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Abstract

We extend the infinite-allele simple branching process of Griffiths and Pakes (1988)
allowing the offspring to change types and labels. The model is developed and limit
theorems are given for the growth of the number of labels of a specific type. We also
discuss the asymptotics of the frequency spectrum. Finally, we present an application of
the model’s use in tumorigenesis.
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1. Introduction

The aim of this paper is to introduce a multitype version of the infinite-allele Bienaymé–
Galton–Watson (BGW) process introduced by Griffiths and Pakes [5]. We extend the process
from individuals of a single type to a k-type process to allow differing growth parameters be-
tween types. We define {Z(n), n = 0, 1, 2, . . . } as the k-dimensional stochastic process where
Z(n) = (Z1(n), . . . , Zk(n)) is the number of particles of each type in the nth generation, Gn.
The process {Z(n)} is a typical multitype BGW process where each type represents a different
set of the so-called driver mutations which may confer a growth advantage to the mutant cell
clone [4]. Probabilities of driver mutations occurring are then represented in the offspring
probability generating function (PGF) of {Z(1)}, f (s) = (f1(s), . . . , fk(s)). That is, given a
type i individual, the offspring PGF is

fi(s) =
∑

j1,... jk≥0

pi(j1, . . . , jk)s
j1
1 . . . s

jk

k , si ∈ [0, 1],

where pi(j1, . . . , jk) = P[Z(1) = (j1, . . . , jk) | Z(0) = ei]. The transition probabilities of
splitting into different types in the PGF describe driver mutation probabilities. We denote the
mean offspring matrix by M . Let ρ be the spectral radius of M with left and right eigenvectors
v and u. Results concerning differences in driver mutations, criticality, and asymptotics of Z(n)

follow the standard theory of multitype processes and can be found in Athreya and Ney [1] and
Mode [10].

Within this multitype process, we incorporate the possibility for newly-born offspring to
have a passenger mutation with probability μ ∈ (0, 1) regardless of type. This extends the
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Multitype infinite-allele branching process 865

infinite-allele idea introduced by Griffiths and Pakes, where each individual branching process
initiates an infinite-allele branching process. Since we can have a large number of passenger
(selectively neutral) mutations that only affect heterogeneity, we do not distinguish between
alleles that have a different set of passenger mutations in Z(n) or its PGF f (n)(s). Instead we
only track their count. To avoid confusion, we use the term type to distinguish individuals that
differ with respect to driver mutations and have a particular type with respect to the branching
process {Z(n)}. That is Zi(n) and Zj (n) count different types within the population. When an
individual has an offspring that undergoes a passenger mutation, we use the same terminology
as Taïb [11] and say the offspring has a different label. Every passenger mutation event leads
to a new and unique label. Thus, individuals can be distinguished by their type and label, but
only the type influences growth rates.

We are interested in a particular quantity K(n) = (K1(n), . . . , Kk(n)) the k-dimensional
vector with Ki(n) equal to the number of labels carried by i-type individuals in Gn. The term
{K(n)} is a stochastic process with K(0) = ei representing the only label present of the i-type
ancestor counted by Z(0). We will also make use of the branching process {Z̃(n)} which we
call the ancestor process of {Z(n)}. The process Z̃(n) counts the number of individuals in
generation n that have the same label as the ancestor, or never undergo a passenger mutation.
We define the PGF for the ancestor offspring process of an i-type individual as

Hi(s) ≡ E[sZ̃(1) | Z̃(0) = ei] = fi(μ + (1 − μ)s1, . . . , μ + (1 − μ)sk).

The k-dimensional vector H (s) is the offspring PGF for the ancestor process. In both the
normal individual process and the ancestor process the PGF in the nth generation is the nth
iterate of the PGF, denoted by f (n)(s) and H (n)(s), respectively. We also denote the mean
matrix of the ancestor process M̃ = (1 − μ)M .

