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We experimentally and numerically characterize rapidly rotating radiatively driven
thermal convection, beyond the sole heat transport measurements reported by Bouillaut
et al. (Proc. Natl Acad. Sci., vol. 118, 2021, e2105015118). Based on a suite of direct
numerical simulations (DNS) and additional processing of the experimental data collected
by Bouillaut et al. (Proc. Natl Acad. Sci., vol. 118, 2021, e2105015118), we report
the simultaneous validation of the scaling predictions of the ‘geostrophic turbulence’
regime – the diffusivity-free or ‘ultimate’ regime of rapidly rotating convection – for the
heat transport and the temperature fluctuations. Following such cross-validation between
DNS and laboratory experiments, we further process the numerical data to validate
the ‘geostrophic turbulence’ scaling predictions for the flow velocity and horizontal
scale. Radiatively driven convection thus appears as a versatile set-up for the laboratory
observation of the diffusivity-free regimes of various convective flows of geophysical
and/or astrophysical interest.
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1. Introduction

Thermal convection is a key process driving natural turbulent flows, be it in stellar and
planetary interiors or in the open ocean (Stevenson 1979; Marshall & Schott 1999; Aurnou
et al. 2015; de Jong & de Steur 2016; Hindman, Featherstone & Julien 2020; Vasil, Julien &
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Featherstone 2021). In these various contexts, global rotation strongly affects the resulting
flow and its transport properties through the action of the Coriolis force (Ecke & Shishkina
2023). The Reynolds number takes prohibitively large values in natural settings, beyond
direct reach of laboratory and numerical models. The standard approach thus consists
in inferring scaling laws based on dimensional analysis, asymptotic theory, experimental
studies and numerical studies, with the goal of extending these scaling laws to the extreme
parameter values that characterize natural flows.

The scaling relation between the convective heat flux and the overall temperature drop
has received most attention, as it characterizes both the heat transport properties of the
system and the energetics of the flow. When it comes to the modelling of natural flows, a
general belief is that the tiny molecular values of the thermal and momentum diffusivities
of the system should not enter this scaling relation (Spiegel 1971; Marshall & Schott 1999).
Such a ‘diffusivity-free’ argument can be traced back to the zeroth law of turbulence,
understood in a broad sense: in a fully turbulent system, the large-scale quantities should
be related in a way that does not involve the tiny molecular diffusivities.

For non-rotating convection, the diffusivity-free argument alone allows one to conclude
on the scaling relation between the dimensionless heat flux (the Nusselt number Nu) and
the dimensionless temperature drop (the temperature-based Rayleigh number Ra(�T)).
This leads to the so-called ‘ultimate’ scaling regime of thermal convection (Kraichnan
1962; Spiegel 1963). By contrast, rotating convection involves an additional dimensionless
parameter (the Ekman number E) and the diffusivity-free argument alone does not suffice
to predict the scaling behaviour of the system. Stevenson (1979) therefore introduced
additional scaling arguments, many of which were inferred (perhaps surprisingly) from
the linear stability analysis of rapidly rotating convection. Combining these additional
arguments with the diffusivity-free assumption, Stevenson (1979) obtained definite
predictions for the scaling behaviour of the main quantities of interest: heat transport,
temperature fluctuations, flow speed and characteristic scales. A more mathematically
rooted way to arrive at the same scaling predictions stems from the work of Julien,
Knobloch & Werne (1998), who carried out an asymptotic expansion of the governing
equations in the rapidly rotating regime. This procedure results in a reduced set of
equations that involves fewer dimensionless control parameters: instead of the Rayleigh
number Ra(�T) and the Ekman number E arising independently in the equations, the
reduced set of equations involves only a reduced Rayleigh number R̃a = Ra(�T)E4/3.
Provided one starts from the reduced set of equations of Julien et al. (1998), the
sole diffusivity-free assumption yields all the scaling predictions of Stevenson (1979),
confirming Stevenson’s impressive physical insight. The corresponding fully turbulent
scaling regime of rapidly rotating convection is referred to as the ‘Geostrophic Turbulence’
(GT) scaling regime in the more recent literature (Cheng et al. 2018).

An ongoing line of research consists in trying to reach the GT regime using Direct
Numerical Simulation (DNS). This approach has proven successful in a range of idealized
models of increasing numerical complexity. DNS of the reduced equations (Julien et al.
2012; Plumley et al. 2016) point to the GT regime at large reduced Rayleigh number. DNS
of the full Boussinesq equations for the Rayleigh–Bénard set-up with free-slip boundary
conditions also point to the GT scaling regime for the heat transport (Stellmach et al.
2014). Departing from the standard Rayleigh–Bénard set-up, Barker, Dempsey & Lithwick
(2014) introduced internal heating and cooling in the vicinity of the lower and upper
boundaries, respectively, and validated the various scaling predictions of the GT regime
(see also Currie et al. 2020). More recently, Song, Shishkina & Zhu (2024) have reported
DNS of Rayleigh–Bénard convection with no-slip boundaries; the heat transport scaling
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law appears to be compatible with the GT prediction for the lowest value of the Ekman
number considered in their study, while the GT scaling predictions for the flow speed and
flow structure appear to be satisfied over a more extended region of parameter space.

