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We provide scaling relations for the Nusselt number Nu and the friction coefficient CS
in sheared Rayleigh–Bénard convection, i.e. in Rayleigh–Bénard flow with Couette- or
Poiseuille-type shear forcing, by extending the Grossmann & Lohse (J. Fluid Mech.,
vol. 407, 2000, pp. 27–56, Phys. Rev. Lett., vol. 86, 2001, pp. 3316–3319, Phys. Rev. E,
vol. 66, 2002, 016305, Phys. Fluids, vol. 16, 2004, pp. 4462–4472) theory to sheared
thermal convection. The control parameters for these systems are the Rayleigh number
Ra, the Prandtl number Pr and the Reynolds number ReS that characterises the strength
of the imposed shear. By direct numerical simulations and theoretical considerations, we
show that, in turbulent Rayleigh–Bénard convection, the friction coefficients associated
with the applied shear and the shear generated by the large-scale convection rolls are
both well described by Prandtl’s (Ergeb. Aerodyn. Vers. Gött., vol. 4, 1932, pp. 18–29)
logarithmic friction law, suggesting some kind of universality between purely shear-driven
flows and thermal convection. These scaling relations hold well for 106 ≤ Ra ≤ 108,
0.5 ≤ Pr ≤ 5.0, and 0 ≤ ReS ≤ 104.
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Figure 1. Schematic of the (a) CRB and (b) PRB systems.

1. Introduction

The interplay between buoyancy and shear in mixed thermal convection can be studied
by either adding Couette-type forcing to the Rayleigh–Bénard (RB) system (Ahlers,
Grossmann & Lohse 2009; Lohse & Xia 2010; Chilla & Schumacher 2012; Xia
2013; Shishkina 2021; Ahlers et al. 2022; Lohse & Shishkina 2023) to obtain the
Couette–RB (CRB) system (Deardorff 1965; Ingersoll 1966; Hathaway & Somerville
1986; Domaradzki & Metcalfe 1988; Solomon & Gollub 1990; Shevkar et al. 2019; Blass
et al. 2020, 2021), or by applying a Poiseuille-type forcing to obtain the Poiseuille–RB
(PRB) system (Scagliarini, Gylfason & Toschi 2014; Zonta & Soldati 2014; Scagliarini
et al. 2015; Pirozzoli et al. 2017). A schematic of the two systems is shown in figure 1.

The CRB and PRB systems are described by the incompressible Navier–Stokes
equations, the continuity equation and the temperature transport equation, within the
Boussinesq approximation. In Cartesian coordinates, they read

∂tui + uj∂jui = −ρ−1∂ip + ν∂2
j ui + βgδi3θ + Πδi1, ∂iui = 0, (1.1a,b)

∂tθ + uj∂jθ = κ∂2
j θ, (1.2)

where u ≡ (ux, uy, uz) is the velocity, p the pressure, θ the reduced temperature, ρ the
density of the fluid, g the acceleration due to gravity antiparallel to the z direction, β the
isobaric thermal expansion coefficient, ν the kinematic viscosity, κ the thermal diffusivity
and H is the distance between the horizontal walls. At the top wall (z = H), the reduced
temperature is set to θ = −Δ/2 while at the bottom wall (z = 0), the reduced temperature
is set to θ = Δ/2. For the CRB system Π = 0, the bottom wall is at rest and a velocity of
2Uw is imposed on the top wall. For the PRB system, no-slip conditions are enforced at the
walls and a volume forcing Π is applied in the streamwise direction such that it induces
a bulk velocity of Ub averaged over the domain volume and time (for the details of the
implementation of the shear forcing in the numerical simulations, we refer the reader to
§ 3). The streamwise direction is oriented along x and the spanwise direction along y. The
aspect ratios of the system are defined by Γx = Lx/H and Γy = Ly/H, with Lx, Ly being
the dimensions of the system in the x and y directions, respectively.

The control parameters for the systems are the Rayleigh number, the Prandtl number
and the Reynolds number associated with the shear forcing

Ra ≡ βgH3Δ

νκ
, Pr ≡ ν

κ
, ReS ≡ USH

ν
. (1.3a–c)

The characteristic velocity scale associated with the shear forcing US is given by US ≡ Uw
for the CRB system and US ≡ Ub for the PRB system. Although Ub is formally a response
parameter, in our numerical simulations the volume forcing term Π is computed at each
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Transport in sheared Rayleigh–Bénard convection

time step to ensure a constant mass flow rate (Quadrio, Frohnapfel & Hasegawa 2016)
dictated by Ub, making it a control parameter in our case. The shear forcing for the CRB
system is given by the wall Reynolds number Rew ≡ UwH/ν whereas the shear forcing
for the PRB system is given by the bulk Reynolds number Reb ≡ UbH/ν. Henceforth, we
use ReS to indicate shear forcing in equations that are applicable to both CRB and PRB
systems.

Similarly, one can also define a Reynolds number associated with the thermal forcing
in these systems. From the input parameters, we can construct a Reynolds number
ReF = UFH/ν ≡ √

Ra/Pr, using the free fall velocity scale UF = √
gβ�H. However,

the free fall scale is often not a reliable estimate of the flow velocities that develop in
natural convection flows. A more appropriate approach is to define the Reynolds number
associated with the large-scale convection (LSC) roll given by ReL ≡ ULH/ν, with UL
indicating the mean velocity of the ‘wind of turbulence’ generated by the LSC roll. The
parameter ReL is, however, a response parameter whose variation with Ra, Pr and ReS is
not known a priori.

In the limiting case of zero shear forcing, we can distinguish the Reynolds number
associated with the LSC roll in pure RB flow as ReR(Ra, Pr) ≡ ReL(Ra, Pr, ReS = 0).
The dynamics of the sheared RB systems are governed by a combined effect of both shear
and thermal forcing. Therefore, we can also introduce the Reynolds number ReT , which is
constructed using the total velocity UT comprising a vector sum of US and UL. Naturally,
the time-averaged wall shear stress τT generated by the total velocity UT is also determined
by the combined effect of τL, which is the time-averaged shear stress locally generated on
the walls by the LSC roll, and τS, which is the mean streamwise shear stress generated
on the walls due to the applied shear forcing. These shear stresses can be expressed in
dimensionless form using the friction coefficients associated with the total shear, the LSC
roll and the streamwise shear respectively, as

CT ≡ 2τT

ρU2
T
, CL ≡ 2τL

ρU2
L
, CS ≡ 2τS

ρU2
S
. (1.4a–c)

Once again, in the limiting case of zero shear forcing, we can distinguish the
friction coefficient associated with the LSC roll in pure RB flow as CR(Ra, Pr) ≡
CL(Ra, Pr, ReS = 0). The non-dimensional heat flux from the hot bottom wall to the cold
top wall is given by the Nusselt number

Nu ≡ 〈uzθ − κ∂zθ〉A,t

κ�H−1 , (1.5)

with 〈〉A,t indicating the averaging in time and over any horizontal plane spanned by x and
y. A summary of all response and control parameters discussed above is given in table 1 for
reference. In this study, we are primarily interested in understanding the dependence of the
response parameters on the control parameters, and the physics underlying the connections
between the response parameters.