We count the number of labels for a particular type by counting individuals with specific
characteristics. Define the indicator Im,i,n = 1 if the mth i-type individual in Gn has a new label
different from its parent. Also, define the indicator Jm,i,r,n−r (j) = 1 if some j -type individual
in Gn has a label initiated by the mth i-type individual in Gr . It follows then that

Jm,i,0,n(j) = 1{Z̃j (n)>0 | Z̃(0)=ei }

and, furthermore,

E[Jm,i,0,n(j)] = P[Z̃j (n) > 0 | Z̃(0) = ei] = 1 − H
(n)
i (1 − ej ),

where 1 denotes the vector of ones. If Fn is the natural filtration with respect to {Z(n)} then

E[Im,i,rJm,i,r,n−r (j) | Fr ] = μ(1 − H
(n−r)
i (1 − ej )).

We can express the number of labels of a certain type in terms of the number of individuals in
the population that are ancestors to new labels and not yet extinct. Given a type α ancestor,

Kj(n) = J1,α,0,n(j) +
n∑

r=1

k∑
i=1

Zi(r)∑
m=1

Im,i,nJm,i,r,n−r (j).
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The expectation given a type α ancestor is then

Eα[Kj(n)] = Eα[J1,α,0,n(j)] +
n∑

r=1

k∑
i=1

Eα

[Zi(r)∑
m=1

Im,i,nJm,i,r,n−r (j)

]

= 1 − H(n)
α (1 − ej ) + μ

n−1∑
r=0

e�
α Mn−r (1 − H (r)(1 − ej )), (1)

which we simplify using conditional expectation and rewriting the indices in the sum.

2. Irreducible M

In this section we suppose the mean matrix M is irreducible. Also suppose ρ is the spectral
radius of M with left and right eigenvectors v and u normalized so that vu = 1 and 1�u = 1.
The eigenvector v is a row vector, and u is a column vector. Let us define the constant

Aj = μ

∞∑
r=0

vρ−r [1 − H (r)(1 − ej )].

Note that this constant is finite regardless of the criticality of ρ. This yields the following lemma
about the limit of the expectation as given in (1).

Lemma 1. Given an irreducible process starts with an ancestor of type α,

lim
n→∞

Eα[Kj(n)]
Eα[Z(n)u] = Aj

Proof. First note that Eα[Z(n)u] = e�
α Mnu = e�

α ρnu.

If ρ > 1 then (1 − H
(n)
α (1 − ej ))ρ

−n → 0. If ρ ≤ 1 then (1 − H
(n)
α (1 − ej )) → 0 since

extinction occurs almost surely (a.s.).
The second term of the sum in(1) can be rewritten as

μ

e�
α ρnu

n−1∑
r=0

e�
α Mn−r (1 − H (r)(1 − ej )) = μe�

α Mn

e�
α ρnu

n−1∑
r=0

M−r (1 − H (r)(1 − ej )).

For irreducible M , limn→∞(Mρ−1)n = uv. Also,

1 − H(n)
α (1 − ej ) ≤ Eα[Z̃j (n)] = e�

α M̃nej

by Markov’s inequality. Since M̃ = (1 − μ)M , then M−rM̃r = (1 − μ)rI , so

n−1∑
r=0

M−r (1 − H (r)(1 − ej )) ≤
n−1∑
r=0

M−rM̃rej

=
n−1∑
r=0

(1 − μ)rej

→ 1

μ
ej as n → ∞.
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This series converges absolutely, leading to

lim
n→∞

Eα[Kj(n)]
e�
α ρnu

= μe�
α

e�
α u

uv

∞∑
r=0

M−r (1 − H (r)(1 − ej ))

= μ

∞∑
r=0

vM−r (1 − H (r)(1 − ej ))

= μ

∞∑
r=0

vρ−r (1 − H (r)(1 − ej ))

giving the desired result for all ρ > 0.

