ~ (sinO)j2, in the last line with the transverse 
momentum Pt = P sin( 0). 

3 Minkowski space 

The vector space endowed with the metric defined by the Lorentz-invariant 
four-vector product in Eqs. (2.3), (2.6) is called Minkowski space. Although 
ordinary space-time contains three space dimensions, it frequently occurs 
that physical models are formulated in lower-dimensional regions, corre­
sponding to one- or two-dimensional space. (It is, of course, sometimes 
useful to make use of larger dimensions both for time and space but we 
shall not need to do so in this book.) 

Minkowski space can be subdivided into the three different parts, con­
sidered above, i.e. into timelike, lightlike and spacelike points with respect 
to the origin (or for that matter with respect to any other point). 

The lightlike vectors form three-dimensional regions, called lightcones, 
in between the other two classes, which are both four-dimensional. It is 
possible to further classify a lightcone into a positive (forward) part and a 
negative (backward) part, according to the sign of the time component, i.e. 

t = ±v7i (2.39) 
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In the same way timelike points can be inside the forward or the backward 
lightcones. 

The significance of these notions is that it is always possible to reach a 
point inside, or on, the forward lightcone by means of a signal from the 
origin. In a similar way the origin can be reached from all the points inside, 
or on, the backward lightcone by means of a signal. All the spacelike points 
are, however, non-causal with respect to the origin, i.e. as mentioned above, 
events in the two points can have no dynamical influence on each other. 

2.4 The electromagnetic field equations and some of their consequences 

We will start with the notion of gauge invariance and after that turn to 
the properties of dielectrics. The rationale for introducing dielectrics is the 
following. The vacuum in a quantum theory, which intuitively corresponds 
to the no-particle state, behaves owing to quantum fluctuations in a way 
effectively similar to a dielectric medium. 

1 Gauge in variance 

The two Maxwell equations corresponding to Faraday's induction law 
and the absence of magnetic charges connect the electric field 8 and the 
magnetic field f!/J in the following ways: 

af!/J 
V x 8 + at = 0, V . f!/J = ° (2.40) 

These equations can be solved by introducing the four-vector potential 
AJl == (Ao,A): 

f!/J = V x A, 
aA 

8=-VAo-­at (2.41) 

It is well known that these relations do not completely determine AJl from 
a knowledge of 8, f!/J. It is always possible to introduce the change 

aA 
A - A + VA, Ao - Ao - at (2.42) 

and still obtain the same electric and magnetic fields. 
The transformation in Eq. (2.42) is a local gauge transformation. The 

word local means that it is possible to choose the function A so that it 
varies from point to point in space and time. 

In somewhat loose language this means that the vector field AJl contains 
redundant, non-observable, degrees of freedom and that one must by 
convention fix these degrees of freedom in order to be able to discuss its 
quantum properties. 
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2.4 The electromagnetic field equations 19 

Such gauge-fixing conventions of a more or less 'physical' kind have 
been suggested and used but it is essential to understand that one con­
vention is, from a dynamical point of view, just as good as another. Any 
observable result of a calculation must be gauge-independent. 

One should always remember when considering the emission of the 
quanta of All that, with a certain gauge-fixing condition, the quanta may 
seem to be emitted from some particular part of the emitting current. It 
may well be the case, however, that the same observable quanta would 
seem to be emitted from a completely different part of the current if 
one were to use a different gauge condition (or as a matter of fact the 
same gauge condition but a different Lorentz frame). We will discuss these 
matters in more detail when we come to matter fields in Chapter 11 and 
to gluon radiation in Chapter 16. 

If we introduce the energy-momentum-space quantities (we use the 
notation A(q) or d(q) for the Fourier transform of a space-time quantity 
A(x), with q the Fourier transform variable) a gauge transformation is 

A(q) ~ A(q) + iqA(q) (2.43) 

This means that, for a radiation field, when the vector potential A = 
Eexp(ikx) describes a photonic quantum with energy-momentum vector 
k (k2 = 0 for real photons) and polarisation vector E, the physics results 
should be independent of the change 

E ~ E + ikA(k) (2.44) 

for any A. 
In order to understand the relation in Eq. (2.44) we consider a boost 

along the direction of motion of the quantum, i.e. along the direction of 
k. In the new frame the size of the momentum Ikl and therefore also 
the energy are changed. For the polarisation vector E this change can be 
compensated by a gauge transformation according to Eq. (2.44). Therefore 
in a charge-free region only the polarisation-vector components transverse 
to the direction of motion (that are invariant with respect to such boosts, 
i.e. those with kE = 0) are physically important (cf. the (brief) discussion 
of helicity in Chapter 5). 