At the experimental level, there are challenging constraints to observe the GT regime in
the laboratory. Achieving high Rayleigh number and low Ekman number suggests building
tall Rayleigh–Bénard cells while keeping the radius of the tank small enough to avoid
centrifugal effects (Ecke & Niemela 2014; Cheng et al. 2015, 2018, 2020; Zhang et al.
2020; Wedi et al. 2021). An issue with such cigar-shaped containers is the emergence of
wall modes and boundary zonal flows that can contribute significantly to the overall heat
transport (Favier & Knobloch 2020; Zhang, Ecke & Shishkina 2021; Wedi et al. 2022).
It is therefore unclear whether the GT regime can be achieved in the current generation
of rotating Rayleigh–Bénard experiments, and determining the optimal laboratory design
that could potentially lead to the observation of the GT regime in rotating Rayleigh–Bénard
convection remains an intense topic of ongoing research (Cheng et al. 2018; Kunnen 2021;
Terrien, Favier & Knobloch 2023).

Departing from the standard Rayleigh–Bénard set-up, we have introduced an
experimental apparatus where convection is driven radiatively, through the absorption of
visible light by a dyed fluid. Through a combination of radiative heating and effective
internal cooling, one can bypass the top and bottom boundary layers and observe regimes
of thermal convection that are controlled by the bulk turbulent flow, such as the ‘ultimate’
regime of (non-rotating) turbulent convection (Lepot, Aumaître & Gallet 2018; Bouillaut
et al. 2019; Miquel et al. 2019, 2020). Global rotation was recently added to the laboratory
set-up, providing the first experimental observation of the GT heat transport scaling
relation (Bouillaut et al. 2021). This experimental configuration shares many similarities
with the numerical set-up introduced by Barker et al. (2014) (see also Currie et al.
2020), differing primarily in the distribution of internal heat sources and sinks, in the
boundary conditions, and in the precise definitions of the diagnostic variables. The goal
of the present study is to characterize the turbulent state of radiatively driven rotating
convection beyond the sole heat transport, and assess the validity of the GT scaling
predictions for the temperature fluctuations, the flow speed and the characteristic scale
of the flow. One issue at the experimental level is that the fluid is opaque, making
global velocity measurements challenging (see Bouillaut et al. 2022 for velocity estimates
in the non-rotating experiment). We thus carried out a hybrid experimental–numerical
study of radiatively driven convection combining further processing of the temperature
measurements in Bouillaut et al. (2021) with in-depth numerical diagnostics of the speed
and structure of the flow. We validate the numerical approach as a good model of the
system by intercomparison of the experimental and numerical data for temperature, before
leveraging the three-dimensional (3-D) DNS to characterize the velocity field.

2. Radiatively driven rotating convection

2.1. Theoretical set-up
We consider a horizontal fluid layer of height H radiatively heated from below and
thermally insulated at all boundaries (see figure 1 for a schematic of the laboratory
implementation). The fluid absorbs light at the same rate for all incoming wavelengths,
which leads to a typical absorption length �. Following Beer–Lambert’s law and denoting
as P the radiative flux (per unit surface) impinging on the bottom boundary z = 0 of
the fluid layer, the absorption of light induces an internal heat source that decreases

998 A9-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

55
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.556


G. Hadjerci, V. Bouillaut, B. Miquel and B. Gallet

No-slip insulated bottom

Stress-free insulated top

H
o
ri

zo
n
ta

ll
y
 p

er
io

d
ic

 d
o
m

ai
n

DC motor

WIFI micro

controller 

Polyoxymethylene

Water and dye

Sapphire plate

Diaphragm

Water-cooled

thermal and IR

screens  

Metal-halide

spotlight

Experiment DNS

T
2

T
2

T
1

�

T
1

�

P

Ω

(a)

(b)

Figure 1. (a) Experimental and (b) numerical implementations of radiatively driven rotating convection.
Absorption of an upward flux of light by the dyed fluid induces an internal heat source that decreases
exponentially with height measured from the bottom of the fluid domain, over an absorption length �. Secular
heating of the fluid induces uniform effective internal cooling compensating the radiative heat source on vertical
average.

exponentially with height z:

QH(z) = P
�

e−z/�. (2.1)

Together with such radiative heating, we consider a uniform internal cooling term QC =
−(1 − e−H/�)P/H < 0. The volume integral of this cooling term over the fluid domain is
opposite to that of the heating term. That is, the overall heat input by the radiative heat
source is exactly balanced by the overall heat removed by the uniform heat sink, which
ensures a statistically stationary state for the temperature and velocity fields (see § 2.2 for
the experimental implementation of the effective cooling term).