If we define �a = {Z(n) > 0, n = 0, 1, 2, . . . } as the set of nonextinction, then we can
show the limiting behavior of Kj(n) for supercritical processes (ρ > 1) converges a.s. to Aj

conditionally on nonextinction.

Theorem 1. If Ei[Zj (1) log Zj (1)] < ∞ for all 1 ≤ i ≤ k, 1 ≤ j ≤ k, and 1 < ρ < ∞, and
if the process is started by a α-type ancestor, then

lim
n→∞

Kj(n)

Z(n)u
= Aj a.s. on �a.

Proof. Define the variable

Kj(r, n − r) =
k∑

i=1

Zi(r)∑
m=1

Im,i,rJm,i,r,n−r (j),

which is the number of new j -type labels in Gr that are still represented in Gn. Note that
Kj(n) = ∑n

r=0 Kj(r, n − r). Then for any fixed n′,

(Z(n)u)−1
n′−1∑
r=1

Kj(r, n − r) ≤ (Z(n)u)−1
n′−1∑
r=1

Zj (r) −→ 0 a.s. on �a.

We can represent Kj(n) as a sum and show that each of the summands converge. First, we
show that∑n

r=n′ Kj(r, n − r)

Z(n)u
=

∑n−n′
r=0 Kj(n − r, r)

Z(n)u
=

∑n−n′
r=0 Kj(n − r, r)

Z(n − r)u

(
Z(n − r)u

Z(n)u

)
. (2)

Now, conditioning on Z(n − r), E[Kj(n − r, r) | Z(n − r)] = μ(Z(n − r)[1 − H (n−r)(1 −
ej )]) is a sum of independent and identically distributed random variables. Noting that
Z(n)/(Z(n)u) → v a.s. on �a as given in Athreya and Ney [1, Theorems 1 and 4, p. 193]
and proved by Kurtz et al. [9], we can use a strong law for random sums to obtain almost sure
convergence Kl(n−r, r)/(Z(n)u) → μv[1−H (n−r)(1−el )] on �a as n → ∞ and r = O(1).

Hoppe [7, Theorem 2.1] showed that for 1 < ρ < ∞, there exists a sequence of positive
vectors, {cn} and scalars {γn} = {vcn} such that for each α, if Z(0) = eα then

lim
n→∞ Z(n)cn = Wα a.s., (3)

limn→∞ γn

γn+1
= ρ, (4)
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limn→∞ cn

γn

= u, (5)

lim
n→∞ γnZ(n) = Wαv a.s., (6)

where W = (W1, . . . , WK) is a nonnegative random variable if E[Zi(1) log Zi(1)] < ∞ for
i = 1, . . . , k. Now, since γnZ(n)u → Wα a.s. by (6), we make use of (3)–(5) to obtain

Z(n − 1)u

Z(n)u
∼ Wαγn

Wαγn−1
−→ ρ−1,

implying
Z(n − r)u

Z(n)u
−→ ρ−r a.s. as n → ∞.

Since
Kj(n − r, r)

Z(n − r)u
≤ Z(n − r)

Z(n − r)u
,

each summand of the right-hand side of (2) is dominated by ρ−r . Thus, the series is dominated
by the geometric series that converges to (1 − ρ)−1, so we can use the dominated convergence
theorem to show the series on the right-hand side of (2) converges to Aj a.s. on �a as n → ∞.
The assertion follows.

3. Reducible M

We now remove the assumption of irreducibility from the process to model more realistic
scenarios. Mutations usually have low probability of being reversed, so if we assume the
probability is 0 (as often is the case), we want to understand how the number of labels grows
within each type. We are able to group the types of the branching process into equivalence
classes that form irreducible subprocesses. This allows a reordering of matrix M as a block
lower triangular matrix with blocks along the diagonal being irreducible. Results about the
process can then be ascertained based on results for the blocks.