2 The notion of dielectrics 

Besides the two equations mentioned above there are in Maxwell's treat­
ment also Coulomb's and Ampere's laws, which tell us how to construct 
the fields from a knowledge of the charges and currents. They are expected 
to be precise in the microscopic sense (we use small letters to denote the 
microscopic fields and large letters for the corresponding macroscopic 
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ones): 

Relativistic kinematics 

V' e =", ae 
VXb--=1 at (2.45) 

Here" and I are the 'local' charge and vector current densities, stemming 
from e.g. individual atomic charges. A quantum field does not really make 
sense as an operator acting as a single point (although with suitable care 
it is often possible to write quantum field operators in that way) because 
it is distribution valued. It should be smoothed out over a region by means 
of a 'test-function' f, [31]: 

e(f) == $(f) = J dxf(x)e(x) (2.46) 

We have here assumed that the test function f is nonvanishing (mathe­
matically 'has support in') a region of suitable size around the point x. 
The typical atomic dimension is of the order of 10-8 cm (about twice 
the Bohr radius for hydrogen), and depending upon the system under 
consideration we may need this or other length units when we consider 
this averaging procedure. Jackson gives a lucid description, to which we 
refer the interested reader. 

The result of the averaging procedure is, however, that not only 'the 
true' charges will affect the fields; there are also induced dipole moments, 
~ and JI, stemming from the polarisation and magnetisation of the 
medium. The effective values of charge and current vector densities are 
thus changed; it is necessary to take into account also the polarisation 
charge, the polarisation current and the magnetic moment current. We 
then arrive at the macroscopic equations containing the free charge (p) 
and current (j) densities (the difference from the rapidly changing local 
" and I densities in Eq. (2.45), which describe individual atomic charges 
in motion, is that these microscopic fluctuations are averaged out, giving 
relatively smooth and slowly varying macroscopic quantities): 

V'D=p, 

D = $ + f!} = € * $, 

V x H- aD =j 
at 

1 
H=86'-.,I/= -*86' 

Jl 

(2.47) 

Here D is the electric displacement vector and H is the magnetic field; € and 
Jl are the dielectricity and the magnetic permeability, of the material under 
investigation. The symbol * is used in order to indicate the possibility 
that, e.g. 

D(x) == € * $ = J dx' €(x - x')$(x') (2.48) 
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This would correspond to an energy-momentum-dependent displacement 

~(q) = [1 + ~(q)]8(q) (2.49) 

where we have introduced the index of refraction ~ = € - 1. 
If we consider plane-wave solutions to the electromagnetic equations, 

(2.47), in a (true) charge- and current-free medium we may write (with the 
convention in classical physics that we are supposed to take the real part 
of all complex quantities) 

8 = 80 exp i(kn . x - wt), &1 = &10 exp i(kn . x - wt) (2.50) 

We then obtain the following requirements: 

k2n2 -)1€W 2 = 0, n· 80 = n· &10 = 0, &10 = ~n x 80 (2.51) 

At this point we may consider a few limiting situations. Suppose firstly 
that € is a constant and (for simplicity) )1 = 1. This means that D and 
H = B are completely local fields. We may in particular consider the 
vector n to be a unit vector. Then we will according to the last two 
equations of (2.51) have transverse waves in the medium. According to 
the first equation in (2.51) there is also a relation, usually referred to 
as a dispersion relation, between the wavenumber k ~ 1/ A, with A the 
wavelength, and the frequency w. 

To see what this relation implies we note that the transport velocity 
of the field energy-momentum is given by the ratio of the (space-time 
averaged) Poynting vector S (lSI == S) and the (space-time averaged) 
energy density u: 

1 .ft 2 1 • • € 2 ) 
S = 218 x Yt'l = 2181, u = 4(€8· 8 + &1. &1 ) = 2181 (2.52 

The factor ! results from averaging the squared harmonic waves and we 
find in this way that the velocity has changed from c = 1 to v = 1/.ft. 
Thus we require € > 1 in order that the transport velocity of the energy 
should not exceed the velocity of light in the vacuum. We note that the 
phase velocity of the waves, which is w /k, then coincides with v. 