The fluid layer rotates at a rate Ωez with respect to an inertial frame and is subject
to gravity −gez. We restrict attention to the range of parameters where the centrifugal
acceleration is negligible (Horn & Aurnou 2018, 2019). Following the Boussinesq
approximation (Spiegel & Veronis 1960), the fluid properties are assumed to be constant
and uniform, with the exception of the density ρ, whose variations are retained in the
buoyancy force only and are assumed to vary linearly with temperature. The velocity field
is thus divergence free. Denoting the reduced pressure field as p(x, t), the temperature
variable as θ(x, t) and the velocity field in the rotating frame as u(x, t), the governing
equations read:

∂tu + (u · ∇)u + 2Ωez × u = −∇p + αgθez + ν∇2u, (2.2)

∇ · u = 0, (2.3)

∂tθ + u · ∇θ = κ∇2θ + QH(z)+ QC

ρC
, (2.4)
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where C denotes the specific heat capacity of the fluid, α the coefficient of thermal
expansion, ρ the reference density, κ the thermal diffusivity and ν the kinematic viscosity.

The set of equations above involves four dimensionless control parameters:

Ra(P) = αgPH4

ρCκ2ν
, E = ν

2ΩH2 , Pr = ν

κ
and �̃ = �

H
, (2.5a–d)

where the flux-based Rayleigh number Ra(P) characterizes the strength of the thermal
forcing (strength of the imposed radiative heat flux), the Ekman number E characterizes
the strength of the global rotation, with E � 1 for rapid rotation, the Prandtl number
Pr characterizes the relative magnitudes of momentum and thermal diffusivities, and the
dimensionless absorption length �̃ characterizes the spatial structure of the radiative heat
source.

We wish to characterize the statistically steady state of the system. Most studies focus
primarily on the overall heat transport properties of the system: how large is the overall
temperature drop�T that emerges across the fluid layer as a result of the radiative heating?
That is, for a given value of the flux-based Rayleigh number Ra(P), one would like to
determine the emergent temperature-based Rayleigh number Ra(�T), or, equivalently, the
Nusselt number Nu, defined as

Ra(�T) = αg�TH3

νκ
, Nu = Ra(P)

Ra(�T) = PH
ρCκ�T

. (2.6a,b)

The goal of the present study is to go beyond the sole quantification of the overall heat
transport, with a more in-depth characterization of the temperature and velocity fields:
what is the typical flow speed? The typical horizontal scale �⊥ of the flow? How do local
temperature fluctuations compare to the mean temperature drop? With these questions in
mind we introduce the Reynolds number Re, the fluctuation-based Rayleigh number Ra(θ)
and the dimensionless horizontal length scale �⊥∗ , defined as

Re =
√

〈u2〉H
ν

, Ra(θ) = αgθstdH3

νκ
, �⊥∗ = �⊥

H
, (2.7a–c)

where 〈·〉 denotes space average, ·̄ denotes time average and θstd =
√
(θ − θ̄ )2 denotes the

standard deviation of θ at a given z (see below).

2.2. Laboratory implementation
The experimental set-up, introduced by Bouillaut et al. (2021), is a rotating version of
the radiatively driven convection set-up designed by Lepot et al. (2018). A schematic is
provided in figure 1. A cylindrical tank rotating at a rateΩ around the vertical axis contains
a mixture of water and dye. A powerful spotlight shines at the tank from below. The
light passes through a layer of cool water filtering out infrared radiation before reaching
the transparent bottom plate of the tank. Absorption of visible light by the dye induces
an internal heat source of the form (2.1), where the absorption length � is directly set
by the (uniform) concentration of the dye. The dimensionless absorption length is kept
constant in the present study. Specifically, we adopt � = 0.048H which proves sufficient
to bypass the throttling bottom boundary layers and induce diffusivity-free regimes of
thermal convection (Lepot et al. 2018; Bouillaut et al. 2019, 2021).
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Figure 2. Parameter space spanned by the present dataset. Circles are experimental data (Pr ≈ 7) while
triangles are DNS (Pr = 7).

While there is no cooling mechanism in the experimental apparatus, secular heating of
the body of fluid amounts to an effective uniform heat sink denoted as QC above. Indeed,
consider the radiatively heated set-up in the absence of cooling. That is, we consider (2.4)
with QC set to zero, and we denote the temperature field as T(x, t) instead of θ(x, t).
Space integration over the entire body of fluid, using insulated boundary conditions at all
boundaries, yields

d〈T〉
dt

= P
ρCH

(1 − e−H/�), (2.8)

which indicates that the space-averaged temperature 〈T〉 increases linearly with time. This
result holds as long as heat losses through the boundaries of the tank are negligible, a valid
approximation when 〈T〉 is within a few degrees of room temperature. Now, introduce
the variable θ(x, t) = T(x, t)− 〈T〉(t). One can check that the evolution equation for θ is
precisely (2.4), with both the heating term QH and the effective cooling term QC included.
Additionally, the buoyancy force in (2.2) can be equivalently cast as αgTez or as αgθez,
the difference between the two being absorbed by the pressure gradient. We conclude that
(2.2)–(2.4) indeed model the convective dynamics arising in the laboratory set-up.

We leave a free surface at the top of the dyed water, which allows us to easily vary the
fluid height H between 10 and 25 cm. The second dimensional control parameter is the
rotation rate Ω , which we vary between 10 and 85 rpm. The corresponding region of the
dimensionless parameter space is shown in figure 2, and we checked in Bouillaut et al.
(2021) that centrifugal effects do not impact the measurements.