Define the equivalence classes {Ca}a=1,...,l as

Ca = {i, j ∈ 1, 2, . . . , k; m
(n1)
i,j > 0 and m

(n2)
j,i > 0 for some n1 and n2}.

That is, the equivalence classes are created by separating types into groups where each type
in the group communicates with every other type in the same group [8]. We are able to order
the indices of types and permute the mean matrix M according to the equivalence classes by
imposing an order on the classes such that if b > a, then m

(n)
i,j > 0 for all i ∈ Cb and j ∈ Ca .

The resulting mean matrix after permutation is

M =

⎡
⎢⎢⎢⎢⎢⎣

M1,1 0 0 . . . 0
M2,1 M2,2 0 . . . 0
M3,1 M3,2 M3,3 . . . 0

...
...

...
. . .

...

Ml,1 Ml,2 Ml,3 . . . Ml,l

⎤
⎥⎥⎥⎥⎥⎦

with Ma,b = (mi,j ), i ∈ Ca, j ∈ Cb. If we limit a process to types within a subclass,
then ZCa (n) = {Zi(n), i ∈ Ca} is an irreducible subprocess of Z(n) having mean offspring
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matrix Ma,a . Given an ancestor with type α ∈ Ca , results about ZCa (n) and KCa (n) follow
those of the previous section. We show here the results for a 2-class example and note that
examples with more than 2 classes can be developed analogously.

Suppose we have a reducible BGW process Z(n) with mean matrix

M =
[
M1,1 0
M2,1 M2,2

]

with irreducible M1,1 and M2,2, and M2,1 �= 0. Let Mi,i have spectral radius ρi with associated
left and right eigenvectors ui and vi for i = 1, 2. Let ρ be the spectral radius of M , which is the
maximum of ρ1 and ρ2. If ρ = ρ1 > ρ2 then the eigenvectors associated with ρ are v = (v1, 0)

and u = (u1, (ρI − M2,2)
−1M2,1u1). If ρ = ρ2 > ρ1 then v = (v2M2,1(ρI − M1,1)

−1, v2)

and u = (0, u2). These are used as eigenvectors when we show the limits hold for the reducible
cases. We present an analogous lemma to Lemma 1 for the expectation of the number of labels
Kj(n) in a 2-class process with the mean matrix as above. We also limit ourselves to an ancestor
of a type in the class C2 to avoid trivial results that can arise. Also, we expect ancestors of cell
populations to have no somatic mutations, but have the ability to gain mutations. We do not
expect mutant cells to give rise to daughter cells without those mutations since the reversing of
mutations is very rare. Because of this, we require the reducibility assumption for M . Another
case can occur when ρ1 = ρ2. Different convergence results exist in this situation which can
be determined analogously based on Kesten and Stigum [8, Theorem 2.3]. This situation is less
likely to occur in cancer evolution, so it is not discussed here.

Lemma 2. Suppose that ρ is the spectral radius of M and it is simple. Given a reducible BGW
process with an ancestor of type α ∈ C2,

lim
n→∞

Eα[Kj(n)]
Eα[Z(n)u] = Aj

with u and v defined as above based on whether ρ = ρ1 or ρ = ρ2, and

Aj = μ

∞∑
r=0

vρ−r [1 − H (r)(1 − ej ].

Proof. Under the above conditions, lim(M/ρ)n = uv as n → ∞ where vu = 1 [3]. The
remaining calculations of Lemma 1 then hold with u and v determined by whether ρ = ρ1 or
ρ = ρ2.

The almost sure convergence of Kj(n) is also extended to the reducible case. Suppose again
we consider a α-type ancestor with α ∈ C2. Let �a still be defined as the set of nonextinction.

Theorem 2. Assume that E[Zi(1) log Zi(1) | Z(0) = eα] ≤ ∞ for i = 1, 2, . . . , k. Also, let ρ
be the spectral radius of M and assume it is simple. Then

lim
n→∞

Kj(n)

Z(n)u
= Aj a.s. on �a

with u and v defined as above.