Using the exact relations for the global kinetic and thermal dissipation rates, Grossmann
& Lohse (2000, 2001, 2002, 2004) offered a unifying theory for RB convection (hereafter
referred to as the GL-theory). For cylinders of unit aspect ratio, Stevens et al. (2013)
have demonstrated that fitting the GL-theory at four data points from Funfschilling et al.
(2005) at Ra = 2.96 × 107 and Ra = 1.92 × 1010 with Pr = 4.38, from Xia, Lam & Zhou
(2002) at Ra = 2.24 × 108 with Pr = 554 and from Kerr & Herring (2000) at Ra = 107

with Pr = 0.07 using four free parameters can predict Nu within 4 % of experimental and
numerical results in most of the parameter space given by 104 ≤ Ra ≤ 1014 and 10−3 ≤
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Parameter Definition Type Short description

Ra (βgH3Δ)/(νκ) Control Rayleigh number
Pr ν/κ Control Prandtl number
ReF UFH/ν ≡ √

Ra/Pr Control Reynolds number associated with
free-fall velocity

Rew UwH/ν Control Wall Reynolds number for CRB
system

Reb UbH/ν Control Bulk Reynolds number for PRB
system

ReS USH/ν Control Reynolds number associated with
shear forcing

ReL ULH/ν Response Reynolds number associated with
LSC rolls for sheared RB

ReR URH/ν ≡ ReL(ReS = 0) Response Reynolds number associated with
LSC rolls for pure RB (‘wind
Reynolds number’)

ReT UT H/ν Response Reynolds number computed using
the total velocity

CS 2τS/(ρU2
S) Response Friction coefficient associated

with shear forcing
CL 2τL/(ρU2

L) Response Friction coefficient associated
with LSC rolls for sheared RB

CR 2τR/(ρU2
R) ≡ CL(ReS = 0) Response Friction coefficient associated

with LSC rolls for pure RB
CT 2τT/(ρU2

T ) Response Friction coefficient computed
using the total velocity

Nu 〈uzθ − κ∂zθ〉A,t/(κ�H−1) Response Nusselt number

Table 1. A summary of all control and response parameters discussed in § 1.

Pr ≤ 102, with only two small ranges that exhibit a greater than 10 % disagreement. In the
same paper Stevens et al. (2013), a fit of similar quality is achieved also for an aspect ratio
Γ = 1/2, with slightly different prefactors. This work has further been extended by Ahlers
et al. (2022) to include the effects of aspect ratios between 1/32 and 32. The GL-theory
has also been extended to the ultimate regime (Grossmann & Lohse 2011), where the heat
transport is considerably enhanced, as the laminar-type boundary layers become turbulent
due to a non-normal–nonlinear instability; for a detailed discussion see Roche (2020) and
Lohse & Shishkina (2023).

Presently, the GL-theory has been applied to RB convection without imposed shear. The
objective of this work is to extend the theoretical approach to sheared thermal convection.
Scagliarini et al. (2014, 2015); Pirozzoli et al. (2017); Blass et al. (2020, 2021) have
made progress in understanding the variation of heat transfer in RB convection with
imposed shear. Scagliarini et al. (2014, 2015) proposed a model based on the concept
of eddy viscosity and eddy diffusivity to explain the counter-intuitive initial decrease and
subsequent increase in Nu with increasing Reb for the PRB system. Blass et al. (2020)
observed a similar effect in the CRB system and attributed it to the initial destruction of
the large-scale flow organisation and the subsequent formation of large meandering flow
structures (Hutchins & Marusic 2007). They divided the flow into a buoyancy-dominated,
a transitional and a shear-dominated regime, based on the Monin–Obukhov length scale.
Blass et al. (2021) further investigated the effect of Pr on the variation of Nu with Rew
and concluded that the non-monotonic behaviour of Nu(Rew) is a consequence of flow
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Transport in sheared Rayleigh–Bénard convection

layering, plume sweeping and bulk heat entrapment. Building on these findings, in this
paper we propose a more general formulation applicable to sheared thermal convection, in
the spirit of the GL-theory.

The objective of this paper is to extend the GL-theory to CRB and PRB systems by
providing scaling relations for Nu(Ra, Pr, ReS) and CS(Ra, Pr, ReS). Furthermore, we will
show similarities in the dependence of CS on ReS in Couette and Poiseuille flows and
CL on ReL in RB convection, suggesting some sort of universality in the behaviour of
the friction coefficient in shear-driven flows and thermal convection. In § 2, we build
the theoretical framework, using rigorous relations for globally averaged kinetic and
thermal dissipation rates. In § 3, we validate the theoretical scaling relations against direct
numerical simulations (DNS). Finally, the conclusions are presented in § 4.

2. Extending the Grossmann–Lohse theory to CRB and PRB

2.1. Kinetic and thermal dissipation rates
To extend the GL-theory to sheared thermal convection, we formulate exact global
relations for the kinetic (εu) and thermal (εθ ) dissipation rates in the CRB and PRB
systems. These arise from the time- and volume-averaged equations for the kinetic energy
and temperature variance, respectively. The relation for the mean thermal dissipation rate
is the same as in the classical RB convection

εθ =
〈
κ(∂jθ)2

〉
V,t

= κ
Δ2

H2 Nu, (2.1)

see e.g. Shraiman & Siggia (1990) and Siggia (1994). The relation for the mean kinetic
dissipation rate reads

εu =
〈
ν(∂jui)

2
〉
V,t

= ν3

H4

⎛
⎜⎝(Nu − 1)RaPr−2︸ ︷︷ ︸

Buoyancy term

+ CSRe3
S︸ ︷︷ ︸

Shear term

⎞
⎟⎠ , (2.2)

with 〈. . . 〉V,t indicating the average over time and volume. Note that the expression for
thermal dissipation (2.1) is the same as that in classical RB convection but the expression
for kinetic dissipation (2.2) includes contributions from both buoyancy and shear forcing.

2.2. Kinetic energy, large-scale convection rolls and boundary layer thickness
One of the central ideas of the GL-theory is the presence of persistent LSC rolls that
churn the bulk of the system and generate boundary layers at the walls. As a result, the
mean kinetic energy of the RB system is expected to scale as ∼U2

R, where UR is the
velocity scale of the LSC roll (in the absence of any shear forcing). In pure RB flow,
this mean kinetic energy is solely generated by the buoyancy forcing. However, in the
case of sheared RB flow, where the LSC roll has a velocity scale UL, the mean kinetic
energy consists of contributions from both the LSC roll and the imposed shear flow.
Therefore, we add the kinetic energy of the mean flow U2

S and the associated turbulent
kinetic energy (TKE), which scales as the square of the friction velocity uτ = √

τS/ρ,
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to write
U2

T ≈ U2
L + U2

S + 2γ u2
τ , (2.3)

with γ being a prefactor. This can also be written in terms of the corresponding Reynolds
numbers as

Re2
T ≈ Re2

L + Re2
S + γ CSRe2

S. (2.4)

For a laminar Prandtl–Blasius-type (Prandtl 1904; Blasius 1908) boundary layer, there is
no TKE, so the contribution CSRe2

S vanishes and we can approximate (2.4) as

Re2
T ≈ Re2

L + Re2
S. (2.5)

An interpretation of the above equation (2.5) is that the velocity associated with the
LSC roll is preferentially oriented along the direction orthogonal to the shear forcing,
consistent with the flow structures observed by Pirozzoli et al. (2017); Blass et al. (2020).
Note that the validity of (2.5) is limited to sufficiently low values of ReS wherein the
contribution to spanwise shear stresses from shear forcing is negligible in comparison with
the contribution from the LSC rolls. At high shear forcing, the spanwise shear stresses
generated by velocity fluctuations arising purely from shear forcing may no longer be
negligible, in which case (2.5) no longer holds.