We characterize the temperature field using three thermocouples located at height z = 0,
z = 0.25H and z = 0.75H along the axis of the cylinder. An experimental run consists
in filling the tank up to a height H with dyed water at approximately 10 ◦C, spinning
the tank at a given rate Ω for at least ten minutes to achieve solid-body rotation, and
then turning on the spotlight. After some transient, the timeseries of all three probes
exhibit a common linear drift at a rate given by the right-hand side of (2.8) (examples
of timeseries are provided in Bouillaut et al. 2021). Following the analysis above, any
temperature difference between two probes exhibits a statistically steady signal provided
(i) the initial transient phase has decayed and (ii) the fluid temperature is reasonably close
to room temperature (typically ±5 ◦C). Similarly, temperature fluctuations around the
mean drift are statistically steady when conditions (i) and (ii) are met. The experimental
data consist of the temperature drop �T measured by Bouillaut et al. (2021), which we
complement with an estimate of the temperature fluctuations. To wit, we quantify the
temperature fluctuations at z = 0.25H by subtracting the linear drift from the timeseries

998 A9-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

55
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.556


Rapidly rotating radiatively driven convection

before computing the root-mean-square (r.m.s.) fluctuations of the resulting statistically
steady signal. This leads to the standard deviation θstd entering the definition of Ra(θ).

2.3. Numerical implementation
To characterize the system beyond the sole quantities accessible in the laboratory
experiment, we performed DNS of the governing equations (2.2)–(2.4) in a horizontally
periodic domain using the pseudo-spectral solver Coral (Miquel 2021), validated against
both analytical results (Miquel et al. 2020) and solutions computed with the Dedalus
software (Burns et al. 2020). Coral employs a Chebyshev–Fourier spatial decomposition
and an implicit–explicit time-stepping scheme. In the present study, the upper and lower
boundaries are insulated (∂zθ = 0) and impenetrable (w = 0). To replicate as closely as
possible the experiment, the kinematic boundary conditions are no-slip at the bottom
(u = v = 0) and free-slip at the top (∂zu = ∂zv = 0).

The suite of numerical simulations is focused on the region of parameter space where the
experimental data from Bouillaut et al. (2021) point to the GT scaling regime, see figure 2.
The Ekman number varies between 5 × 10−7 and 10−4, while the flux-based Rayleigh
number varies between 1011 and 1012. The Prandtl number is Pr = 7 for all the DNS. The
aspect ratio of the numerical domain is in the range [0.35, 1], ensuring that, for each DNS
run, at least four wavelengths of the most unstable mode fit along a horizontal direction of
the numerical domain. The typical resolution ranges from (Nx,Ny,Nz) = (150, 150, 256)
for Ra(P) = 1011 to (Nx,Ny,Nz) = (300, 300, 512) for Ra(P) = 1012, where Nx and Ny
denote the number of Fourier modes in the horizontal directions, while Nz denotes
the number of Chebyschev polynomials in the vertical directions. The non-uniform
Chebyschev grid is particularly welcome for the present problem, allowing us to have
typically eight grid points inside the Ekman layer after de-aliasing.

Initial conditions are chosen as either small-amplitude noise, or a solution computed
in a previous run. After the initial transient has subsided, we compute the emergent
dimensionless parameters of interest by averaging over the statistically steady regime.
Because of the periodic boundary conditions, the numerical system is invariant to
translations in the horizontal directions. Based on this invariance, when performing
a time average q̄ of some quantity q extracted from the DNS, we also include a
horizontal area average to speed up convergence. Whenever possible, we extract the
exact numerical counterpart of the experimental measurements: the temperature difference
�T is computed by temporally and horizontally averaging θ at z = 0 and z = 0.75H,
before subtracting the two. The fluctuation-based Rayleigh number Ra(θ) is based on θstd
evaluated at z = 0.25H. Beyond the experimentally measured quantities, DNS gives access
to the full statistics of the temperature and velocity fields. We thus also extract the r.m.s.
velocity 〈u2〉1/2 over the entire fluid domain to compute the emergent Reynolds number
Re. Finally, we extract a characteristic horizontal length scale �⊥ of the flow as

�⊥ =
(

〈ψ2〉
〈u2〉

)1/2

, (2.9)

where ψ(x, y, z, t) denotes the so-called toroidal streamfunction, defined as minus the
inverse horizontal Laplacian of the vertical vorticity (for a purely horizontal flow,
this definition leads to the standard streamfunction of the two-dimensional (2-D) flow
in a given constant-z plane, see e.g. Julien & Knobloch (2007) for details on the
toroidal/poloidal decomposition).
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Figure 3. Vertical temperature slices extracted from DNS with Ra(P) = 1012. From left to right, the
diffusivity-free flux-based Rayleigh number (3.12) is R = {1.31 × 10−6, 1.63 × 10−7, 2.04 × 10−8, 2.55 ×
10−9}, and the convective Rossby number (5.1) is Ro = {5.05 × 10−2, 2.66 × 10−2, 1.77 × 10−2, 1.16 ×
10−2}. The flow develops thinner columnar structures as the rotation rate increases (left to right).