We first introduce a corollary to Kesten and Stigum’s almost sure convergence of Z(n) that
we use in our proof.
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Corollary 1. Suppose ρ is the spectral radius of M , the mean matrix for Z(n) with eigenvalues
u and v as given above depending on whether ρ = ρ1 or ρ = ρ2. Then

lim
n→∞

Z(n)

Z(n)u
= v a.s. on �a.

Proof. Theorem 2.1 of Kesten and Stigum [8] states that

lim
n→∞

Z(n)

ρn
= w · v a.s.,

where w is a scalar random variable. This implies that

lim
n→∞

ρn

Z(n)u
= w−1

and, furthermore,

lim
n→∞

Z(n)

Z(n)u
= lim

n→∞
ρnZ(n)

ρnZ(n)u
= v a.s. on �a.

Proof of Theorem 2. Since α ∈ C2, the proof is similar to that of Theorem 1 with u and v

defined as above based on whether ρ = ρ1 > ρ2 or ρ = ρ2 > ρ1. We use the reducible
versions of the Kesten and Stigum theorem [8, Theorem 1.1] in place of the irreducible case to
show almost sure convergence of the number of individuals. The calculations from the proof
of Theorem 1 above then hold with the modified u and v.

4. Frequency spectrum

Let αi(j, n) be the number of i-type labels in generation n represented by j individuals
currently living in generation n. We will denote the expectation of this term as the frequency
spectrum for type i. The term αi(j, n) can be expressed as a sum of indicators via an approach
similar to determining the total number of labels. Define Ij,i(n) as the indicator that the ancestor
has j i-type descendants with the same label in generation n and Ij,i,l,k(r, n−r) as the indicator
that the lth k-type individual in generation r is a new label and has j i-type descendants with the
same label in generation n. Given an ancestor of type α, E[Ij,i(n)] = P[Z̃i(n) = j | Z̃α(0) =
1], which we denote by q

(n)
α,i (j). The values of q

(n)
α,i (j) over i and j make up the coefficients to

H
(n)
α (s). We can write αi(j, n) in terms of the previous indicators

αj,i(n) = Ij,i(n) +
n∑

r=1

K∑
k=1

Zk(r)∑
l=1

Ij,i,l,k(r, n − r)

allowing us to derive an expression for the frequency spectrum, φi(j, n) ≡ E[αi(j, n)]. The
frequency spectrum can be simplified to

φi(j, n) = E[Ij,i(n) +
n∑

r=1

K∑
k=1

Zk(r)∑
l=1

Ij,i,l,k(r, n − r)]

= q
(n)
α,i (j) +

n∑
r=1

K∑
k=1

μq
(n−r)
k,i (j)e′

αMrek
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using conditional expectation. Now denote the vector q
(r)
i (j) = [q(r)

1,i (j), . . . , q
(r)
K,i(j)]. Then

φi(j, n) ≡ E[αi(j, n)]

= q
(n)
α,i (j) +

n∑
r=1

μe′
αMrq

(n−r)
i (j)

= q
(n)
α,i (j) + μ

n−1∑
r=0

e′
αMn−rq

(r)
i (j). (7)

Theorem 3. Let u and v be the right and left eigenvectors associated with ρ. Then

lim
n→∞

φi(j, n)

Z(n)u
=

∞∑
r=0

μρ−rvq
(r)
i (j), (8)

�(i, j) = lim
n→∞

φi(j, n)

E[Ki(n)] =
∑∞

r=0 μρ−rvq
(r)
i (j)

Ai

.

Proof. The proof is essentially the same as that of Lemma 1. We use the fact that q(n)
α,i (j) → 0

as n → ∞ in (7), and the sum is bounded.

In this case, �(i, j) is the long-run frequency of i-type labels having j individuals. This
provides an idea of the distribution of labels having different individuals.