In the buoyancy-dominated regime, relation (2.5) can be better understood by
considering many LSC rolls each orientated at an angle α with the streamwise direction
and studying the probability distribution of α given by φ(α). Here, we mean LSC rolls in
a broad sense, without addressing the exact details of the flow organisation at this stage.
Empirical observations regarding flow organisation are reported in section § 3.3. Since the
total velocity UT arises from a vector addition of the shear velocity and the LSC velocities,
we can express it in terms of φ(α) as

U2
T =

∫ 2π

0
φ(α)

(
U2

S + U2
L + 2USUL cos(α)

)
dα. (2.6)

Due to the symmetry of the system and the periodic boundary conditions in the horizontal
directions, it is reasonable to consider that there are an equal number of clockwise and
counter-clockwise LSC rolls within the sheared RB system. When averaged over the entire
volume of the system, we postulate that the probability distribution φ(α) is symmetric
about the spanwise direction, i.e. about α = ±π/2. Applying this symmetry condition
to (2.6) gives us the relation (2.5). The velocity scale UT associated with the kinetic
energy of the system can thus be considered as a vector sum of perpendicular velocity
contributions from the shear forcing in the streamwise direction and the LSC roll in the
spanwise direction. Following this approach, we can also decompose the total shear stress
τT generated by UT into the streamwise component τs = τTUS/UT , generated by US, and
the spanwise component τL = τTUL/UT , generated by UL. This assumption gives us three
equivalent definitions of the kinetic boundary layer thickness λu, namely

λu ≡ 2H
CLReL

= 2H
CSReS

= 2H
CTReT

. (2.7)

Here, we used the slope criterion from Shishkina et al. (2010) for the definition of the
kinetic boundary layer thickness. Similarly, we define the thermal boundary layer thickness
λθ also with the slope criterion as

λθ ≡ H
2Nu

. (2.8)
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Transport in sheared Rayleigh–Bénard convection

2.3. Estimating bulk and boundary layer contributions
Another key idea of the GL-theory is the splitting of εu and εθ into their bulk and boundary
layer contributions as follows:

εu = εu,BL + εu,bulk, εθ = εθ,BL + εθ,bulk, (2.9a,b)

with εu,BL being the boundary layer contribution to the kinetic dissipation, εu,bulk being the
bulk contribution to the kinetic dissipation, εθ,BL being the boundary layer contribution to
the thermal dissipation and εθ,bulk being the bulk contribution to the thermal dissipation.
Therefore, we focus on estimating εu,BL, εu,bulk, εθ,BL and εθ,bulk for sheared RB systems.

First, we estimate εu,BL using (2.7) as

εu,BL ∼ ν
U2

T
λ2

u

λu

H
∼ ν3

H4 CTRe3
T ≡ ν3

H4

⎛
⎜⎝CLRe3

L︸ ︷︷ ︸
LSC term

+ CSRe3
S︸ ︷︷ ︸

Shear term

⎞
⎟⎠ , (2.10)

which is, in turn, a sum of contributions from the LSC rolls and the applied shear forcing.
Note that the shear contribution here exactly matches that in the global relation (2.2).
Next, we estimate εu,bulk. Here, it is important to note that the bulk dissipation rate is
dominated by the contribution from LSC rolls, while the contribution from applied shear
forcing is much smaller. Therefore, we only focus on estimating the contribution to εu,bulk
from the LSC rolls by assume that the velocity scale UL associated with the LSC rolls is
responsible for stirring the bulk with a kinetic energy that scales with U2

L. However, LSC
rolls are swept at the boundary layer height due to the applied shear forcing and the time
scale of the stirring process is governed not by the velocity UL associated with the LSC
rolls but by UT which is the total velocity scale. As we shall find later in § 3.2, this is a key
assumption that explains the trend of Nu with increasing ReS in the buoyancy-dominated
regime. Following these assumptions, we write

εu,bulk ∼ U2
L

UT

H
≡ Re2

LReT . (2.11)

At high-shear forcing, the contribution of the boundary layer to the dissipation rate arising
from shear forcing dominates the bulk contribution from LSC rolls. In the limiting case of
passive transport in Couette/Poiseuille flow, one can rigorously derive that the total kinetic
dissipation rate εu = (ν3/H4)CSRe3

S. In this sense, the kinetic dissipation rate of sheared
RB at high shear forcing will always be dominated by the boundary layer contribution and
estimating εu,bulk in the shear-dominated regimes is redundant.

The analogous estimate for εθ,BL

εθ,BL ∼ κ
Δ2

λ2
θ

λθ

H
∼ κ

Δ2

H2 Nu, (2.12)

is identical to the exact relation (2.1), on the one hand showing consistency of the approach,
but on the other hand not giving new information. Therefore, following the GL-theory, we
match the magnitude of the advective and diffusive terms of (1.2) at the thermal boundary
layer height to obtain

uy∂y ∼ κ∂zz. (2.13)

As in the GL-theory, for regimes where the thermal boundary layer is thicker than the
kinetic boundary layer (λθ > λu, associated with low Pr), we estimate uy ∼ UL, ∂y ∼ 1/H,
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and ∂zz ∼ λ−2
θ . Using these estimates in (2.13) with λu from (2.7) and λθ from (2.8), we

obtain

Nu ∼ Pr1/2Re1/2
L ≡ Pr1/2

CLRe1/2
L

CTReT . (2.14)

For high Pr regimes, where λθ < λu, we estimate uy ∼ ULλθ /λu due to the fact that the
relevant velocity scale at the thermal boundary height is smaller than the velocity UL by a
factor λθ /λu, exactly as in the GL-theory. Once again using the estimates ∂y ∼ 1/H, and
∂zz ∼ λ−2

θ in (2.13) with λu from (2.7) and λθ from (2.8), we get

Nu ∼ Pr1/3Re1/3
L (CTReT)1/3 ≡ Pr1/3

C2/3
L Re1/3

L

CTReT . (2.15)

Also the bulk contribution to the thermal dissipation is estimated in an identical manner to
the corresponding equation in the GL-theory, only with minor changes to reflect the new
dependence on CL, CT and ReT . For λθ > λu

εθ,bulk ∼ Δ2 UL

H
∼ κ

Δ2

H2 PrReL ≡ κ
Δ2

H2
Pr
CL

(CTReT) , (2.16)

and for λθ < λu, where the relevant velocity scale is ULλθ /λu, we get

εθ,bulk ∼ Δ2 UL

H
λθ

λu
∼ κ

Δ2

H2 PrCLRe2
LNu−1 ≡ κ

Δ2

H2
Pr
CL

(CTReT)2

Nu
. (2.17)

We expect (2.14)–(2.17) to be valid in both buoyancy-dominated and shear-dominated
regimes. This is accommodated by the fact that the dependencies CT(ReT) and
CL(ReL) behave differently in the buoyancy-dominated and shear-dominated regimes.
Compatibility of these relations in the limiting regimes is explained in the subsequent
§ 2.4.