In figure 3, we show vertical slices of the temperature field for fixed Ra(P) = 1012 and
decreasing values of the Ekman number (increasing rotation rate). One observes thinner
structures with strong vertical coherence as the rotation rate increases. As compared with
standard rotating Rayleigh–Bénard convection, the top-down asymmetry of the present
system is visible in the temperature snapshots. This asymmetry arises predominantly
as a result of the asymmetry of the distribution of heat sources and sinks, and to a
lesser extent as a result of the asymmetry between the (free-slip) top and (no-slip)
bottom boundary conditions. One observes stronger vertical temperature variations in
the vicinity of the heating region, with a quieter region in the upper half of the domain.
The temperature fluctuations measured by the probe located at z = 0.75H are thus weaker
than the fluctuations measured at z = 0.25H, although we checked that they display the
same scaling behaviour with the control parameters of the system. More generally, and
anticipating the results in the next sections, the good agreement between the scaling laws
measured in the present set-up and in the idealized top-down-symmetric set-up of Barker
et al. (2014) indicates that the top-down asymmetry does not impact the scaling behaviour
of the various quantities of interest in the GT regime.

3. The geostrophic turbulence regime: theoretical background

3.1. Asymptotically fast rotation, E � 1
As discussed at the outset, deriving scaling predictions for the various emergent
quantities of interest proves more challenging for rotating convection than for non-rotating
convection, because of the additional dimensionless parameter E in the former case.
Progress can be made in the rapidly rotating regime E � 1, as initially proposed by
Stevenson (1979) and put on firm analytical footing by Julien et al. (1998) through an
asymptotic expansion of the equations in powers of E1/3 (Aurnou, Horn & Julien 2020).
As for any asymptotic expansion, a challenging part of the analysis consists in inferring
the correct scaling of the various quantities of interest with the small parameter E1/3. We
propose here a recipe to determine these scalings based on the following observation: the
reduced set of equations for rapid rotation must hold near the threshold of instability.
That is, the sought scalings can be inferred from the structure of the most unstable
eigenmode arising near the threshold for instability. This approach provides a shortcut
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to deriving the predictions of the geostrophic turbulence scaling regime. The first step
consists in writing the scaling in E of the various quantities characterizing the most
unstable eigenmode computed through linear stability analysis (see Chandrasekhar 1961
for rotating Rayleigh–Bénard convection and Bouillaut (2022) for the rotating radiatively
driven set-up). In the rapidly rotating regime E � 1, the marginal state is characterized by
the following asymptotic relations:

Threshold temperature-based
Rayleigh number: Ra(�T)

c ∼ E−4/3, (3.1a)

Growthrate (or angular frequency): σ ∼ κ

H2 E−2/3, (3.1b)

Horizontal length scale: �⊥ ∼ HE1/3, (3.1c)

Vertical length scale: �z ∼ H, (3.1d)

Ratio of temperature to velocity
fluctuations: θstd ∼ �TH

κ
〈w2〉1/2E2/3, (3.1e)

Relation between the various velocity
components: 〈u2〉 ∼ 〈v2〉 ∼ 〈w2〉. (3.1f )

Based on the asymptotic behaviour of the temperature-based Rayleigh number, one
introduces the reduced Rayleigh number R̃a = Ra(�T)E4/3. We focus on the rapidly
rotating near-threshold regime corresponding to the distinguished limit E → 0 with fixed
R̃a = O(E0). Equation (3.1b) above indicates the behaviour of the growthrate of the most
unstable mode in this distinguished limit, or simply the behaviour of the frequency of
oscillation at threshold when convection arises through a Hopf bifurcation (Chandrasekhar
1961). More generally, in the distinguished limit of interest here, all the ∼ symbols
in (3.1a)–(3.1f ) can be replaced by an equals sign, at the expense of multiplying the
right-hand side by a generic function F(R̃a,Pr) (in the following, the symbol F denotes a
generic functional dependence that a priori differs between successive equations). Indeed,
at the instability threshold, R̃a is constant and one must recover the scalings (3.1a)–(3.1f )
in Ekman number.

The saturation level of the various fields is determined based on the dominant
nonlinearity of the equations (Stevenson 1979). Here the nonlinearities are all of advective
type, entering the expression of the total derivative as

∂t + (u · ∇) = ∂t + u⊥ · ∇⊥ + w∂z. (3.2)

In the linear regime of the instability (exponential growth), the term ∂t is of the order
of the growth rate σ , while the advective nonlinearities are negligible. Saturation arises
when these advective nonlinearities become comparable to σ . One easily checks using
(3.1a)–(3.1f ) that vertical advection is negligible as compared with horizontal advection:

w∂z ∼ w
H

∼ u⊥
H

∼ �⊥

H
× u⊥
�⊥

∼ E1/3u⊥ · ∇⊥ � u⊥ · ∇⊥. (3.3)