5. Proof of concept simulations

We consider two different 4-type branching processes with similar PGFs to illustrate the
almost sure convergence results. Each process contains cells undergoing reproduction via
binary fission or death, and the probability of a new allele at each generation is μ = 5 × 10−4.
The first process is irreducible with PGF

f1(s) = 0.45 + 0.03s1s2 + 0.02s1s3 + 0.50s2
1 ,

f2(s) = 0.51 + 0.06s1s2 + 0.04s2s3 + 0.39s2
2 ,

f3(s) = 0.56 + 0.04s2s3 + 0.05s3s4 + 0.35s2
3 ,

f4(s) = 0.50 + 0.03s2s4 + 0.06s3s4 + 0.40s2
4 .

The mean matrix is

M =

⎡
⎢⎢⎣

1.05 0.03 0.02 0
0.06 0.88 0.04 0

0 0.04 0.79 0.05
0 0.03 0.07 0.90

⎤
⎥⎥⎦ .

The spectral radius of this process is ρ = 1.0617 with left and right eigenvectors v =
[1.3974, 0.2728, 0.1554, 0.0480] and u = [0.6637, 0.2291, 0.0451, 0.0620]�. Thus, the pro-
cess is supercritical, and growth is expected. Numerically evaluating A, we obtain

A = [0.0035, 0.0016, 0.0012, 0.0005]�.

We ran 100 simulations of the process beginning with a single type 1 ancestor. The results for
the sample paths for each type is shown in Figure 1. We condition on nonextinction by removing

https://doi.org/10.1239/jap/1445543852 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1445543852


872 T. O. MCDONALD AND M. KIMMEL

Figure 1: The paths of the process K(n) for 100 simulations shows convergence to Ai, i = 1, 2, 3, 4,
which is given by the horizontal dashed line. We scale the paths with a log10 transformation to see

convergence over the 140 generations.

simulations that become extinct and only using the remaining simulations. A horizontal dashed
line is superimposed at the respective value of Ai according to the type, i. Over 140 generations,
we see convergence of nearly all paths to the limit, Ai .

We created a similar 4-type process, but adjusted the probabilities so that types 3 and 4 form
a class that can feed into types 1 and 2, but not in the other direction. The PGF for the process
is

f1(s) = 0.47 + 0.03s1s2 + 0.5s2
1 ,

f2(s) = 0.51 + 0.1s1s2 + 0.39s2
2 ,

f3(s) = 0.54 + 0.02s2s3 + 0.09s3s4 + 0.35s2
3 ,

f4(s) = 0.4 + 0.08s2s4 + 0.07s3s4 + 0.45s2
4 .

The mean matrix is

M =

⎡
⎢⎢⎣

1.03 0.03 0 0
0.1 0.88 0 0
0 0.02 0.81 0.09
0 0.08 0.07 1.05

⎤
⎥⎥⎦ .

After breaking the matrices up into submatrices and determining the spectral radii of each,
we find that the process is supercritical with spectral radius ρ = 1.0739 since ρ2 > ρ1.
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Figure 2: The paths of the process K(n) for 100 simulations in a reducible BGW shows convergence to
Ai, i = 1, 2, 3, 4 which is given by the dashed line. We scale the paths with a log10 transformation to see

convergence over the 140 generations.

The results of Kesten and Stigum lead to vectors v = [1.9053, 0.8359, 0.3262, 1.2298] and
u = [0, 0, 0.2543, 0.7457]�. We numerically evaluate A to obtain

A = [0.0055, 0.0039, 0.0017, 0.0032]�.

The results of 100 simulations are shown in Figure 2 with a dashed horizontal line at the
value of Ai . Note that these simulations are performed under the condition of nonextinction
and are initiated with a single type 4 ancestor in generation 0. In Figure 2, we show similar
results in the reducible case that holds by adjusting the eigenvectors according to Kesten and
Stigum’s results.