Another case of interest is an electron plasma in the limit w ~ wp, 

where wp is the plasma frequency. Then (cf. Jackson) € = l-(wp/wf and 
we obtain the same relation between k and w as for a particle with mass 
wp (this is the only true Higgs-phenomenon we know of at present, i.e. 
the velocity of the electromagnetic waves in a medium is smaller than the 
vacuum velocity; this is tantamount to give a mass, corresponding to the 
plasma frequency, to the field quanta): 

w2 = k2 + w; (2.53) 

In this case the phase velocity of the waves, w /k, is greater than the 
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Fig. 2.2. A charged particle, g approaches a charged observer at the origin with 
velocity v along a direction with impact parameter b. 

velocity of light. The true velocity, called the group velocity, is then instead 
the variation of w with respect to k, dwldk = klw < 1, as we find by 
the well-known construction of local wave-packets from the waves in Eq. 
(2.50), cf. Jackson and Merzbacher. Consequently the index of refraction 
in Eq. (2.49) may be both positive and negative in real life situations. 

We finally note that the index of refraction, e, may have an imaginary 
part. This corresponds to an absorption of the waves, i.e. to an interaction 
between the medium and the waves. There is a general set of relations, the 
Kramers-Kronig relations, [89], [88], between the real and the imaginary 
parts of the index of refraction. They stem from the causality requirement 
that there can be no effect until the waves have reached the medium. This 
leads to analyticity properties for e. We will meet the same properties 
in connection with the vacuum polarisation functions in quantum field 
theory in Chapter 4. 

2.5 The method of virtual quanta 

In this section we consider the electromagnetic field of a fast-moving 
charge and show how to express it in terms of its field quanta. The 
problem will be phrased as follows: 

• Describe the field of an electric charge (size g), moving with velocity 
v along a direction (the I-direction) having impact parameter b (for 
definiteness in the 12-plane) with respect to an observation point at 
the origin Xl = X2 = o. 

We assume that there is an observer, i.e. a detector carrying charge gl, 
at the origin (Fig. 2.2). We expect that the approach of g will be noticeable 
as a pulse of radiation energy for this charged observer. This pulse will 
now be described in a semi-classical framework. 

The Lorentz rest frames of the charges g and gl will be assumed to 
coincide at time tl = t = O. Then we may calculate the Coulomb force 
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field in the rest system of the charge g (where it is the usual spherically 
symmetric field falling off with distance R as oc 1/ R2). 

After that we may use the rules of special relativity and translate this 
field by a boost (with velocity -v) along the I-axis to obtain the field 
components in the rest system of the charge gl (Jackson does it for us so 
we will not dwell upon the details): 

tfl=_gvty tf2=_gby P43=vtf2 (2.54) 
r3 ' r3 ' 

(with r defined below in Eq. (2.55)). Note that the components in the 
2- and 3-directions basically constitute a 'radiation field', i.e. f!lJ = v x 8, 
when v '" c = 1. We are now going to investigate that field. 

The y-factor is as usual 1/ .Jl - v2 and the space extensions of the field 
components are Lorentz-contracted. Therefore, apart from the times t '" 0, 
when the charges are close to each other, the distance r is a large number: 

(2.55) 

The field components in Eq. (2.54) provide two Poynting-vector pulses, 
one along the I-axis and one along the 2-axis. The latter is small and we 
will neglect it from now on. The main I-axis radiation pulse is strongly 
Lorentz-contracted and looks like a bell-shaped curve in the time variable 
with a width (noticeable from Eq. (2.55)) around t = ° of tJt, where 

b 
M = - (2.56) 

vy 

Note that this typical passage time, M, can be written as 

l: mb 
ut=-

p 
(2.57) 

where m is the rest mass and p ~ e (for large v ~ c = 1) are the momentum 
and energy of the charge g. 

We can describe these results in terms offrequency (Jackson provides the 
exact formulas but we do not need the details). The differential intensity 
of the I-axis pulse, dI (w), where w is the frequency will be essentially 
constant from a low-frequency value Wmin (where the wavelength becomes 
so long that there is nothing to observe) up to a maximum (determined 
by Eqs. (2.56), (2.57)): 

1 p 
W max ~ tJt = mb· (2.58) 

This follows from the properties of the Fourier transform and also comes 
out of Jackson's formulas in terms of combinations of Bessel functions. 
We obtain approximately (note that the Poynting vector corresponds to 
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the surface density of the field momentum) 

tux 
dI(w,b) ~ dwdAtn2b2 (2.59) 

For values of w > l/<5t the distribution contains an exponential tail, with 
fast falloff. Here dAt = 2nbdb, i.e. the increase in the transverse area per 
unit impact parameter b. We have also defined the fine structure constant 
0( = g2/(4nnc) under the assumption that g is a unit, i.e. electron, charge. 
We have been careful to keep Planck's constant in the expression (although 
we usually put n = 1 according to the conventions in the Introduction) 
because up to now there has been no reference to quantum mechanics. 