Saturation thus arises when u⊥ · ∇⊥ ∼ 〈u2〉1/2/�⊥ becomes comparable to σ .
Substitution of the scalings (3.1a)–(3.1f ) yields the scaling for the velocity at saturation:

〈u2〉1/2 = κ

H
E−1/3F(R̃a,Pr), (3.4)
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which we recast as a scaling for the Reynolds number:

〈w2〉1/2H
ν

∼ 〈u2〉1/2H
ν

= E−1/3F(R̃a,Pr). (3.5)

With the heat flux P/(ρC) scaling as the convective flux 〈wθ〉 ∼ 〈w2〉1/2θstd, one can
deduce the scaling in Ekman number of all the quantities of interest listed above at finite
distance from threshold based on the combination of (3.4) with (3.1):

Nu = F(R̃a,Pr), (3.6a)

�⊥

H
= E1/3F(R̃a,Pr), (3.6b)

�z

H
= F(R̃a,Pr), (3.6c)

θstd

�T
= E1/3F(R̃a,Pr), (3.6d)

where, again, the symbol F denotes a generic function that differs between successive
equations. The equations above provide the dominant scalings in Ekman number behind
the derivation of the reduced model by Julien et al. (1998).

3.2. Diffusivity-free regime
In practical terms, the distinguished limit considered above allows one to consider
increasingly large values of R̃a as the Ekman number E decreases. For extremely low
values of E, one can even consider values of R̃a that are much greater than one. The leap of
faith is then to assume that there is a regime of low-enough Ekman number for (3.5)–(3.6)
to hold, but far enough from threshold (R̃a � 1) to reach a diffusivity-free scaling regime
(numerical integration of the associated reduced model does provide evidence for this, see
e.g. Julien et al. 2012). The diffusivity-free scaling argument then amounts to demanding
that the functions F in (3.5)–(3.6d) be such that κ and ν can be crossed out from both
sides of the equations, which finally leads to the GT scaling predictions:

Nu ∼ R̃a3/2

Pr1/2 ∼ (Ra(�T))3/2E2Pr−1/2, (3.7)

�⊥

H
∼ E1/3

√
R̃a
Pr

∼ E

√
Ra(�T)

Pr
, (3.8)

�z

H
∼ 1, (3.9)

〈u2〉1/2H
ν

∼ E−1/3 R̃a
Pr

∼ Ra(�T) E
Pr

, (3.10)

θstd

�T
∼ E1/3

√
R̃a
Pr

∼ E

√
Ra(�T)

Pr
. (3.11)

To highlight the diffusivity-free form of these predictions, we combine the emergent
parameters of interest with E and Pr to form dimensionless combinations that do not

998 A9-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

55
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.556


Rapidly rotating radiatively driven convection

Dimensional quantity Dimensionless parameter Diffusivity-free form GT prediction

�T Nu = PH
ρCκ�T Nu∗ = EPr−1Nu Nu∗ ∼ R3/5

θstd Ra(θ) = αgθstdH3

κν
Ra(θ)∗ = E2Pr−1Ra(θ) Ra(θ)∗ ∼ R3/5

〈u2〉1/2
Re = 〈u2〉1/2

H
ν

Re∗ = E Re Re∗ ∼ R2/5

�⊥ �⊥
H �⊥∗ = �⊥

H �⊥∗ ∼ R1/5

Table 1. Scaling predictions for the various emergent quantities of interest in the geostrophic turbulence (GT)
scaling regime, expressed in terms of the diffusivity-free flux-based Rayleigh number R = Ra(P)E3/Pr2.

involve the molecular diffusivities κ and ν. For radiatively driven convection, the central
control parameter is then the diffusivity-free flux-based Rayleigh number R, defined as

R = Ra(P)E3

Pr2 . (3.12)

Denoting with a star the diffusivity-free form of the emergent dimensionless parameters,
we introduce

Nu∗ = NuE
Pr

, Ra(θ)∗ = Ra(θ)E2

Pr
, Re∗ = E Re, �⊥∗ = �⊥

H
. (3.13a–d)

Such diffusivity-free dimensionless numbers allow us to recast the GT scaling predictions
in a particularly compact form reported in table 1. Namely, each diffusivity-free emergent
parameter evolves as some power-law in R with a specific exponent.

4. Experimental and numerical assessment of the scaling predictions

4.1. Heat transport
As discussed at the outset, a central question in turbulent convection is the scaling relation
between the heat flux and the overall temperature drop. The GT scaling prediction for
the heat transport has been previously validated in Bouillaut et al. (2021) by plotting
the experimental data for Nu∗ as a function of R. We reproduce this plot in figure 4 for
completeness, to which we add the numerical data. We confirm the excellent agreement
between the experimental data and the GT scaling prediction Nu∗ ∼ R3/5 for R ≤
3 × 10−7. The numerical data are also in excellent agreement with the prediction. The
compensated plot further highlights this agreement and indicates that the prefactors of the
scaling laws inferred from the experimental and numerical data are fully compatible, the
numerical prefactor being greater by approximately 15 %.