Finally, we show the results of the convergence of the frequency spectrum, Theorem 3, in a
2-type simulation starting with a single type 1 ancestor. Again, we set the probability of a new
label to μ = 5 × 10−4. Our PGF for this process is

f1(s) = 0.5s1 + 0.2s1s2 + 0.3s2
1 , f2(s) = 0.5s2 + 0.4s1s2 + 0.1s2

2 .

The process is supercritical with mean matrix

M =
[

1.3 0.2
0.4 1.1

]
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Figure 3: The simulation of the frequency spectrum for type-1 (left) and type-2 (right) individuals
shows convergence to the analytical formula given by the horizontal lines for each number of individuals

(ascending vertically each solid/dashed line represents 6–1 individuals).

Figure 4: The results of the frequency spectrum from simulations after 40 generations is given for type-1
(left) and type-2 (right) individuals (solid line) along with the calculated curve (dashed line).

having spectral radius of ρ = 1.5 and eigenvectors v = [ 4
3 , 2

3 ] and u = [ 1
2 , 1

2 ]�. The results for
the convergence of the normalized frequency spectrum are shown in Figure 3. We scaled the
process using a log10 transformation to better illustrate the convergence and difference in each
curve. Each type of line represents the average number of labels represented by j individuals
after 100 simulations. In each case, the value converges to the numerical solution given on the
right-hand side of the theorem. The two plots refer to both types in the process. In Figure 4
we show the results in the 40th generation, after convergence has occurred. The results of
simulations of the process represented by the left-hand side of (8) in Theorem 3 are shown as a
solid line and the results of calculating the right-hand side to show convergence are shown as
a dashed line. In both cases, there is very little error after the 40 generations.

https://doi.org/10.1239/jap/1445543852 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1445543852


Multitype infinite-allele branching process 875

6. Applications to cancer evolution

The current view of cancer progression is that the multistep accumulation of somatic mu-
tations leads to the transformation of healthy cells into malignant cancer cells with higher
fitness [6]. In terms of multitype branching processes, this can be represented by varying the
parameters and offspring probabilities for each type of cell, where cells with higher fitness
have a higher probability of splitting, ensuring supercriticality of the process and particular
types. Because of the way cells proliferate, we are mostly concerned with binary fission, where
each offspring may survive, die, or mutate even though our theory holds for general multitype
processes. The transition from normal cells to supercritical cancer cells occurs over multiple
replications, and waves of expansion are observed. While the probability of a mutation occurring
in a single cell is small, years of replication in a large number of cells makes the likelihood
of cancer initiation greater. Sequencing studies have shown that genomes undergo a large
number of changes, but most mutations are neutral (the so-called ‘passenger mutations’) and
do not affect cell fitness [2]. In fact, one modeling study determined that half or more somatic
mutations occur prior to the cancer initiating event [12]. This means the prior mutations are
either passenger mutations, or even if they are driver mutations they do not lead to cells with
high enough fitness to overcome normal cells.

The multitype infinite-allele branching process allows modeling of both passenger and driver
mutations. We referred to the subpopulations that have different fitness as different types in
the model, and to the subpopulations with the same fitness but different genomes as different
labels. Cells of different types have different sets of driver mutations in their ancestry, while
those with different labels have different sets of passenger mutations. Our results from the
model show that the number of mutations grows exponentially and at a rate proportional to
the number of individuals alive. Previous studies [2] attempted to determine the correlation
between the number of passenger mutations and driver mutations, which we can determine by
the number of labels for each type in our model. Alternatively, we can create a more specific
process where the type of individual refers to the number of driver mutations present and Ki(n)

would represent the total number of passenger alleles associated with i driver mutations. Such
a model would allow us to directly compare results to the previous studies. However, the model
constrains us to assuming driver mutations are not unique in their effect on growth rates. Our
model allows us to get around this constraint and adds more flexibility without requiring the
high number of dimensions associated with considering each mutation (driver or passenger) as
a specific type.
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