2.4. Limiting regimes
It is important to note that there exist no pure power laws for Nu, ReL and CS as functions
of Ra, Pr and ReS. Nonetheless, it is useful to study the pure scaling power laws that arise
from limiting regimes, in the interest of understanding the physics of the system. Based
on the dominance of boundary layer and bulk contributions to the kinetic and thermal
dissipation rates, the GL-theory provides four regimes I, II, III and IV for the pure RB
system. Furthermore, each regime can be divided into two subregimes based on whether
the thermal boundary layer is nested into the kinetic boundary layer or vice versa. We find
that this classification of regimes is also applicable to buoyancy-dominated sheared RB.
The phase space of Ra, Pr and ReS is divided by four different transitions – (i) transition
from boundary layer dominated regimes to bulk-dominated regimes, (ii) transition from
buoyancy-dominated regime to shear-dominated regime, (iii) transition between regimes
where the thermal boundary layer is nested inside the kinetic boundary layer or vice
versa and (iv) transition from a laminar Prandtl–Blasius-type boundary layer to a turbulent
Prandtl–von Kármán-type boundary layer.

It should also be noted that some of these limiting regimes may not exist for sheared
RB in the shear-dominated state. For example, at high shear forcing, the shear term in
εu,BL always dominates εu because shear forcing primarily increases the boundary layer
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Transport in sheared Rayleigh–Bénard convection

contribution of the kinetic dissipation (ν3/H4)CSRe3
S. Since the friction coefficient CS

associated with the applied shear can become independent of ReS only asymptotically at
infinite ReS, shear-dominated systems with εu ∼ εu,bulk cannot exist.

We now proceed to first analyse the shear-dominated regime with ReS/ReL 	 1. This
can be realised in two ways – namely either ReL is small or ReL is not necessarily small but
ReS 	 ReL. When ReL is small, we assume the existence of a laminar Prandtl–Blasius-type
boundary layer with

CL ∼ Re−1/2
L , (2.18)

which, along with (2.7) and (2.18), gives

CS ∼ Re1/2
L Re−1

S . (2.19)

With the assumption (2.18), we see that (2.14) associated with small Pr becomes

Nu ∼ Pr1/2CTReT , (2.20)

and (2.15) associated with large Pr becomes

Nu ∼ Pr1/3CTReT . (2.21)

For the limiting case of ReL = 0 one can see that relations (2.20) and (2.21) recover the
scaling laws for passive transport in Couette (Yerragolam et al. 2022a) or Poiseuille flow
(Kays & Crawford 1993) where the relation between CT and ReT depends on whether
the kinetic boundary layer is laminar or turbulent. In the presence of a laminar boundary
layer, the trivial scaling, CT ∼ Re−1

T , applies. When the boundary layer turns turbulent
with increased shear forcing, the relation between CT and ReT is given by Prandtl (1932)
friction law obtained from the log-law mean velocity profile which states√

2
CT

= 1
k

ln

(
ReT

√
CT

8

)
+ B, (2.22)

with k ≈ 0.41 (Pirozzoli, Bernardini & Orlandi 2014) being the von Kármán (1934)
constant and B ≈ 5 (Pirozzoli et al. 2014) indicating the log-law intercept.

When ReL is not necessarily small and ReS 	 ReL, we consider that the passive
transport relations of (2.20) or (2.21) remain relevant, and that the dependence of CT(ReT)

is unchanged to that described above. For this case of larger ReL, we assume that the
thermal dissipation is dominated by contributions from the bulk, so that the global
dissipation relation (2.1) can be estimated by (2.16) or (2.17). When we compare the
passive transport relations with the dissipation estimates, we find that CL must become
independent of ReL, with CL ∼ Pr1/2 for low Pr and CL ∼ Pr1/3 for high Pr. Furthermore,
the behaviour of ReL in these cases can be revealed by combining the passive transport
relations (2.20) or (2.21) with the boundary-layer estimate for the kinetic dissipation
rate (2.10). For low Pr this produces ReL ∼ Ra1/2Pr−3/4, and for high Pr we get ReL ∼
Ra1/2Pr−5/6, which exactly match the Reynolds number scaling relations found in the
boundary layer dominated regime I of the GL-theory for classical RB convection.

Now, we focus on the buoyancy-dominated regimes where ReS/ReL � 1 and CSRe3
S 


(Nu − 1)RaPr−2 such that the shear contribution to the kinetic dissipation can be
neglected in comparison with the buoyancy contribution. With this restriction, we
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Regime εu εθ BL ratio Nu/NuR ReL/ReR

Il BL (2.24) BL (2.14) λθ > λu (C2
LReL)−1/8 (C2

LReL)−1/4

Iu BL (2.24) BL (2.15) λθ < λu (C2
LReL)1/12 (C2

LReL)−1/6

IIl bulk (2.11) BL (2.14) λθ > λu (ReT/ReL)−1/5 (ReT/ReL)−2/5

IIu bulk (2.11) BL (2.15) λθ < λu (C2
LReL)1/5(ReT/ReL)−1/5 (C2

LReL)1/5(ReT/ReL)−2/5

IIIl BL (2.24) bulk (2.16) λθ > λu (C2
LReL)−1/3 (C2

LReL)−1/3

IIIu BL (2.24) bulk (2.17) λθ < λu (C2
LReL)1/7 (C2

LReL)−1/7

IVl bulk (2.11) bulk (2.16) λθ > λu (ReT/ReL)−1/2 (ReT/ReL)−1/2

IVu bulk (2.11) bulk (2.17) λθ < λu (C2
LReL)1/3(ReT/ReL)−1/3 (C2

LReL)1/9(ReT/ReL)−4/9

Table 2. Scaling relations for the Nusselt number Nu and LSC Reynolds number ReL in the
buoyancy-dominated regime of sheared RB convection with a laminar Prandtl–Blasius-type boundary layer.
The first column indicates the GL regime, the second column indicates the bulk or boundary layer (BL)
dominance of the kinetic dissipation rate with the applicable scaling estimate in the parenthesis and the third
column indicates the bulk or BL dominance of the thermal dissipation rate with the applicable scaling estimate
in the parenthesis. The fourth column indicates whether the kinetic BL is thicker than the thermal boundary
layer or vice versa. The fourth and fifth columns indicate the scaling relations for Nu/NuR and ReL/ReR using
the values of Nu and ReR estimated for the pure RB system from GL-theory.