4.2. Temperature fluctuations
We now turn to the temperature fluctuations, which we also measure both experimentally
and numerically. To assess the validity of the GT scaling prediction, in figure 5, we plot
the diffusivity-free fluctuation-based Rayleigh number Ra(θ)∗ as a function of R. Again,
this representation leads to a very good collapse of the data, indicating diffusivity-free
(or ‘ultimate’) dynamics. There is arguably more scatter in the experimental data than
in the numerical data, because the latter benefit from an area horizontal average together
with the time average when computing the r.m.s. temperature fluctuations (see § 2.3). Still,
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Figure 4. Diffusivity-free Nusselt number Nu∗ as a function of the diffusivity-free flux-based Rayleigh number
R. Same symbols as in figure 2. The dotted line indicates the GT scaling exponent 3/5. The dashed line is the
prediction of the non-rotating ‘ultimate’ regime, characterized by an exponent of 1/3 in this representation.
The inset shows Nu∗/R3/5 versus R.

R3/5

R2/3

Ra
∗(θ

)  =
 E

2
 P
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1
 R

a(θ
)
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R = Ra(P) E3/Pr2

Figure 5. Diffusivity-free fluctuation-based Rayleigh number Ra(θ)∗ as a function of R. Same symbols as in
figure 2. The dotted line indicates the GT scaling prediction R3/5, while the dashed line indicates the scaling
prediction R2/3 of the non-rotating ‘ultimate’ scaling regime. Inset: Ra(θ)∗ /R3/5 versus R.

the theoretical prediction R3/5 is validated over four decades in R, with a prefactor that
is greater by approximately 20 % for the experimental data than for the numerical data.
Somewhat surprisingly, the range of validity of the GT prediction seems to extend beyond
R = 3 × 10−7, that is, the prediction for Ra(θ)∗ is validated over a more extended range of
R than the prediction for Nu∗.
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Re
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R = Ra(P) E3/Pr2

Figure 6. Diffusivity-free Reynolds number Re∗ extracted from the DNS as a function of R. Same symbols
as in figure 2. The dotted line indicates the GT scaling prediction R2/5, while the dashed line indicates the
scaling prediction R1/3 of the non-rotating ‘ultimate’ scaling regime. Inset: Re∗/R2/5 versus R.

4.3. Convective flow speed
As compared with the laboratory experiment, DNS allows us to readily characterize the
velocity field. We thus turn to the r.m.s. velocity in the fluid domain inferred from the
numerical simulations. In figure 6, we plot the diffusivity-free Reynolds number Re∗ as
a function of R. Once again, we obtain an excellent collapse of the numerical data onto
a single master curve, which indicates diffusivity-free dynamics. The master curve is in
excellent agreement with the GT prediction R2/5, as shown by the eye-guide in the main
figure and by the compensated plot in the inset. Also shown in the figure is the prediction
R1/3 associated with the non-rotating ultimate regime of thermal convection (Bouillaut
et al. 2022), which is incompatible with the present rapidly rotating data points. We also
note that the GT scaling prediction for Re∗ appears to be valid over a more extended range
of R than the prediction for Nu∗. The reason may be that the exponents 2/5 and 1/3 of
the rotating and non-rotating scaling predictions are rather close, possibly inducing a very
smooth and extended cross-over region between the two power-law behaviours.

4.4. Horizontal length scale
To further characterize the convective flow, we now turn to its characteristic horizontal
length scale, extracted from the DNS based on the definition in (2.9). In figure 7, we plot
�⊥∗ as a function of R for the numerical dataset. Once again, this representation leads
to a good collapse of the data, although the scatter appears greater than for the previous
quantities of interest. This is likely a consequence of the shallower GT scaling prediction
R1/5 for this quantity of interest. The eyeguide in the main figure indicates good agreement
with this prediction, which is further confirmed by the compensated plot in the inset.

Comments are in order regarding the definition (2.9) of the horizontal length scale of the
flow. Indeed, previous studies have reported different scaling behaviours using different
proxies for the horizontal scale of the flow, only a subset of which agree with the GT
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Figure 7. Dimensionless horizontal scale �⊥∗ as a function of R. The dotted line indicates the GT scaling
prediction. Inset: �⊥∗ /R1/5 versus R.

prediction (Oliver et al. 2023; de Vries, Barker & Hollerbach 2023). One reason is that
many of these proxies directly involve the dissipative scales and thus the viscosity. For
instance, one should refrain from using the Taylor scale or the Kolmogorov scale of the
flow when investigating GT scaling, as these scales are (partly) controlled by the viscous
scale. Similarly, one should refrain from using the r.m.s. vorticity of the flow to diagnose
the horizontal flow scale, as the r.m.s. vorticity is typically controlled by the small viscous
scales. In other words, one expects to observe the zeroth law of turbulence (and therefore
the GT predictions) for large-scale quantities, such as the horizontal integral scale of the
flow defined in (2.9). As discussed in the following section, the no-slip bottom boundary
condition of the present set-up prevents the emergence of domain-scale vortices, such that
�⊥ in (2.9) is always smaller than the horizontal extent of the domain. This seems to be a
simplification as compared with studies employing stress-free boundary conditions.