We may, however, now make the time-honoured transition to quantum 
mechanics by noting that for a fixed frequency w the number of quanta, 
dn (in this case photons) in the pulse dI is given by 

dI = nwdn (2.60) 

This means that the whole field energy is carried by individual field quanta, 
each with an energy proportional to its frequency according to Einstein's 
proposal. 

Therefore we have found an (approximate) expression for the number 
of field quanta which will be available for an interaction with the charge 
gl at the origin: 

dn = (~) (dAt ) dw 
n nb2 w 

(2.61) 

This is basically a classical formula (but with quantum mechanics sneaked 
in through Eq. (2.60)). It describes the flux factor in connection with the 
interaction of the charged-particle field quanta. If the scattering cross 
section for the individual quanta is known then we simply multiply by 
this flux in order to get the cross section for the whole charged field. 

Before the flux factor can be used we note, however, that it is singular 
in two different ways. The first way corresponds to the singularity for 
large wavelengths, w ~ 0, to which reference already has been made. 
(The Lund model is everywhere infrared stable and we will therefore not 
consider the problems corresponding to infrared singularities. The main 
point is that when the number of quanta increases indefinitely at small 
frequencies then the dynamical behaviour is not given by their number 
but instead by their 'combined action', which corresponds to the action of 
a classical field.) 

The second singularity is the logarithmic divergence for small values of 
b. This is a typical problem in all situations involving a charged particle. It 
is necessary to define what is meant by the energy of the particle itself and 
what should be attributed to the field. This is called mass renormalisation, 
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i.e. it is necessary to provide the particle with a given rest energy equal to 
its mass, independently of the field surrounding it. 

Classically the field energy from a point particle is always infinite and 
therefore after the discovery of the electron it was described not as a 
'point' but as a small charged sphere with a radius ro > 0 such that its 
(Coulomb) field energy was exactly equal to the mass, me: 

e2 
- = me (2.62) 
4nro 

This quantity ro, the classical electron radius, is approximately 3 x 10-15 

m (using the conventions of c = Ii = 1 to convert to metres) and occurs in 
the cross section for the interaction between an electron and low-frequency 
radiation, W ~ 0: 

d(J r6 2 
dO. = 2(1 + cos e) (2.63) 

This is the Thompson cross section in the solid angle dO. = sin e ded<jJ, 
where e is the scattering angle and <jJ the azimuthal angle around the 
beam direction. It should, however, be understood that as far as we 
know (and this is at least down to 10-17 m because of the results of the 
LEP experiments at CERN) there is no extended space structure of the 
electron. The Thompson cross section therefore corresponds to the size of 
the Coulomb field around the particle rather than to some 'solid-sphere' 
behaviour. 

The necessary cutoff in impact parameter depends upon the problem 
one is considering. It is either the Compton wavelength of the particle that 
is used or the characteristic size of the quantity that is probed by the field 
(but it is always the largest of the parameters). The Compton wavelength 
is AC = lilm and this b-cutoff therefore means that W max as defined in Eq. 
(2.58) will be given by 

p 
W < W max = -,- = p c:::::. e 

mlLC 
(2.64) 

This is not an unreasonable requirement. After all you cannot radiate 
away more energy than you have got! 

The above representation is not normally used in connection with 
quantum field theory, where one usually describes the field not in terms 
of the energy and the impact parameter of the field quanta but instead in 
terms of their energy and transverse momentum. 

The impact parameter vector b is, as we will see later in Chapter 10, 
the canonically conjugate variable to the transverse momentum k t in a 
high-energy scattering event. Therefore one obtains the distribution of 
one from the other by means of a Fourier transform of the transition 
amplitude. 
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We note that the formulas above contain (as always for observables 
in quantum mechanics) the square of the amplitude (in this case 1&'12) 
but from the scaling behaviour (no dimensional constants) we may guess 
that the relation between the distribution in impact parameter and the 
transverse momentum will be 

2nbdb db2 dkl 
----;J;2 = b2 ~ k2 (2.65) 

t 

and this turns out to be the right answer. 
It is also conventional to rearrange the co-dependence into a dependence 

upon the scaled variable x = co / e, e being the moving charged particle's 
energy. In that way we may write 

dn = (~) (d:!) d: (2.66) 

which we will later meet as the spectrum for dipole bremsstrahlung radi­
ation. The scaled variable x evidently has a range x < 1 according to Eq. 
(2.64). 

Thus the method of virtual quanta (MVQ) redefines the interaction 
ability of a charged particle in terms of a flux of available (but virtual) 
field quanta, with precise properties with respect to interactions. Note that 
the word 'virtua1' is appropriate: the field quanta are available but do not 
do anything until they find something to interact with. 
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