approximate (2.2) as

εu ≈ ν3

H4 (Nu − 1)RaPr−2, (2.23)

and (2.10) as

εu,BL ≈ ν3

H4 CLRe3
L. (2.24)

Using these approximations, we can provide scaling relations between Nu/NuR and
Re/ReR for buoyancy-dominated sheared RB system with NuR and ReR being the
Nusselt number and Reynolds number associated with the LSC rolls for the pure
RB system. Following the GL-theory, there are various regimes that can be relevant
depending on whether the dissipation rates are dominated by boundary layer or bulk
contributions, and whether the thermal BL is thicker than the kinetic BL. For each
of these regimes, we combine (2.7) and (2.23) with the relevant estimates for the
dominant dissipation rate contribution to give expressions for Nu(Ra, Pr, CL, ReL, ReT)

and ReL(Ra, Pr, CL, ReL, ReT). Since our approach is consistent with the GL-theory, the
Ra and Pr dependence simply recovers the scaling relations NuR(Ra, Pr) and ReR(Ra, Pr)
found for the various regimes of pure RB, providing us with scaling relations for Nu/NuR
and ReL/ReR that only depend on CL, ReL and ReT . In table 2, we outline the relevant
estimates for the dissipation rates and present the resulting scaling relations. Is it important
to note that these scaling relations are only applicable to buoyancy-dominated sheared RB
flows with scaling-wise laminar Prandtl–Blasius-type BLs.

In the buoyancy-dominated classical GL regimes, we can consider the Prandtl–Blasius
scaling (2.18) to hold for small shear forcing (i.e. ReS � ReL). With this assumption,
C2

LReL ≈ 1, so the values of Nu and ReL remain unchanged for buoyancy-dominated
regimes I and III, whereas for buoyancy-dominated regimes II and IV , the non-monotonic
behaviour of Nu with increasing ReS becomes apparent. Although Nu seems to decrease
with increasing ReS in the buoyancy-dominant II and IV regimes, it is important to
note that this behaviour is subject to the condition that the BL is a laminar one of
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Transport in sheared Rayleigh–Bénard convection

the Prandtl–Blasius type. If the BL becomes turbulent, the expected decrease in Nu in
the buoyancy-dominated regime might disappear. In this study, we will explore the Nu
response in the buoyancy-dominated IIu regime where we can still observe the decrease in
Nu with increasing ReS within reasonable computational cost.

3. Results from the direct numerical simulations

3.1. Scheme and procedure
In this section, we will compare the scaling relations derived in the previous section against
the results from our DNS. Equations (1.1a,b) and (1.2) are solved numerically using the
in-house open-source code ‘AFiD’, which is based on a second-order finite-difference
scheme (van der Poel et al. 2015). The code has been extensively validated (Verzicco
& Orlandi 1996; Verzicco & Camussi 1997; Stevens, Verzicco & Lohse 2010; Stevens,
Lohse & Verzicco 2011; Kooij et al. 2018). We impose periodic boundary conditions in
the horizontal directions and no-slip boundary conditions at the top and bottom walls. For
most simulations, we use domains of aspect ratios Γx = 8 and Γy = 4. We also performed
CRB simulations with Γx = 48 and Γy = 24 for Ra = 107, Pr = 1 to study large-scale
flow structures. Due to the need for high resolution at large Ra, the RB simulations for
Ra = 1010, Pr = 1 and Ra = 1011, Pr = 1 were performed in domains of aspect ratios
Γx = Γy = 4, while the RB simulation for Ra = 1012, Pr = 1 was performed in domain
of aspect ratios Γx = Γy = 2. For the CRB simulations, the wall velocities (−Uw) and Uw
were imposed as Dirichlet boundary conditions on the bottom and top walls, respectively.
This is done for numerical reasons (Bernardini et al. 2013) and does not affect the analysis
of the results. The equivalent velocity fields of the CRB system with the bottom wall at
rest and the top wall at 2Uw can be obtained by a simple Galilean transformation, i.e. by
adding Uw to the numerically obtained flow field. For the PRB simulations, the volume
forcing term Π is computed at each time step to ensure a constant mass flow rate (Quadrio
et al. 2016).

We use a uniform discretisation in the horizontal, periodic directions and a non-uniform
grid in the wall-normal direction, in which we employ higher grid resolution in the BLs
next to the walls. The thermal BL was ensured to be sufficiently resolved according to the
resolution requirements put forward by Shishkina et al. (2010). The near-wall resolution
is comparable to that of Lozano-Durán & Jiménez (2014); Pirozzoli et al. (2014); Lee &
Moser (2018) to ensure that the kinetic BL is sufficiently resolved. The simulations were
run for a long enough physical time for the standard deviation of Nu to converge within
approximately 1 % of its mean value. In our previous work (Yerragolam et al. 2022b),
we verified that the Nu and Reτ obtained from a domain with Γx = 8 and Γy = 4 shows a
difference of less than 1 % from the Nu obtained from a domain with Γx = 48 and Γy = 24.
This observation is also supported by the fact that Nu for the RB system converges at an
approximate aspect ratio Γx = Γy = 4 (Stevens et al. 2018).

Since many of the scaling relations in § 2.4 rely on the value of the wind Reynolds
number ReR, obtaining an estimate for ReR from the numerical simulations of pure RB is
necessary. The value of ReR can be estimated in two possible ways. The first estimate can
be obtained by using Remax = UmaxH/ν where Umax is the maximum value of the root
mean squared (r.m.s.) horizontal velocity profile uR(z) ≡

√
〈u2

x + u2
y〉A,t at a height z = δ

as shown in figure 2(a). The second estimate can be obtained by using the global r.m.s.
velocity Rerms = UrmsH/ν with Urms ≡

√
〈u2

x + u2
y + u2

z 〉V,t. In figure 2(b) and 2(c), we
can see that these estimates are almost identical, providing strong evidence that the LSC
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Figure 2. (a) The r.m.s. horizontal velocity profile uR(z) normalised with the free-fall velocity for RB system
with Ra = 107, Pr = 1.0 is shown as a function of wall-normal height z, indicating the maximum value Umax
occurring at a wall-normal height δ. (b) Value of Remax obtained from Umax is plotted against the globally
averaged r.m.s. velocity ReR of the RB system. The dashed grey line indicates Remax = Rerms, showing that
these two estimates are virtually identical. (c) Remax compensated with Rerms plotted against Rerms, once again
emphasising that the two estimates are equivalent within the 5 decades of Ra and nearly 3 decades of Rerms
investigated here. The values of Ra are shown on the top for reference. This figure is also available at https://
www.cambridge.org/S0022112024008723/JFM-Notebooks/files/figure2.

rolls driving the wind at the wall also provide the dominant contribution to the mean
kinetic energy in RB convection. In all the results discussed henceforth, we adopt Rerms as
an estimate for ReR. Unlike in Couette or Poiseuille flow, the mean shear stress at the wall
is zero in RB convection. However, we can use the mean gradient of the r.m.s. horizontal
velocity 〈∂zuR(z)〉W,t to calculate the friction coefficient CR associated with the large-scale
circulation. Here, 〈· · · 〉W,t indicates time averaging over the surface of the walls. The
variation of CR with ReR is discussed separately in § 3.5.