5. Discussion

Based on a hybrid experimental–numerical study, we have validated the scaling predictions
of the GT regime for rapidly rotating radiatively driven convection. The scaling predictions
for the heat transport and temperature fluctuations are validated using both experimental
and numerical data. Following such cross-validation, the scaling predictions for the flow
speed and horizontal scale are validated through further processing of the numerical data.

The GT scaling predictions for the temperature fluctuations, the flow speed and the
horizontal scale of the flow are observed over many decades in diffusivity-free flux-based
Rayleigh number R, and they seem to arise even before the Nusselt number displays GT
scaling. The same observation seems to hold for the rotating Rayleigh–Bénard system,
where numerical studies indicate that the observation of the GT prediction for the heat
transport requires more extreme parameter values than the GT predictions for the flow
speed and flow structures (Julien et al. 2012; Song et al. 2024). At the experimental
level, Vogt, Horn & Aurnou (2021) report velocity measurements that are compatible
with the GT scaling prediction, even though the GT scaling regime for the heat transport
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remains elusive in rotating Rayleigh–Bénard experiments. Similarly, Guervilly, Cardin
& Schaeffer (2019) report diffusivity-free behaviour for the Reynolds number and the
azimuthal scale of the flow in a numerical study of rotating convection in a spherical shell,
while the Nusselt number has still to reach the GT regime. These observations confirm
that GT scaling for the Nusselt number arises further into the asymptotic regime of control
parameters than GT scaling for the flow scale and flow speed. Although the diffusivity-free
flux-based Rayleigh number R is a natural control parameter of our experiment, regime
transitions in the Rayleigh–Bénard set-up are more often characterized in terms of the
convective Rossby number:

Ro =
√
αg�T
4HΩ2 =

√
R

Nu∗
, (5.1)

the rapidly rotating regime corresponding typically to Ro � 0.1. We provide the values
of Ro for each panel of figure 3 in the figure caption to illustrate the transition to rapidly
rotating convection. The GT asymptote in figure 4 corresponds to Nu∗ � 2.8R3/5, which
after substitution in (5.1) yields Ro = 0.6R1/5. As discussed above, clear GT scaling
for the Nusselt number is observed for R � 3 × 10−7. The corresponding transition
convective Rossby number is Ro = 0.6 (3 × 10−7)1/5 = 0.03, within the expected range.

As mentioned in the introduction, the idealized numerical study that is closest to the
present set-up is that of Barker et al. (2014). The authors employ a combination of local
internal heating and cooling localized near the boundaries, together with an imposed
background temperature gradient that is relaxed to a target value, with the goal of ensuring
no average flux through the fixed-temperature top and bottom boundaries (the background
temperature gradient is fixed in some simulations, while it obeys a relaxation equation
when fluctuations are too strong). With this approach, the authors successfully validate
the scaling predictions of Stevenson (1979), provided the heat transport is characterized
using the temperature gradient at mid-depth and the Reynolds number is based on the
vertical velocity component. Our set-up can be seen as an experimental realization of
such internally heated and cooled convection, further confirming the numerical results
of Barker et al. (2014) while avoiding the subtleties of their set-up and diagnostics.
For instance, the boundaries of the laboratory experiment are thermally insulated to a
good approximation, without the need for the adjusted background temperature gradient
of Barker et al. (2014). Similarly, our DNS employs Chebyshev expansions to readily
account for such insulated boundaries (contrasting with the Fourier decomposition of
Barker et al. (2014)). Additionally, we follow the standard practice of defining the Nusselt
number based on a temperature drop, showing consistent behaviour with the temperature
gradient considered by Barker et al. (2014). Finally, we believe that the solid boundary
at the bottom of the experimental tank – and associated no-slip boundary condition in
the DNS – also contributes to ‘simplifying’ the set-up, in the sense that it prevents (or
delays) any accumulation of horizontal kinetic energy into large-scale vortices (Favier,
Silvers & Proctor 2014; Guervilly, Hughes & Jones 2014; Stellmach et al. 2014; Kunnen
et al. 2016; Favier et al. 2019; Aguirre Guzmán et al. 2020; Maffei et al. 2021). (Indeed,
running a few numerical test cases with a free-slip bottom boundary condition did lead
to large-scale-vortex formation sufficiently far from threshold, while large-scale vortices
were not observed for the realistic no-slip bottom boundary condition. When they develop,
these large scale vortices modify the scaling for the horizontal scale and the horizontal
speed of the flow.) Overall, our study shows excellent agreement with the pioneering study
of Barker et al. (2014) while offering a ‘realistic’ set-up, in the sense that it can be realized
in the laboratory.
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To conclude, radiatively driven convection offers a robust way of achieving the
diffusivity-free (or ultimate) regimes of thermal convection in the laboratory, with
and without global rotation. Additional physical ingredients could be included in the
experimental and numerical set-ups, with the goal of investigating the diffusivity-free
regimes of a broader range of natural convective flows. Magnetic field crucially influences
convection in planetary and stellar interiors and could be the natural next step.
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