3.2. Global response parameters
We now validate the scaling relations for Nu and CS derived in § 2.4. Within the parameter
range of Ra, Pr and Re simulated, we already observe multiple transitions. As shear
forcing is increased, we undergo transition from the buoyancy-dominated regime to the
shear-dominated regime. For low shear forcing, εu ∼ εu,bulk with λθ < λu whereas for high
shear forcing, εu ∼ εu,BL with λθ /λu ∼ Pr1/2 (Yerragolam et al. 2022a). Additionally,
at low shear forcing, we observe a laminar Prandtl–Blasius-type BL which undergoes a
transition into a turbulent one at high shear.

In the buoyancy-dominated regime, we assume the presence of Prandtl–Blasius-type
kinetic boundary layer with the friction coefficient CL given by (2.18). For the parameter
range of our simulations, the relevant convection regime is IIu, so combining the relevant
relation from table 2 with (2.18), we arrive at

Nu
NuR

∼
(

ReT

ReL

)−1/5

. (3.1)

In the buoyancy-dominated regimes, we also take (2.19) for the friction coefficient CS
associated with the imposed shear. In order to further simplify these equations, we
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approximate ReL ≈ ReR in the buoyancy-dominated regime, which is justified by the weak
variation of ReL with increasing ReS in (table 2). With this assumption, we can rewrite
(2.19) as

CS ∼
√

ReR/ReS, (3.2)

and use (2.5) to rewrite (3.1) as

Nu/NuR ∼
(√

1 + (
Re2

S/Re2
R
))−1/5

. (3.3)

These equations show good agreement with the numerical data plotted in figures 3(a)–3(d)
for the buoyancy-dominated regime. Note that (3.1) and (3.3) do not explicitly state the
dependence of NuR(Ra, Pr) or ReR(Ra, Pr). There is no pure scaling exponent for NuR(Ra)

in pure RB for regime IIu. The values of NuR and ReR used for figures 3(b) and 3(d) are
obtained from numerical simulations of pure RB. The present extension to the GL-theory
assumes that the values of NuR and ReR are known a priori, and only attempts to provide
scaling relations for the normalised quantities Nu/NuR(ReS/ReR) and CS/CR(ReS/ReR) in
the buoyancy-dominated regime.

For the shear-dominated regime, we observe that the BL becomes turbulent. In this case,
(2.19) is no longer valid. Instead, the relation between CT and ReT is given by (2.22). Note
that, in the limiting case of very high-shear forcing, ReT ≈ ReS. Equation (2.22) can be
rewritten as √

2
CS

= 1
k

ln

(
ReS

√
CS

8

)
+ B, (3.4)

and (2.20) can be rewritten using (2.7) as

Nu ∼ Pr1/2CSReS, (3.5)

which agrees well with the numerical data points in figures 3(c) and 3(d) at very high shear
forcing. However, it is more useful to substitute the value of CT obtained from (2.22) into
(2.20) and approximate ReT from (2.5) as

ReT ≈
√

Re2
R + Re2

S, (3.6)

to obtain the dashed lines plotted in figure 3(a), which show better agreement for a larger
range of ReS/ReR in the shear-dominated regime. The approximation given by (3.6) is then
validated in figure 4(a). The additional energy term γ CSRe2

S from (2.4) that corresponds
to the turbulent fluctuations arising from shear forcing is shown in figure 4(b) with the
value of the prefactor γ ≈ 10.24. Note that the contribution from the fluctuations is much
smaller than the contribution from the mean streamwise velocity, thereby making (3.6) a
good approximation.

3.3. Large-scale convection rolls
Next, we confirm the theoretical assumptions on the LSC rolls made in § 2.2. The
three-dimensional volume visualisation in figure 5 shows the streamlines associated with
these LSC rolls and it can be seen that they are predominantly oriented in the spanwise
direction. However, the large-scale temperature structures in figure 5 are seen to be aligned
neither fully along the streamwise direction, nor fully along the spanwise direction but
along a diagonal. The thermal plumes that comprise these large-scale structures experience
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Figure 3. (a) Value of Nu/Pr1/2 plotted against ReS. The black solid line indicates (3.5), the dashed lines
indicate (2.20) and the dotted lines indicate (3.3). (b) Value of Nu/NuR plotted against ReS/ReR. Dotted lines
indicate (3.3). (c) Value of CS plotted against ReS. The black solid line indicates (3.4) and coloured dashed
lines indicate (2.19). (d) Value of CS normalised with CR plotted against ReS/ReR. Coloured dashed lines
indicate (3.4) and black dashed line indicates (2.19). The data for PRB are indicated with plus markers and
the data for CRB are indicated with dot markers. This figure is also available at https://www.cambridge.org/
S0022112024008723/JFM-Notebooks/files/figure3.

the advective effects of both UL in the spanwise direction and US in the streamwise
direction. Therefore, the orientation of these large scale temperature flow structures in the
x–y plane is tilted along a diagonal whose slope is approximately given by UL/US. This
is made clearer in figure 6 through the visualisation of the non-dimensional time-averaged
local shear stress τ ′

w ≡ (τ ′
x, τ

′
y, 0) computed at the bottom wall in the large aspect ratio

CRB system by subtracting the wall-averaged streamwise shear stress in the following
way:

τ ′
x = HU−1

F
〈
∂zux − 〈∂zux〉x,y,t

〉
t , τ ′

y = HU−1
F
〈
∂zuy

〉
t . (3.7a,b)
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Figure 4. (a) Value of ReT/ReR plotted against ReS/ReR. The black solid line indicates the relation (2.5). (b)

Value of (

√
Re2

T − Re2
S)/ReR plotted against

√
CSReS/ReR. The black dashed line indicates the relation (2.4)

with γ ≈ 10.24. The data for PRB are indicated with plus markers and the data for CRB are indicated with
dot markers. This figure is also available at https://www.cambridge.org/S0022112024008723/JFM-Notebooks/
files/figure4.

Figure 6(a) shows the wall shear for the RB system i.e. for Rew = 0 and the zoomed
inset in figure 6(b) shows the vectors of τ ′

w. As expected, the LSC rolls are randomly
oriented and no global alignment of τ ′

w is observed. A visual inspection of figures 6(c),
6(e) and 6(g) reveals that the large-scale flow structures seem to be oriented along the
diagonal whose slope is approximately given by ReR/Rew. However, figures 6(d), 6( f ) and
6(h) show that τ ′

w is primarily oriented along the spanwise direction in the transitional
regime. Figure 6(i) shows the breakdown of the LSC rolls and the formation of large
meandering flow structures (Hutchins & Marusic 2007; Blass et al. 2020, 2021) in the
shear-dominated regime, while figure 6( j) shows that τ ′

w is predominantly aligned in the
streamwise direction in the shear-dominated regime.

For further confirmation of the changes in the LSC rolls, we study the probability
distribution function φ(α) of the angle α spanned by the horizontal velocity component
fluctuations u′

h ≡ (u′
x, u′

y, 0) with the streamwise direction x. In figures 7(a)–7(e) it can
be seen that the behaviour of φ(α) is qualitatively quite similar for the CRB and PRB
systems. In the RB system, the LSC rolls are randomly oriented as shown by a uniform
φ(α) in figure 7(a). In the buoyancy-dominated regime, the LSC roll has a strong tendency
to align in the spanwise directions in the transitional regime, as shown in figures 7(b) and
7(d). In the shear-dominated regime, the velocity fluctuations are predominantly aligned
in the streamwise direction as in the case of turbulent Couette/Poiseuille flows, as seen in
figures 7(c) and 7(e). At the thermal BL height, the symmetry of φ(α) about α = ±π/2
is strongly suggested for all three regimes by the data from the numerical simulations
as shown in figures 7( f )–7(h), confirming the assumption made in (2.6). In figure 7( f ),
the small non-uniformity in φ(α) is attributed to the numerical confinement experienced
by the flow structures in domains of a smaller aspect ratio of Γx = 8 and Γy = 4. For the
relatively unconfined case with Γx = 48 and Γy = 24, the probability distribution is nearly
uniform for all values of α.
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Figure 5. Three-dimensional volume visualisation of the time-averaged reduced temperature field of a CRB
system with Ra = 107, Pr = 1.0, Rew = 1414, Γx = 48, Γy = 24 with the averaging time being 100 free-fall
time units. The green curves indicate the streamlines of the time-averaged velocity field 〈u〉t − Uwx̂. The
spanwise reorientation and streamwise sweeping of the plumes are evident. The zoomed inset shows the
time-averaged two-dimensional visualisation of the temperature and velocity vectors in the x–z plane. The
plumes carry streamwise momentum along with temperature and are swept in the streamwise direction, causing
a reduction in the heat transport.

3.4. Dissipation rates
We now investigate the bulk and BL contributions to the global kinetic and thermal
dissipation rates described in § 2.1. We validate the rigorous relations given by (2.1)
and (2.2) using the data obtained from numerical simulations as shown in figures 8(a)
and 8(b), respectively. For the range of Ra and Pr studied in this work, as long as the
flow is buoyancy dominated, the system is in the IIu regime with εu ∼ εu,bulk. With
increasing shear forcing, the shear term of (2.2) increases the BL contribution of the
kinetic dissipation due to the formation of streamwise velocity gradients close to the
wall. For sufficiently strong shear, the kinetic dissipation will be dominated by the BL
contribution with εu ∼ εu,BL as shown in 8(c). On the contrary, figure 8(d) shows that the
thermal dissipation rate is dominated by the BL contribution for the entire range of ReS
considered in this study but the contribution reduces noticeably towards higher ReS. For
extremely strong shear, a possibility of a transition towards bulk dominance in thermal
dissipation cannot be ruled out.

3.5. Friction coefficient in Rayleigh–Bénard flow
So far, we have considered only the laminar Prandtl–Blasius-type kinetic BLs in
the buoyancy-dominated regime with the BL only becoming turbulent in highly
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Figure 6. Visualisation of τ ′
w for the CRB system with Ra = 107 and Pr = 1. Panels (c), (e) and (g) are in

the buoyancy-dominated regime and panel (i) is in the shear-dominated regime. The colour bars indicate the
magnitude of τ ′

w while the black arrows in the magnified panels (b), (d), ( f ), (h) and ( j) indicate the direction
of τ ′

w. The black lines in (c–h) indicate the slope of (Rew/ReR)−1. This figure is also available at https://www.
cambridge.org/S0022112024008723/JFM-Notebooks/files/figure6.
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Figure 7. The probability distribution φ(α) of the flow orientation angle α for all heights 0 ≤ z/λθ ≤ Nu for
Ra = 107, Pr = 1, Γx = 48 and Γy = 24 in (a) RB flow (i.e. with ReS = 0), (b,d) buoyancy-dominated regime
with ReS/ReR ≈ 2.11 and (c,e) shear-dominated regime with ReS/ReR ≥ 10. Panels (b,c) are for the CRB
system while panels (d,e) are for the PRB system. The black dashed lines indicate the height of the thermal BL
and the colour bar indicates the magnitude of the probability. The probability distribution φ(α) at the thermal
BL height plotted against angle α for various Ra and Pr in ( f ) RB flow, (g) buoyancy-dominated regime and
(h) shear-dominated regime. The solid lines are the CRB system with Γx = 48 and Γy = 24, the dashed lines
are for the CRB system with Γx = 8 and Γy = 4 and the dotted lines are for the PRB system with Γx = 8 and
Γy = 4. This figure is also available at https://www.cambridge.org/S0022112024008723/JFM-Notebooks/files/
figure7.

shear-dominated regime. However, we now consider the possibility of turbulent kinetic
BLs even in pure RB flow which corresponds to the so-called ‘ultimate’ regime in RB
flow (Kraichnan 1962; Grossmann & Lohse 2011; Roche 2020; Lohse & Shishkina 2023).
While the existence of logarithmic temperature profiles has already been observed at high
Ra (Grossmann & Lohse 2012; Ahlers et al. 2012; Ahlers, Bodenschatz & He 2014), it is
yet to be seen if logarithmic behaviour given by

u+
R (z+) = 1

k
log(z+) + B, (3.8)
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Figure 8. (a) Ratio (H2εθ κ
−1Δ2)/Nu showing good agreement with (2.1) indicated using the solid black

line, and (b) ratio (H4εu/ν
3)/((Nu − 1)RaPr−2 + CSRe3

S) plotted against ReS showing good agreement with
(2.2) of the manuscript shown using the solid black line. (c) Boundary layer contribution to the global kinetic
dissipation rate εu,BL and (d) the BL contribution to the global thermal dissipation rate εθ,BL. The circle markers
are for the CRB system, while plus markers are for the PRB system. This figure is also available at https://www.
cambridge.org/S0022112024008723/JFM-Notebooks/files/figure8.

with

u+
R (z+) = uR(z)/uτ , z+ = zuτ

2ν
, uR(z) ≡

√〈
u2

x + u2
y

〉
A,t

, uτ =
√

ν 〈∂zuR〉W,t,

(3.9a–d)
can be observed in the velocity profiles.

At the highest thermal forcing studied in this work with Ra = 1012, we start to also
observe some hints of what could possibly be the onset of a log layer (see figure 9a),
although it cannot be conclusively confirmed with the currently available data. Assuming
that such a log layer could exist, an estimate of the modified von Kármán constant k is
obtained from the inflection point of the diagnostic function plotted in figure 9(b), giving
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Figure 9. (a) Value of u+
R plotted against z+, showing the onset of a log layer with the grey dashed line.

The velocity profile for Ra = 1012, Pr = 1.0 is indicated in magenta. (b) Diagnostic function plotted against
z+ with the inflection point and the corresponding von Kármán constant indicated. (c) Value of δ+ plotted
against ReR shows good agreement with δ+ = (1/2)Re1/2

R , indicated with the dashed grey line. (d) Value of
CR plotted against Reδ showing a collapse without any prefactors. The solid grey line indicates CR ∼ 4Re−2/3

δ
and the dashed grey line indicates the modified Prandtl (1932) friction law given by (3.10a,b). (e) Value of
CR/a plotted against ReR, showing the Prandtl–Blasius scaling (2.18) at low ReR with the solid grey line and
modified Prandtl (1932) friction law given by (3.10a,b) at high ReR with the dashed grey line. ( f ) Value of Cε/b
given by (3.11b) plotted against ReR. The solid grey line indicates Cε ∼ Re−1/2

R for the regime with εu ∼ εu,BL,
the dashed grey line indicates the modified Prandtl (1932) friction law (3.10a,b). At higher ReR, εu ∼ εu,bulk,
leading to Cε becoming independent of ReR, as indicated with the dash-dotted and dotted grey lines. This figure
is also available at https://www.cambridge.org/S0022112024008723/JFM-Notebooks/files/figure9.

k ≈ 1. Correspondingly, the intercept B ≈ 5.2 is found by fitting the data, as shown in
figure 9(a).

In the presence of such a logarithmic layer, we can now hypothesise about a relation for
CR which is analogous to relation (3.4) for CS and (2.22) for CT by stating that in the limit
of highly turbulent BL, u+

R = UR at z+ = δ+, where δ is the wall-normal distance to the
peak velocity shown in figure 4. This gives us√

2
CR

= 1
k

ln

(
Reδ

√
CR

8

)
+ B, Reδ = URδ/ν. (3.10a,b)

If applicable to high Ra RB flow, the general form of this equation could suggest
universality in the behaviour of wall-bounded flows even though the values of k and B
might be different from those observed for pipe or channel flows. By plotting δ+ against
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ReR, we find a very good fit with the scaling δ+ ∼ Re1/2
R , as shown in figure 9(c). At

present, we can only provide this scaling empirically because more data at extremely high
Ra are needed to understand the dynamics of the turbulent BL which is difficult due to
the high computational expense of such numerical simulations. Plotting CR against Reδ

in 9(d), we find a nice collapse of the data for different aspect ratios and geometries.
At low ReR, CR seems to scale as Re−2/3

δ , which can be obtained from the empirical scaling
δ+ ∼ Re1/2

R shown in figure 9(c) and the assumption of a Prandtl–Blasius-type scaling of
CR ∼ Re−1/2

R . At high ReR, we see good qualitative agreement between the data and the
modified Prandtl (1932) friction law given by (3.10a,b).

We can further investigate the behaviour of CR by computing

CR ≡ aRe−1/2
R , (3.11a)

Cε ≡ b(Nu − 1)RaPr−2Re−3
R ,

{
Cε ∼ CR if εu ∼ εu,BL

Cε = const. if εu ∼ εu,bulk,
(3.11b)

where a and b are prefactors that are obtained by fitting the data from figures 9(e) and
9( f ), accounting for the effects of aspect ratio and geometry. Note that, when the kinetic
dissipation of the RB system is dominated by the contribution from the BL, Cε ∼ CR in
(3.11b). The data points at lower ReR in figure 9(e) are observed to follow (2.18), which
is consistent with the Prandtl–Blasius scaling. For higher ReR, corresponding to Ra >

1010, CR shows better agreement with the Prandtl (1932) friction law given by (3.10a,b).
Figure 9( f ) shows a very similar behaviour to figure 9(e) but, in addition, we observe
that Cε becomes independent of ReR at very high values of ReR. Although this does not
reflect the true dependence of CR on ReR, this apparent dependence is expected because
the kinetic dissipation of the RB system undergoes a transition from being dominated by
the BL to being dominated by the bulk (Lohse 1994). It should also be noted that this
transition occurs at higher ReR for the more confined cylindrical RB simulations because
more kinetic driving is required to overcome the viscous dissipation in the additional BLs
on the side walls that are not present in the periodic box RB simulations (Ahlers et al.
2022).

4. Conclusions

In summary, we have developed a framework by extending the GL-theory for RB
turbulence to sheared RB turbulence. As in the case of RB flow, we observe that there
are no pure scaling exponents for the Nusselt number Nu and the friction coefficient CS.
This also holds for high thermal or shear driving where the BLs no longer obey scaling
relations associated with the Prandtl–Blasius (Prandtl 1904; Blasius 1908) BL theory but
start to become more turbulent. In such cases, we observe that the relation for CS(ReS) is
well described by the friction law of Prandtl (1932). In addition, we find that a modified
version of the Prandtl’s (1932) friction law for the large-scale circulation rolls CL(ReL)

analogous to CS(ReS) agrees well with the DNS data, suggesting some sort of universality
in the relation between the shear stress and the flow velocity that generates that shear.

It is also interesting to note that the relations are identical for CRB or PRB systems
once the appropriate velocity scale is chosen as a control parameter. This suggests that
the flow physics is not strongly affected by the geometry of the system or by the way in
which shear forcing is applied. The flow characteristics of these systems are essentially
determined by the ratio of shear driving to thermal driving, given by ReS/ReR. Applying
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shear to the RB system causes increased coherence in the streamwise direction and leads to
a re-orientation of the LSC rolls and causes them to align more in the spanwise direction,
with the thermal plumes also transporting the momentum imparted by the shear forcing.
In the buoyancy-dominated regime with ReS 
 ReR, this may lead to enhanced streamwise
mixing between hot and cold plumes at a time scale that is smaller than the time scale of
heat diffusion at the wall. This leads to heat entrapment in the bulk and a reduction in Nu.

Taking into account the orientation of the LSC rolls and the bulk dominance of εu in the
buoyancy-dominated regime, we show that the orientation of large-scale flow structures
can also be predicted to a reasonable degree by the ratio ReS/ReR, and we provide scaling
relations for the Nu(ReS/ReR) and CS(ReS/ReR), which are shown to agree well with the
numerical simulations for 106 ≤ Ra ≤ 108, 0.5 ≤ Pr ≤ 5.0 and 0 ≤ ReS ≤ 104. However,
the evidence from the DNS is limited at the moment due to its high computational
costs, thereby restricting the parameter range in which the proposed scaling laws can be
validated. Simulations for very high or very low values of Pr as well as for high Ra or ReS
can be very demanding, and it remains to be seen if the assumptions made in this work
and the extended theory hold well in other control parameter ranges.

Supplementary material. Computational Notebook files are available as supplementary material at https://
doi.org/10.1017/jfm.2024.872 and online at https://www.cambridge.org/S0022112024008723/JFM-Notebooks.
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Appendix. Simulation parameters

In table 3 we provide the physical and numerical input parameters used for the new
sheared RB simulations conducted for this study. In addition to the new simulations, data
for large aspect ratio simulations with Γx = 48 and Γy = 24 are taken from Yerragolam
et al. (2022b), and data for high Ra cylindrical simulations are taken from Hartmann et al.
(2023).
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Transport in sheared Rayleigh–Bénard convection
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Transport in sheared Rayleigh–Bénard convection
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Transport in sheared Rayleigh–Bénard convection
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Transport in sheared Rayleigh–Bénard convection
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Transport in sheared Rayleigh–Bénard convection
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